De ingresos sobre una categoría de respuesta
Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis a nivel nacional.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
# tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 1)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[2] <- "Tipo de techo"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1161 | 1101011001 | 1 | 1101 | 298 | 2017 |
1162 | 1101011002 | 1 | 1101 | 95 | 2017 |
1163 | 1101021001 | 1 | 1101 | 55 | 2017 |
1164 | 1101021002 | 1 | 1101 | 2 | 2017 |
1165 | 1101021003 | 1 | 1101 | 265 | 2017 |
1166 | 1101021004 | 1 | 1101 | 178 | 2017 |
1167 | 1101021005 | 1 | 1101 | 337 | 2017 |
1168 | 1101031001 | 1 | 1101 | 194 | 2017 |
1169 | 1101031002 | 1 | 1101 | 482 | 2017 |
1170 | 1101031003 | 1 | 1101 | 328 | 2017 |
1171 | 1101031004 | 1 | 1101 | 171 | 2017 |
1172 | 1101041001 | 1 | 1101 | 135 | 2017 |
1173 | 1101041002 | 1 | 1101 | 228 | 2017 |
1174 | 1101041003 | 1 | 1101 | 235 | 2017 |
1175 | 1101041004 | 1 | 1101 | 636 | 2017 |
1176 | 1101041005 | 1 | 1101 | 403 | 2017 |
1177 | 1101041006 | 1 | 1101 | 214 | 2017 |
1178 | 1101051001 | 1 | 1101 | 364 | 2017 |
1179 | 1101051002 | 1 | 1101 | 350 | 2017 |
1180 | 1101051003 | 1 | 1101 | 303 | 2017 |
1181 | 1101051004 | 1 | 1101 | 200 | 2017 |
1182 | 1101051005 | 1 | 1101 | 269 | 2017 |
1183 | 1101051006 | 1 | 1101 | 256 | 2017 |
1184 | 1101061001 | 1 | 1101 | 105 | 2017 |
1185 | 1101061002 | 1 | 1101 | 349 | 2017 |
1186 | 1101061003 | 1 | 1101 | 259 | 2017 |
1187 | 1101061004 | 1 | 1101 | 134 | 2017 |
1188 | 1101061005 | 1 | 1101 | 144 | 2017 |
1189 | 1101071001 | 1 | 1101 | 271 | 2017 |
1190 | 1101071002 | 1 | 1101 | 453 | 2017 |
1191 | 1101071003 | 1 | 1101 | 483 | 2017 |
1192 | 1101071004 | 1 | 1101 | 211 | 2017 |
1193 | 1101081001 | 1 | 1101 | 601 | 2017 |
1194 | 1101081002 | 1 | 1101 | 469 | 2017 |
1195 | 1101081003 | 1 | 1101 | 328 | 2017 |
1196 | 1101081004 | 1 | 1101 | 284 | 2017 |
1197 | 1101092004 | 1 | 1101 | 6 | 2017 |
1198 | 1101092005 | 1 | 1101 | 1 | 2017 |
1199 | 1101092006 | 1 | 1101 | 35 | 2017 |
1200 | 1101092007 | 1 | 1101 | 1 | 2017 |
1201 | 1101092010 | 1 | 1101 | 36 | 2017 |
1202 | 1101092012 | 1 | 1101 | 3 | 2017 |
1203 | 1101092016 | 1 | 1101 | 1 | 2017 |
1204 | 1101092017 | 1 | 1101 | 5 | 2017 |
1205 | 1101092018 | 1 | 1101 | 6 | 2017 |
1206 | 1101092019 | 1 | 1101 | 2 | 2017 |
1207 | 1101092021 | 1 | 1101 | 11 | 2017 |
1208 | 1101092023 | 1 | 1101 | 13 | 2017 |
1209 | 1101092024 | 1 | 1101 | 1 | 2017 |
1210 | 1101101001 | 1 | 1101 | 230 | 2017 |
1211 | 1101101002 | 1 | 1101 | 420 | 2017 |
1212 | 1101101003 | 1 | 1101 | 323 | 2017 |
1213 | 1101101004 | 1 | 1101 | 249 | 2017 |
1214 | 1101101005 | 1 | 1101 | 481 | 2017 |
1215 | 1101101006 | 1 | 1101 | 356 | 2017 |
1216 | 1101111001 | 1 | 1101 | 249 | 2017 |
1217 | 1101111002 | 1 | 1101 | 184 | 2017 |
1218 | 1101111003 | 1 | 1101 | 353 | 2017 |
1219 | 1101111004 | 1 | 1101 | 279 | 2017 |
1220 | 1101111005 | 1 | 1101 | 359 | 2017 |
1221 | 1101111006 | 1 | 1101 | 60 | 2017 |
1222 | 1101111007 | 1 | 1101 | 234 | 2017 |
1223 | 1101111008 | 1 | 1101 | 322 | 2017 |
1224 | 1101111009 | 1 | 1101 | 317 | 2017 |
1225 | 1101111010 | 1 | 1101 | 21 | 2017 |
1226 | 1101111011 | 1 | 1101 | 309 | 2017 |
1227 | 1101111012 | 1 | 1101 | 109 | 2017 |
1228 | 1101111013 | 1 | 1101 | 227 | 2017 |
1229 | 1101111014 | 1 | 1101 | 138 | 2017 |
1230 | 1101112003 | 1 | 1101 | 9 | 2017 |
1231 | 1101112013 | 1 | 1101 | 9 | 2017 |
1232 | 1101112025 | 1 | 1101 | 1 | 2017 |
1233 | 1101112901 | 1 | 1101 | 1 | 2017 |
1234 | 1101991999 | 1 | 1101 | 68 | 2017 |
13906 | 1107011001 | 1 | 1107 | 245 | 2017 |
13907 | 1107011002 | 1 | 1107 | 284 | 2017 |
13908 | 1107011003 | 1 | 1107 | 280 | 2017 |
13909 | 1107021001 | 1 | 1107 | 738 | 2017 |
13910 | 1107021002 | 1 | 1107 | 407 | 2017 |
13911 | 1107021003 | 1 | 1107 | 323 | 2017 |
13912 | 1107021004 | 1 | 1107 | 466 | 2017 |
13913 | 1107021005 | 1 | 1107 | 471 | 2017 |
13914 | 1107021006 | 1 | 1107 | 201 | 2017 |
13915 | 1107021007 | 1 | 1107 | 466 | 2017 |
13916 | 1107021008 | 1 | 1107 | 416 | 2017 |
13917 | 1107031001 | 1 | 1107 | 358 | 2017 |
13918 | 1107031002 | 1 | 1107 | 594 | 2017 |
13919 | 1107031003 | 1 | 1107 | 251 | 2017 |
13920 | 1107032005 | 1 | 1107 | 5 | 2017 |
13921 | 1107041001 | 1 | 1107 | 233 | 2017 |
13922 | 1107041002 | 1 | 1107 | 342 | 2017 |
13923 | 1107041003 | 1 | 1107 | 252 | 2017 |
13924 | 1107041004 | 1 | 1107 | 272 | 2017 |
13925 | 1107041005 | 1 | 1107 | 207 | 2017 |
13926 | 1107041006 | 1 | 1107 | 249 | 2017 |
13927 | 1107041007 | 1 | 1107 | 359 | 2017 |
13928 | 1107042002 | 1 | 1107 | 3 | 2017 |
13929 | 1107991999 | 1 | 1107 | 41 | 2017 |
29220 | 1401011001 | 1 | 1401 | 197 | 2017 |
29221 | 1401011002 | 1 | 1401 | 411 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1161 | 1101011001 | 298 | 2017 | 01101 |
1162 | 1101011002 | 95 | 2017 | 01101 |
1163 | 1101021001 | 55 | 2017 | 01101 |
1164 | 1101021002 | 2 | 2017 | 01101 |
1165 | 1101021003 | 265 | 2017 | 01101 |
1166 | 1101021004 | 178 | 2017 | 01101 |
1167 | 1101021005 | 337 | 2017 | 01101 |
1168 | 1101031001 | 194 | 2017 | 01101 |
1169 | 1101031002 | 482 | 2017 | 01101 |
1170 | 1101031003 | 328 | 2017 | 01101 |
1171 | 1101031004 | 171 | 2017 | 01101 |
1172 | 1101041001 | 135 | 2017 | 01101 |
1173 | 1101041002 | 228 | 2017 | 01101 |
1174 | 1101041003 | 235 | 2017 | 01101 |
1175 | 1101041004 | 636 | 2017 | 01101 |
1176 | 1101041005 | 403 | 2017 | 01101 |
1177 | 1101041006 | 214 | 2017 | 01101 |
1178 | 1101051001 | 364 | 2017 | 01101 |
1179 | 1101051002 | 350 | 2017 | 01101 |
1180 | 1101051003 | 303 | 2017 | 01101 |
1181 | 1101051004 | 200 | 2017 | 01101 |
1182 | 1101051005 | 269 | 2017 | 01101 |
1183 | 1101051006 | 256 | 2017 | 01101 |
1184 | 1101061001 | 105 | 2017 | 01101 |
1185 | 1101061002 | 349 | 2017 | 01101 |
1186 | 1101061003 | 259 | 2017 | 01101 |
1187 | 1101061004 | 134 | 2017 | 01101 |
1188 | 1101061005 | 144 | 2017 | 01101 |
1189 | 1101071001 | 271 | 2017 | 01101 |
1190 | 1101071002 | 453 | 2017 | 01101 |
1191 | 1101071003 | 483 | 2017 | 01101 |
1192 | 1101071004 | 211 | 2017 | 01101 |
1193 | 1101081001 | 601 | 2017 | 01101 |
1194 | 1101081002 | 469 | 2017 | 01101 |
1195 | 1101081003 | 328 | 2017 | 01101 |
1196 | 1101081004 | 284 | 2017 | 01101 |
1197 | 1101092004 | 6 | 2017 | 01101 |
1198 | 1101092005 | 1 | 2017 | 01101 |
1199 | 1101092006 | 35 | 2017 | 01101 |
1200 | 1101092007 | 1 | 2017 | 01101 |
1201 | 1101092010 | 36 | 2017 | 01101 |
1202 | 1101092012 | 3 | 2017 | 01101 |
1203 | 1101092016 | 1 | 2017 | 01101 |
1204 | 1101092017 | 5 | 2017 | 01101 |
1205 | 1101092018 | 6 | 2017 | 01101 |
1206 | 1101092019 | 2 | 2017 | 01101 |
1207 | 1101092021 | 11 | 2017 | 01101 |
1208 | 1101092023 | 13 | 2017 | 01101 |
1209 | 1101092024 | 1 | 2017 | 01101 |
1210 | 1101101001 | 230 | 2017 | 01101 |
1211 | 1101101002 | 420 | 2017 | 01101 |
1212 | 1101101003 | 323 | 2017 | 01101 |
1213 | 1101101004 | 249 | 2017 | 01101 |
1214 | 1101101005 | 481 | 2017 | 01101 |
1215 | 1101101006 | 356 | 2017 | 01101 |
1216 | 1101111001 | 249 | 2017 | 01101 |
1217 | 1101111002 | 184 | 2017 | 01101 |
1218 | 1101111003 | 353 | 2017 | 01101 |
1219 | 1101111004 | 279 | 2017 | 01101 |
1220 | 1101111005 | 359 | 2017 | 01101 |
1221 | 1101111006 | 60 | 2017 | 01101 |
1222 | 1101111007 | 234 | 2017 | 01101 |
1223 | 1101111008 | 322 | 2017 | 01101 |
1224 | 1101111009 | 317 | 2017 | 01101 |
1225 | 1101111010 | 21 | 2017 | 01101 |
1226 | 1101111011 | 309 | 2017 | 01101 |
1227 | 1101111012 | 109 | 2017 | 01101 |
1228 | 1101111013 | 227 | 2017 | 01101 |
1229 | 1101111014 | 138 | 2017 | 01101 |
1230 | 1101112003 | 9 | 2017 | 01101 |
1231 | 1101112013 | 9 | 2017 | 01101 |
1232 | 1101112025 | 1 | 2017 | 01101 |
1233 | 1101112901 | 1 | 2017 | 01101 |
1234 | 1101991999 | 68 | 2017 | 01101 |
13906 | 1107011001 | 245 | 2017 | 01107 |
13907 | 1107011002 | 284 | 2017 | 01107 |
13908 | 1107011003 | 280 | 2017 | 01107 |
13909 | 1107021001 | 738 | 2017 | 01107 |
13910 | 1107021002 | 407 | 2017 | 01107 |
13911 | 1107021003 | 323 | 2017 | 01107 |
13912 | 1107021004 | 466 | 2017 | 01107 |
13913 | 1107021005 | 471 | 2017 | 01107 |
13914 | 1107021006 | 201 | 2017 | 01107 |
13915 | 1107021007 | 466 | 2017 | 01107 |
13916 | 1107021008 | 416 | 2017 | 01107 |
13917 | 1107031001 | 358 | 2017 | 01107 |
13918 | 1107031002 | 594 | 2017 | 01107 |
13919 | 1107031003 | 251 | 2017 | 01107 |
13920 | 1107032005 | 5 | 2017 | 01107 |
13921 | 1107041001 | 233 | 2017 | 01107 |
13922 | 1107041002 | 342 | 2017 | 01107 |
13923 | 1107041003 | 252 | 2017 | 01107 |
13924 | 1107041004 | 272 | 2017 | 01107 |
13925 | 1107041005 | 207 | 2017 | 01107 |
13926 | 1107041006 | 249 | 2017 | 01107 |
13927 | 1107041007 | 359 | 2017 | 01107 |
13928 | 1107042002 | 3 | 2017 | 01107 |
13929 | 1107991999 | 41 | 2017 | 01107 |
29220 | 1401011001 | 197 | 2017 | 01401 |
29221 | 1401011002 | 411 | 2017 | 01401 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01107 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01401 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
01402 | Camiña | 262850.3 | 2017 | 1402 | 1250 | 328562901 |
01404 | Huara | 253968.5 | 2017 | 1404 | 2730 | 693334131 |
01405 | Pica | 313007.5 | 2017 | 1405 | 9296 | 2909717399 |
02101 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02103 | Sierra Gorda | 403458.5 | 2017 | 2103 | 10186 | 4109628188 |
02104 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 |
02201 | Calama | 409671.3 | 2017 | 2201 | 165731 | 67895226712 |
02203 | San Pedro de Atacama | 426592.0 | 2017 | 2203 | 10996 | 4690805471 |
02301 | Tocopilla | 246615.3 | 2017 | 2301 | 25186 | 6211253937 |
02302 | María Elena | 466266.9 | 2017 | 2302 | 6457 | 3010685220 |
03101 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03102 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03103 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03301 | Vallenar | 304336.7 | 2017 | 3301 | 51917 | 15800246795 |
03302 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 |
03303 | Freirina | 253086.7 | 2017 | 3303 | 7041 | 1781983257 |
03304 | Huasco | 287406.6 | 2017 | 3304 | 10149 | 2916889629 |
04101 | La Serena | 270221.9 | 2017 | 4101 | 221054 | 59733627577 |
04102 | Coquimbo | 261852.6 | 2017 | 4102 | 227730 | 59631700074 |
04103 | Andacollo | 248209.3 | 2017 | 4103 | 11044 | 2741223967 |
04104 | La Higuera | 228356.8 | 2017 | 4104 | 4241 | 968461330 |
04105 | Paiguano | 205942.1 | 2017 | 4105 | 4497 | 926121774 |
04106 | Vicuña | 211431.9 | 2017 | 4106 | 27771 | 5871675449 |
04201 | Illapel | 238674.4 | 2017 | 4201 | 30848 | 7362627007 |
04202 | Canela | 207933.6 | 2017 | 4202 | 9093 | 1890740321 |
04203 | Los Vilos | 255200.4 | 2017 | 4203 | 21382 | 5456695139 |
04204 | Salamanca | 242879.5 | 2017 | 4204 | 29347 | 7127783272 |
04301 | Ovalle | 266522.9 | 2017 | 4301 | 111272 | 29656533187 |
04302 | Combarbalá | 210409.7 | 2017 | 4302 | 13322 | 2803077721 |
04303 | Monte Patria | 211907.9 | 2017 | 4303 | 30751 | 6516380780 |
04304 | Punitaqui | 194997.8 | 2017 | 4304 | 10956 | 2136395349 |
04305 | Río Hurtado | 182027.2 | 2017 | 4305 | 4278 | 778712384 |
05101 | Valparaíso | 298720.7 | 2017 | 5101 | 296655 | 88616992249 |
05102 | Casablanca | 312802.7 | 2017 | 5102 | 26867 | 8404070481 |
05103 | Concón | 318496.3 | 2017 | 5103 | 42152 | 13425257057 |
05105 | Puchuncaví | 288737.2 | 2017 | 5105 | 18546 | 5354920887 |
05107 | Quintero | 316659.1 | 2017 | 5107 | 31923 | 10108709691 |
05109 | Viña del Mar | 337006.1 | 2017 | 5109 | 334248 | 112643604611 |
05301 | Los Andes | 338182.5 | 2017 | 5301 | 66708 | 22559476922 |
05302 | Calle Larga | 245165.4 | 2017 | 5302 | 14832 | 3636293159 |
05303 | Rinconada | 281633.2 | 2017 | 5303 | 10207 | 2874630315 |
05304 | San Esteban | 220958.4 | 2017 | 5304 | 18855 | 4166170587 |
05401 | La Ligua | 229623.7 | 2017 | 5401 | 35390 | 8126381563 |
05402 | Cabildo | 249717.7 | 2017 | 5402 | 19388 | 4841527150 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
01101 | 1101111004 | 279 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111005 | 359 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051001 | 364 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111006 | 60 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111003 | 353 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092016 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092017 | 5 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051002 | 350 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111007 | 234 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092021 | 11 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111008 | 322 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041005 | 403 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092019 | 2 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101112901 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111002 | 184 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051004 | 200 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092018 | 6 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041006 | 214 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051003 | 303 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101112003 | 9 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101112013 | 9 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051005 | 269 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021002 | 2 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101991999 | 68 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101081002 | 469 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101005 | 481 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111014 | 138 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101011002 | 95 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101011001 | 298 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092012 | 3 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021001 | 55 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041003 | 235 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021003 | 265 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021004 | 178 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092023 | 13 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092024 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111010 | 21 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101003 | 323 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101004 | 249 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101031002 | 482 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061005 | 144 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111001 | 249 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041004 | 636 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041002 | 228 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101112025 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101071004 | 211 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101081001 | 601 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101071003 | 483 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111012 | 109 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111009 | 317 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051006 | 256 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111011 | 309 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101071002 | 453 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111013 | 227 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061004 | 134 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101071001 | 271 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092004 | 6 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092005 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101081003 | 328 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101081004 | 284 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092010 | 36 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041001 | 135 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092006 | 35 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092007 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101001 | 230 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101002 | 420 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061001 | 105 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021005 | 337 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101006 | 356 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101031004 | 171 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101031003 | 328 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101031001 | 194 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061002 | 349 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061003 | 259 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01107 | 1107031001 | 358 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107031002 | 594 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107011002 | 284 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021008 | 416 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107991999 | 41 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107042002 | 3 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107031003 | 251 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107032005 | 5 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107011001 | 245 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041007 | 359 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041006 | 249 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107011003 | 280 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021001 | 738 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041004 | 272 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021002 | 407 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021003 | 323 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021005 | 471 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021007 | 466 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021006 | 201 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041003 | 252 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041001 | 233 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041002 | 342 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021004 | 466 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041005 | 207 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01401 | 1401032007 | 1 | 2017 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
01401 | 1401032011 | 38 | 2017 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
01101 | 1101111004 | 279 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111005 | 359 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051001 | 364 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111006 | 60 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111003 | 353 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092016 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092017 | 5 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051002 | 350 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111007 | 234 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092021 | 11 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111008 | 322 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041005 | 403 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092019 | 2 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101112901 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111002 | 184 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051004 | 200 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092018 | 6 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041006 | 214 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051003 | 303 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101112003 | 9 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101112013 | 9 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051005 | 269 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021002 | 2 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101991999 | 68 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101081002 | 469 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101005 | 481 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111014 | 138 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101011002 | 95 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101011001 | 298 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092012 | 3 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021001 | 55 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041003 | 235 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021003 | 265 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021004 | 178 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092023 | 13 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092024 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111010 | 21 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101003 | 323 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101004 | 249 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101031002 | 482 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061005 | 144 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111001 | 249 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041004 | 636 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041002 | 228 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101112025 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101071004 | 211 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101081001 | 601 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101071003 | 483 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111012 | 109 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111009 | 317 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101051006 | 256 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111011 | 309 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101071002 | 453 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101111013 | 227 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061004 | 134 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101071001 | 271 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092004 | 6 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092005 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101081003 | 328 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101081004 | 284 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092010 | 36 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101041001 | 135 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092006 | 35 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101092007 | 1 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101001 | 230 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101002 | 420 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061001 | 105 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101021005 | 337 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101101006 | 356 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101031004 | 171 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101031003 | 328 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101031001 | 194 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061002 | 349 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01101 | 1101061003 | 259 | 2017 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01107 | 1107031001 | 358 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107031002 | 594 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107011002 | 284 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021008 | 416 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107991999 | 41 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107042002 | 3 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107031003 | 251 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107032005 | 5 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107011001 | 245 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041007 | 359 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041006 | 249 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107011003 | 280 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021001 | 738 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041004 | 272 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021002 | 407 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021003 | 323 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021005 | 471 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021007 | 466 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021006 | 201 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041003 | 252 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041001 | 233 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041002 | 342 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107021004 | 466 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01107 | 1107041005 | 207 | 2017 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01401 | 1401032007 | 1 | 2017 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
01401 | 1401032011 | 38 | 2017 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 584 | 0.0023749 | 10101 |
10101011002 | 10101 | 177 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2941 | 0.0119600 | 10101 |
10101021001 | 10101 | 82 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3953 | 0.0160755 | 10101 |
10101021002 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1107 | 0.0045018 | 10101 |
10101021003 | 10101 | 70 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2294 | 0.0093289 | 10101 |
10101021004 | 10101 | 99 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3391 | 0.0137900 | 10101 |
10101021005 | 10101 | 171 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2564 | 0.0104269 | 10101 |
10101031001 | 10101 | 133 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4530 | 0.0184220 | 10101 |
10101031002 | 10101 | 115 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4740 | 0.0192760 | 10101 |
10101031003 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4107 | 0.0167018 | 10101 |
10101031004 | 10101 | 88 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2856 | 0.0116144 | 10101 |
10101031005 | 10101 | 146 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5690 | 0.0231393 | 10101 |
10101031006 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2460 | 0.0100040 | 10101 |
10101031007 | 10101 | 39 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2292 | 0.0093208 | 10101 |
10101031008 | 10101 | 54 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3585 | 0.0145790 | 10101 |
10101031009 | 10101 | 166 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4436 | 0.0180397 | 10101 |
10101031010 | 10101 | 92 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3566 | 0.0145017 | 10101 |
10101031011 | 10101 | 49 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2757 | 0.0112118 | 10101 |
10101031012 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1849 | 0.0075193 | 10101 |
10101031013 | 10101 | 73 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3945 | 0.0160430 | 10101 |
10101031014 | 10101 | 109 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2265 | 0.0092110 | 10101 |
10101031015 | 10101 | 31 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1930 | 0.0078487 | 10101 |
10101031016 | 10101 | 248 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3071 | 0.0124887 | 10101 |
10101031017 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3885 | 0.0157990 | 10101 |
10101032002 | 10101 | 2 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 129 | 0.0005246 | 10101 |
10101032011 | 10101 | 20 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 426 | 0.0017324 | 10101 |
10101032019 | 10101 | 32 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 829 | 0.0033713 | 10101 |
10101041001 | 10101 | 70 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4342 | 0.0176574 | 10101 |
10101041002 | 10101 | 55 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2169 | 0.0088206 | 10101 |
10101041003 | 10101 | 774 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5202 | 0.0211548 | 10101 |
10101051001 | 10101 | 246 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2463 | 0.0100162 | 10101 |
10101051002 | 10101 | 33 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1913 | 0.0077795 | 10101 |
10101051003 | 10101 | 65 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3272 | 0.0133061 | 10101 |
10101051004 | 10101 | 307 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3633 | 0.0147742 | 10101 |
10101061001 | 10101 | 1239 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 6787 | 0.0276004 | 10101 |
10101061002 | 10101 | 329 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2729 | 0.0110979 | 10101 |
10101061003 | 10101 | 160 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3668 | 0.0149165 | 10101 |
10101061004 | 10101 | 110 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2995 | 0.0121796 | 10101 |
10101061005 | 10101 | 312 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2571 | 0.0104554 | 10101 |
10101061006 | 10101 | 401 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4130 | 0.0167953 | 10101 |
10101061007 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 817 | 0.0033225 | 10101 |
10101061008 | 10101 | 388 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2109 | 0.0085766 | 10101 |
10101061009 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 168 | 0.0006832 | 10101 |
10101061010 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1543 | 0.0062749 | 10101 |
10101062003 | 10101 | 10 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 158 | 0.0006425 | 10101 |
10101062008 | 10101 | 72 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 581 | 0.0023627 | 10101 |
10101062013 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 571 | 0.0023221 | 10101 |
10101062029 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 47 | 0.0001911 | 10101 |
10101062039 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 67 | 0.0002725 | 10101 |
10101071001 | 10101 | 20 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2352 | 0.0095648 | 10101 |
10101071002 | 10101 | 54 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3919 | 0.0159372 | 10101 |
10101071003 | 10101 | 112 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4978 | 0.0202438 | 10101 |
10101071004 | 10101 | 75 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3443 | 0.0140015 | 10101 |
10101071005 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2751 | 0.0111874 | 10101 |
10101071006 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4214 | 0.0171369 | 10101 |
10101071007 | 10101 | 29 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2345 | 0.0095363 | 10101 |
10101071008 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5480 | 0.0222853 | 10101 |
10101071009 | 10101 | 49 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3549 | 0.0144326 | 10101 |
10101071010 | 10101 | 48 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3521 | 0.0143187 | 10101 |
10101071011 | 10101 | 43 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3094 | 0.0125822 | 10101 |
10101071012 | 10101 | 47 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2621 | 0.0106587 | 10101 |
10101071014 | 10101 | 26 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 875 | 0.0035583 | 10101 |
10101072014 | 10101 | 36 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 997 | 0.0040545 | 10101 |
10101072021 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 44 | 0.0001789 | 10101 |
10101072028 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 145 | 0.0005897 | 10101 |
10101072029 | 10101 | 36 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1051 | 0.0042741 | 10101 |
10101072036 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 118 | 0.0004799 | 10101 |
10101072045 | 10101 | 7 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 113 | 0.0004595 | 10101 |
10101082016 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 121 | 0.0004921 | 10101 |
10101082017 | 10101 | 5 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 38 | 0.0001545 | 10101 |
10101082018 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 623 | 0.0025335 | 10101 |
10101082030 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 176 | 0.0007157 | 10101 |
10101082034 | 10101 | 5 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 66 | 0.0002684 | 10101 |
10101082042 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 253 | 0.0010289 | 10101 |
10101082045 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 123 | 0.0005002 | 10101 |
10101092004 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 97 | 0.0003945 | 10101 |
10101092008 | 10101 | 83 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 752 | 0.0030581 | 10101 |
10101092037 | 10101 | 11 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 276 | 0.0011224 | 10101 |
10101092040 | 10101 | 33 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 509 | 0.0020699 | 10101 |
10101092041 | 10101 | 44 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1683 | 0.0068442 | 10101 |
10101092044 | 10101 | 21 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 530 | 0.0021553 | 10101 |
10101102005 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 147 | 0.0005978 | 10101 |
10101102007 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 824 | 0.0033509 | 10101 |
10101102035 | 10101 | 22 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 940 | 0.0038227 | 10101 |
10101102037 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 164 | 0.0006669 | 10101 |
10101102051 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 57 | 0.0002318 | 10101 |
10101112025 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1078 | 0.0043839 | 10101 |
10101122024 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 952 | 0.0038715 | 10101 |
10101131001 | 10101 | 88 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 604 | 0.0024563 | 10101 |
10101132022 | 10101 | 15 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 703 | 0.0028589 | 10101 |
10101132023 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 603 | 0.0024522 | 10101 |
10101132027 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 105 | 0.0004270 | 10101 |
10101132049 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1883 | 0.0076575 | 10101 |
10101142009 | 10101 | 2 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 59 | 0.0002399 | 10101 |
10101142015 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 124 | 0.0005043 | 10101 |
10101142027 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 192 | 0.0007808 | 10101 |
10101142038 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 53 | 0.0002155 | 10101 |
10101142046 | 10101 | 9 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 317 | 0.0012891 | 10101 |
10101142047 | 10101 | 11 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 263 | 0.0010695 | 10101 |
10101142049 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 973 | 0.0039569 | 10101 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 584 | 0.0023749 | 10101 | 156939747 |
10101011002 | 10101 | 177 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2941 | 0.0119600 | 10101 | 790342117 |
10101021001 | 10101 | 82 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3953 | 0.0160755 | 10101 | 1062299350 |
10101021002 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1107 | 0.0045018 | 10101 | 297486815 |
10101021003 | 10101 | 70 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2294 | 0.0093289 | 10101 | 616472226 |
10101021004 | 10101 | 99 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3391 | 0.0137900 | 10101 | 911271717 |
10101021005 | 10101 | 171 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2564 | 0.0104269 | 10101 | 689029986 |
10101031001 | 10101 | 133 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4530 | 0.0184220 | 10101 | 1217357970 |
10101031002 | 10101 | 115 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4740 | 0.0192760 | 10101 | 1273791783 |
10101031003 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4107 | 0.0167018 | 10101 | 1103684147 |
10101031004 | 10101 | 88 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2856 | 0.0116144 | 10101 | 767499859 |
10101031005 | 10101 | 146 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5690 | 0.0231393 | 10101 | 1529087605 |
10101031006 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2460 | 0.0100040 | 10101 | 661081812 |
10101031007 | 10101 | 39 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2292 | 0.0093208 | 10101 | 615934761 |
10101031008 | 10101 | 54 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3585 | 0.0145790 | 10101 | 963405811 |
10101031009 | 10101 | 166 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4436 | 0.0180397 | 10101 | 1192097121 |
10101031010 | 10101 | 92 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3566 | 0.0145017 | 10101 | 958299894 |
10101031011 | 10101 | 49 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2757 | 0.0112118 | 10101 | 740895347 |
10101031012 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1849 | 0.0075193 | 10101 | 496886289 |
10101031013 | 10101 | 73 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3945 | 0.0160430 | 10101 | 1060149491 |
10101031014 | 10101 | 109 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2265 | 0.0092110 | 10101 | 608678985 |
10101031015 | 10101 | 31 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1930 | 0.0078487 | 10101 | 518653616 |
10101031016 | 10101 | 248 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3071 | 0.0124887 | 10101 | 825277335 |
10101031017 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3885 | 0.0157990 | 10101 | 1044025544 |
10101032002 | 10101 | 2 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 129 | 0.0005246 | 10101 | 34666485 |
10101032011 | 10101 | 20 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 426 | 0.0017324 | 10101 | 114480021 |
10101032019 | 10101 | 32 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 829 | 0.0033713 | 10101 | 222779196 |
10101041001 | 10101 | 70 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4342 | 0.0176574 | 10101 | 1166836271 |
10101041002 | 10101 | 55 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2169 | 0.0088206 | 10101 | 582880671 |
10101041003 | 10101 | 774 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5202 | 0.0211548 | 10101 | 1397946172 |
10101051001 | 10101 | 246 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2463 | 0.0100162 | 10101 | 661888009 |
10101051002 | 10101 | 33 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1913 | 0.0077795 | 10101 | 514085165 |
10101051003 | 10101 | 65 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3272 | 0.0133061 | 10101 | 879292556 |
10101051004 | 10101 | 307 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3633 | 0.0147742 | 10101 | 976304968 |
10101061001 | 10101 | 1239 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 6787 | 0.0276004 | 10101 | 1823887096 |
10101061002 | 10101 | 329 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2729 | 0.0110979 | 10101 | 733370839 |
10101061003 | 10101 | 160 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3668 | 0.0149165 | 10101 | 985710604 |
10101061004 | 10101 | 110 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2995 | 0.0121796 | 10101 | 804853669 |
10101061005 | 10101 | 312 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2571 | 0.0104554 | 10101 | 690911113 |
10101061006 | 10101 | 401 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4130 | 0.0167953 | 10101 | 1109864993 |
10101061007 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 817 | 0.0033225 | 10101 | 219554407 |
10101061008 | 10101 | 388 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2109 | 0.0085766 | 10101 | 566756724 |
10101061009 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 168 | 0.0006832 | 10101 | 45147051 |
10101061010 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1543 | 0.0062749 | 10101 | 414654161 |
10101062003 | 10101 | 10 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 158 | 0.0006425 | 10101 | 42459726 |
10101062008 | 10101 | 72 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 581 | 0.0023627 | 10101 | 156133550 |
10101062013 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 571 | 0.0023221 | 10101 | 153446225 |
10101062029 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 47 | 0.0001911 | 10101 | 12630425 |
10101062039 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 67 | 0.0002725 | 10101 | 18005074 |
10101071001 | 10101 | 20 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2352 | 0.0095648 | 10101 | 632058708 |
10101071002 | 10101 | 54 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3919 | 0.0159372 | 10101 | 1053162447 |
10101071003 | 10101 | 112 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4978 | 0.0202438 | 10101 | 1337750105 |
10101071004 | 10101 | 75 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3443 | 0.0140015 | 10101 | 925245804 |
10101071005 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2751 | 0.0111874 | 10101 | 739282953 |
10101071006 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4214 | 0.0171369 | 10101 | 1132438518 |
10101071007 | 10101 | 29 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2345 | 0.0095363 | 10101 | 630177581 |
10101071008 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5480 | 0.0222853 | 10101 | 1472653792 |
10101071009 | 10101 | 49 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3549 | 0.0144326 | 10101 | 953731443 |
10101071010 | 10101 | 48 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3521 | 0.0143187 | 10101 | 946206935 |
10101071011 | 10101 | 43 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3094 | 0.0125822 | 10101 | 831458181 |
10101071012 | 10101 | 47 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2621 | 0.0106587 | 10101 | 704347735 |
10101071014 | 10101 | 26 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 875 | 0.0035583 | 10101 | 235140888 |
10101072014 | 10101 | 36 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 997 | 0.0040545 | 10101 | 267926246 |
10101072021 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 44 | 0.0001789 | 10101 | 11824228 |
10101072028 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 145 | 0.0005897 | 10101 | 38966204 |
10101072029 | 10101 | 36 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1051 | 0.0042741 | 10101 | 282437798 |
10101072036 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 118 | 0.0004799 | 10101 | 31710428 |
10101072045 | 10101 | 7 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 113 | 0.0004595 | 10101 | 30366766 |
10101082016 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 121 | 0.0004921 | 10101 | 32516626 |
10101082017 | 10101 | 5 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 38 | 0.0001545 | 10101 | 10211833 |
10101082018 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 623 | 0.0025335 | 10101 | 167420312 |
10101082030 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 176 | 0.0007157 | 10101 | 47296910 |
10101082034 | 10101 | 5 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 66 | 0.0002684 | 10101 | 17736341 |
10101082042 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 253 | 0.0010289 | 10101 | 67989308 |
10101082045 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 123 | 0.0005002 | 10101 | 33054091 |
10101092004 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 97 | 0.0003945 | 10101 | 26067047 |
10101092008 | 10101 | 83 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 752 | 0.0030581 | 10101 | 202086798 |
10101092037 | 10101 | 11 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 276 | 0.0011224 | 10101 | 74170154 |
10101092040 | 10101 | 33 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 509 | 0.0020699 | 10101 | 136784814 |
10101092041 | 10101 | 44 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1683 | 0.0068442 | 10101 | 452276703 |
10101092044 | 10101 | 21 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 530 | 0.0021553 | 10101 | 142428195 |
10101102005 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 147 | 0.0005978 | 10101 | 39503669 |
10101102007 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 824 | 0.0033509 | 10101 | 221435534 |
10101102035 | 10101 | 22 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 940 | 0.0038227 | 10101 | 252608497 |
10101102037 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 164 | 0.0006669 | 10101 | 44072121 |
10101102051 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 57 | 0.0002318 | 10101 | 15317749 |
10101112025 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1078 | 0.0043839 | 10101 | 289693574 |
10101122024 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 952 | 0.0038715 | 10101 | 255833286 |
10101131001 | 10101 | 88 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 604 | 0.0024563 | 10101 | 162314396 |
10101132022 | 10101 | 15 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 703 | 0.0028589 | 10101 | 188918908 |
10101132023 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 603 | 0.0024522 | 10101 | 162045664 |
10101132027 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 105 | 0.0004270 | 10101 | 28216907 |
10101132049 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1883 | 0.0076575 | 10101 | 506023192 |
10101142009 | 10101 | 2 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 59 | 0.0002399 | 10101 | 15855214 |
10101142015 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 124 | 0.0005043 | 10101 | 33322823 |
10101142027 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 192 | 0.0007808 | 10101 | 51596629 |
10101142038 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 53 | 0.0002155 | 10101 | 14242820 |
10101142046 | 10101 | 9 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 317 | 0.0012891 | 10101 | 85188185 |
10101142047 | 10101 | 11 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 263 | 0.0010695 | 10101 | 70676633 |
10101142049 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 973 | 0.0039569 | 10101 | 261476668 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.586e+09 -2.108e+08 -1.722e+08 1.511e+08 4.277e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 220065019 3808468 57.78 <2e-16 ***
## Freq.x 2157714 18952 113.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 381900000 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.5084, Adjusted R-squared: 0.5083
## F-statistic: 1.296e+04 on 1 and 12535 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.586e+09 -2.108e+08 -1.722e+08 1.511e+08 4.277e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 220065019 3808468 57.78 <2e-16 ***
## Freq.x 2157714 18952 113.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 381900000 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.5084, Adjusted R-squared: 0.5083
## F-statistic: 1.296e+04 on 1 and 12535 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.586e+09 -2.108e+08 -1.722e+08 1.511e+08 4.277e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 220065019 3808468 57.78 <2e-16 ***
## Freq.x 2157714 18952 113.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 381900000 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.5084, Adjusted R-squared: 0.5083
## F-statistic: 1.296e+04 on 1 and 12535 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -772173065 -211415248 -13884959 230586722 3899818817
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -228361031 4781725 -47.76 <2e-16 ***
## log(Freq.x) 226402869 1382158 163.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 307300000 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.6816, Adjusted R-squared: 0.6816
## F-statistic: 2.683e+04 on 1 and 12535 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.219e+09 -1.112e+08 -3.946e+07 2.709e+07 4.079e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -47533487 3562241 -13.34 <2e-16 ***
## sqrt(Freq.x) 69217525 376722 183.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 283400000 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.7292, Adjusted R-squared: 0.7292
## F-statistic: 3.376e+04 on 1 and 12535 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -33620 -3851 -1555 3134 47977
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4628.513 82.607 56.03 <2e-16 ***
## sqrt(Freq.x) 1659.310 8.736 189.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6572 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.7421, Adjusted R-squared: 0.7421
## F-statistic: 3.608e+04 on 1 and 12535 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9005 -0.7441 0.1158 0.8480 3.5413
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.026380 0.014795 1150.8 <2e-16 ***
## sqrt(Freq.x) 0.222832 0.001565 142.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.177 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.618, Adjusted R-squared: 0.618
## F-statistic: 2.028e+04 on 1 and 12535 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16967 -4022 -71 3885 42980
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -891.33 88.99 -10.02 <2e-16 ***
## log(Freq.x) 5845.73 25.72 227.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5720 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.8047, Adjusted R-squared: 0.8047
## F-statistic: 5.165e+04 on 1 and 12535 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7141 -0.5341 0.0448 0.5558 3.6375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.056127 0.012737 1260.6 <2e-16 ***
## log(Freq.x) 0.865867 0.003682 235.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8187 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.8152, Adjusted R-squared: 0.8152
## F-statistic: 5.531e+04 on 1 and 12535 DF, p-value: < 2.2e-16
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.8152).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7141 -0.5341 0.0448 0.5558 3.6375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.056127 0.012737 1260.6 <2e-16 ***
## log(Freq.x) 0.865867 0.003682 235.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8187 on 12535 degrees of freedom
## (134 observations deleted due to missingness)
## Multiple R-squared: 0.8152, Adjusted R-squared: 0.8152
## F-statistic: 5.531e+04 on 1 and 12535 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) +
geom_point() +
stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{16.056127+0.865867 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <- exp(16.056127+0.865867 * log(h_y_m_comuna_corr_01$Freq.x))
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 584 | 0.0023749 | 10101 | 156939747 | 325634076 |
10101011002 | 10101 | 177 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2941 | 0.0119600 | 10101 | 790342117 | 830870281 |
10101021001 | 10101 | 82 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3953 | 0.0160755 | 10101 | 1062299350 | 426771703 |
10101021002 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1107 | 0.0045018 | 10101 | 297486815 | 404145197 |
10101021003 | 10101 | 70 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2294 | 0.0093289 | 10101 | 616472226 | 372131867 |
10101021004 | 10101 | 99 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3391 | 0.0137900 | 10101 | 911271717 | 502391191 |
10101021005 | 10101 | 171 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2564 | 0.0104269 | 10101 | 689029986 | 806426889 |
10101031001 | 10101 | 133 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4530 | 0.0184220 | 10101 | 1217357970 | 648724658 |
10101031002 | 10101 | 115 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4740 | 0.0192760 | 10101 | 1273791783 | 571975746 |
10101031003 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4107 | 0.0167018 | 10101 | 1103684147 | 480345418 |
10101031004 | 10101 | 88 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2856 | 0.0116144 | 10101 | 767499859 | 453681150 |
10101031005 | 10101 | 146 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5690 | 0.0231393 | 10101 | 1529087605 | 703281302 |
10101031006 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2460 | 0.0100040 | 10101 | 661081812 | 480345418 |
10101031007 | 10101 | 39 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2292 | 0.0093208 | 10101 | 615934761 | 224252707 |
10101031008 | 10101 | 54 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3585 | 0.0145790 | 10101 | 963405811 | 297241842 |
10101031009 | 10101 | 166 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4436 | 0.0180397 | 10101 | 1192097121 | 785969488 |
10101031010 | 10101 | 92 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3566 | 0.0145017 | 10101 | 958299894 | 471483427 |
10101031011 | 10101 | 49 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2757 | 0.0112118 | 10101 | 740895347 | 273257673 |
10101031012 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1849 | 0.0075193 | 10101 | 496886289 | 480345418 |
10101031013 | 10101 | 73 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3945 | 0.0160430 | 10101 | 1060149491 | 385902091 |
10101031014 | 10101 | 109 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2265 | 0.0092110 | 10101 | 608678985 | 546044109 |
10101031015 | 10101 | 31 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1930 | 0.0078487 | 10101 | 518653616 | 183826548 |
10101031016 | 10101 | 248 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3071 | 0.0124887 | 10101 | 825277335 | 1112664035 |
10101031017 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3885 | 0.0157990 | 10101 | 1044025544 | 325634076 |
10101032002 | 10101 | 2 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 129 | 0.0005246 | 10101 | 34666485 | 17129287 |
10101032011 | 10101 | 20 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 426 | 0.0017324 | 10101 | 114480021 | 125778467 |
10101032019 | 10101 | 32 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 829 | 0.0033713 | 10101 | 222779196 | 188950068 |
10101041001 | 10101 | 70 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4342 | 0.0176574 | 10101 | 1166836271 | 372131867 |
10101041002 | 10101 | 55 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2169 | 0.0088206 | 10101 | 582880671 | 302002110 |
10101041003 | 10101 | 774 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5202 | 0.0211548 | 10101 | 1397946172 | 2980937196 |
10101051001 | 10101 | 246 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2463 | 0.0100162 | 10101 | 661888009 | 1104890311 |
10101051002 | 10101 | 33 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1913 | 0.0077795 | 10101 | 514085165 | 194052153 |
10101051003 | 10101 | 65 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3272 | 0.0133061 | 10101 | 879292556 | 349003037 |
10101051004 | 10101 | 307 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3633 | 0.0147742 | 10101 | 976304968 | 1338500077 |
10101061001 | 10101 | 1239 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 6787 | 0.0276004 | 10101 | 1823887096 | 4479976436 |
10101061002 | 10101 | 329 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2729 | 0.0110979 | 10101 | 733370839 | 1421164065 |
10101061003 | 10101 | 160 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3668 | 0.0149165 | 10101 | 985710604 | 761311016 |
10101061004 | 10101 | 110 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2995 | 0.0121796 | 10101 | 804853669 | 550379079 |
10101061005 | 10101 | 312 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2571 | 0.0104554 | 10101 | 690911113 | 1357355205 |
10101061006 | 10101 | 401 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4130 | 0.0167953 | 10101 | 1109864993 | 1686802225 |
10101061007 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 817 | 0.0033225 | 10101 | 219554407 | 80819244 |
10101061008 | 10101 | 388 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2109 | 0.0085766 | 10101 | 566756724 | 1639348609 |
10101061009 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 168 | 0.0006832 | 10101 | 45147051 | 9399124 |
10101061010 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1543 | 0.0062749 | 10101 | 414654161 | 44346857 |
10101062003 | 10101 | 10 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 158 | 0.0006425 | 10101 | 42459726 | 69016727 |
10101062008 | 10101 | 72 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 581 | 0.0023627 | 10101 | 156133550 | 381320605 |
10101062013 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 571 | 0.0023221 | 10101 | 153446225 | 330328120 |
10101062029 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 47 | 0.0001911 | 10101 | 12630425 | 9399124 |
10101062039 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 67 | 0.0002725 | 10101 | 18005074 | 31217005 |
10101071001 | 10101 | 20 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2352 | 0.0095648 | 10101 | 632058708 | 125778467 |
10101071002 | 10101 | 54 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3919 | 0.0159372 | 10101 | 1053162447 | 297241842 |
10101071003 | 10101 | 112 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4978 | 0.0202438 | 10101 | 1337750105 | 559033223 |
10101071004 | 10101 | 75 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3443 | 0.0140015 | 10101 | 925245804 | 395039959 |
10101071005 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2751 | 0.0111874 | 10101 | 739282953 | 330328120 |
10101071006 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4214 | 0.0171369 | 10101 | 1132438518 | 325634076 |
10101071007 | 10101 | 29 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2345 | 0.0095363 | 10101 | 630177581 | 173512003 |
10101071008 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5480 | 0.0222853 | 10101 | 1472653792 | 404145197 |
10101071009 | 10101 | 49 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3549 | 0.0144326 | 10101 | 953731443 | 273257673 |
10101071010 | 10101 | 48 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3521 | 0.0143187 | 10101 | 946206935 | 268422343 |
10101071011 | 10101 | 43 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3094 | 0.0125822 | 10101 | 831458181 | 244035938 |
10101071012 | 10101 | 47 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2621 | 0.0106587 | 10101 | 704347735 | 263573481 |
10101071014 | 10101 | 26 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 875 | 0.0035583 | 10101 | 235140888 | 157857814 |
10101072014 | 10101 | 36 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 997 | 0.0040545 | 10101 | 267926246 | 209236928 |
10101072021 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 44 | 0.0001789 | 10101 | 11824228 | 31217005 |
10101072028 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 145 | 0.0005897 | 10101 | 38966204 | 31217005 |
10101072029 | 10101 | 36 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1051 | 0.0042741 | 10101 | 282437798 | 209236928 |
10101072036 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 118 | 0.0004799 | 10101 | 31710428 | 9399124 |
10101072045 | 10101 | 7 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 113 | 0.0004595 | 10101 | 30366766 | 50679213 |
10101082016 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 121 | 0.0004921 | 10101 | 32516626 | 86619195 |
10101082017 | 10101 | 5 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 38 | 0.0001545 | 10101 | 10211833 | 37870620 |
10101082018 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 623 | 0.0025335 | 10101 | 167420312 | 86619195 |
10101082030 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 176 | 0.0007157 | 10101 | 47296910 | 24333854 |
10101082034 | 10101 | 5 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 66 | 0.0002684 | 10101 | 17736341 | 37870620 |
10101082042 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 253 | 0.0010289 | 10101 | 67989308 | 80819244 |
10101082045 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 123 | 0.0005002 | 10101 | 33054091 | 44346857 |
10101092004 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 97 | 0.0003945 | 10101 | 26067047 | 44346857 |
10101092008 | 10101 | 83 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 752 | 0.0030581 | 10101 | 202086798 | 431274467 |
10101092037 | 10101 | 11 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 276 | 0.0011224 | 10101 | 74170154 | 74954018 |
10101092040 | 10101 | 33 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 509 | 0.0020699 | 10101 | 136784814 | 194052153 |
10101092041 | 10101 | 44 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1683 | 0.0068442 | 10101 | 452276703 | 248942356 |
10101092044 | 10101 | 21 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 530 | 0.0021553 | 10101 | 142428195 | 131205914 |
10101102005 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 147 | 0.0005978 | 10101 | 39503669 | 9399124 |
10101102007 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 824 | 0.0033509 | 10101 | 221435534 | 80819244 |
10101102035 | 10101 | 22 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 940 | 0.0038227 | 10101 | 252608497 | 136598791 |
10101102037 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 164 | 0.0006669 | 10101 | 44072121 | 24333854 |
10101102051 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 57 | 0.0002318 | 10101 | 15317749 | 9399124 |
10101112025 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1078 | 0.0043839 | 10101 | 289693574 | 86619195 |
10101122024 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 952 | 0.0038715 | 10101 | 255833286 | 44346857 |
10101131001 | 10101 | 88 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 604 | 0.0024563 | 10101 | 162314396 | 453681150 |
10101132022 | 10101 | 15 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 703 | 0.0028589 | 10101 | 188918908 | 98045117 |
10101132023 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 603 | 0.0024522 | 10101 | 162045664 | 80819244 |
10101132027 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 105 | 0.0004270 | 10101 | 28216907 | 9399124 |
10101132049 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1883 | 0.0076575 | 10101 | 506023192 | 404145197 |
10101142009 | 10101 | 2 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 59 | 0.0002399 | 10101 | 15855214 | 17129287 |
10101142015 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 124 | 0.0005043 | 10101 | 33322823 | 31217005 |
10101142027 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 192 | 0.0007808 | 10101 | 51596629 | 31217005 |
10101142038 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 53 | 0.0002155 | 10101 | 14242820 | 24333854 |
10101142046 | 10101 | 9 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 317 | 0.0012891 | 10101 | 85188185 | 62999116 |
10101142047 | 10101 | 11 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 263 | 0.0010695 | 10101 | 70676633 | 74954018 |
10101142049 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 973 | 0.0039569 | 10101 | 261476668 | 330328120 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 584 | 0.0023749 | 10101 | 156939747 | 325634076 | 557592.60 |
10101011002 | 10101 | 177 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2941 | 0.0119600 | 10101 | 790342117 | 830870281 | 282512.85 |
10101021001 | 10101 | 82 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3953 | 0.0160755 | 10101 | 1062299350 | 426771703 | 107961.47 |
10101021002 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1107 | 0.0045018 | 10101 | 297486815 | 404145197 | 365081.48 |
10101021003 | 10101 | 70 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2294 | 0.0093289 | 10101 | 616472226 | 372131867 | 162219.65 |
10101021004 | 10101 | 99 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3391 | 0.0137900 | 10101 | 911271717 | 502391191 | 148154.29 |
10101021005 | 10101 | 171 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2564 | 0.0104269 | 10101 | 689029986 | 806426889 | 314519.07 |
10101031001 | 10101 | 133 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4530 | 0.0184220 | 10101 | 1217357970 | 648724658 | 143206.33 |
10101031002 | 10101 | 115 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4740 | 0.0192760 | 10101 | 1273791783 | 571975746 | 120669.99 |
10101031003 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4107 | 0.0167018 | 10101 | 1103684147 | 480345418 | 116957.74 |
10101031004 | 10101 | 88 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2856 | 0.0116144 | 10101 | 767499859 | 453681150 | 158851.94 |
10101031005 | 10101 | 146 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5690 | 0.0231393 | 10101 | 1529087605 | 703281302 | 123599.53 |
10101031006 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2460 | 0.0100040 | 10101 | 661081812 | 480345418 | 195262.36 |
10101031007 | 10101 | 39 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2292 | 0.0093208 | 10101 | 615934761 | 224252707 | 97841.50 |
10101031008 | 10101 | 54 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3585 | 0.0145790 | 10101 | 963405811 | 297241842 | 82912.65 |
10101031009 | 10101 | 166 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4436 | 0.0180397 | 10101 | 1192097121 | 785969488 | 177179.78 |
10101031010 | 10101 | 92 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3566 | 0.0145017 | 10101 | 958299894 | 471483427 | 132216.33 |
10101031011 | 10101 | 49 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2757 | 0.0112118 | 10101 | 740895347 | 273257673 | 99114.14 |
10101031012 | 10101 | 94 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1849 | 0.0075193 | 10101 | 496886289 | 480345418 | 259786.60 |
10101031013 | 10101 | 73 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3945 | 0.0160430 | 10101 | 1060149491 | 385902091 | 97820.56 |
10101031014 | 10101 | 109 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2265 | 0.0092110 | 10101 | 608678985 | 546044109 | 241079.08 |
10101031015 | 10101 | 31 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1930 | 0.0078487 | 10101 | 518653616 | 183826548 | 95246.92 |
10101031016 | 10101 | 248 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3071 | 0.0124887 | 10101 | 825277335 | 1112664035 | 362313.26 |
10101031017 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3885 | 0.0157990 | 10101 | 1044025544 | 325634076 | 83818.30 |
10101032002 | 10101 | 2 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 129 | 0.0005246 | 10101 | 34666485 | 17129287 | 132785.17 |
10101032011 | 10101 | 20 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 426 | 0.0017324 | 10101 | 114480021 | 125778467 | 295254.62 |
10101032019 | 10101 | 32 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 829 | 0.0033713 | 10101 | 222779196 | 188950068 | 227925.29 |
10101041001 | 10101 | 70 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4342 | 0.0176574 | 10101 | 1166836271 | 372131867 | 85705.17 |
10101041002 | 10101 | 55 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2169 | 0.0088206 | 10101 | 582880671 | 302002110 | 139235.64 |
10101041003 | 10101 | 774 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5202 | 0.0211548 | 10101 | 1397946172 | 2980937196 | 573036.75 |
10101051001 | 10101 | 246 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2463 | 0.0100162 | 10101 | 661888009 | 1104890311 | 448595.34 |
10101051002 | 10101 | 33 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1913 | 0.0077795 | 10101 | 514085165 | 194052153 | 101438.66 |
10101051003 | 10101 | 65 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3272 | 0.0133061 | 10101 | 879292556 | 349003037 | 106663.52 |
10101051004 | 10101 | 307 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3633 | 0.0147742 | 10101 | 976304968 | 1338500077 | 368428.32 |
10101061001 | 10101 | 1239 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 6787 | 0.0276004 | 10101 | 1823887096 | 4479976436 | 660081.99 |
10101061002 | 10101 | 329 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2729 | 0.0110979 | 10101 | 733370839 | 1421164065 | 520763.67 |
10101061003 | 10101 | 160 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3668 | 0.0149165 | 10101 | 985710604 | 761311016 | 207554.80 |
10101061004 | 10101 | 110 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2995 | 0.0121796 | 10101 | 804853669 | 550379079 | 183765.97 |
10101061005 | 10101 | 312 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2571 | 0.0104554 | 10101 | 690911113 | 1357355205 | 527948.35 |
10101061006 | 10101 | 401 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4130 | 0.0167953 | 10101 | 1109864993 | 1686802225 | 408426.69 |
10101061007 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 817 | 0.0033225 | 10101 | 219554407 | 80819244 | 98921.96 |
10101061008 | 10101 | 388 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2109 | 0.0085766 | 10101 | 566756724 | 1639348609 | 777310.86 |
10101061009 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 168 | 0.0006832 | 10101 | 45147051 | 9399124 | 55947.16 |
10101061010 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1543 | 0.0062749 | 10101 | 414654161 | 44346857 | 28740.67 |
10101062003 | 10101 | 10 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 158 | 0.0006425 | 10101 | 42459726 | 69016727 | 436814.72 |
10101062008 | 10101 | 72 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 581 | 0.0023627 | 10101 | 156133550 | 381320605 | 656317.74 |
10101062013 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 571 | 0.0023221 | 10101 | 153446225 | 330328120 | 578508.09 |
10101062029 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 47 | 0.0001911 | 10101 | 12630425 | 9399124 | 199981.35 |
10101062039 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 67 | 0.0002725 | 10101 | 18005074 | 31217005 | 465925.45 |
10101071001 | 10101 | 20 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2352 | 0.0095648 | 10101 | 632058708 | 125778467 | 53477.24 |
10101071002 | 10101 | 54 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3919 | 0.0159372 | 10101 | 1053162447 | 297241842 | 75846.35 |
10101071003 | 10101 | 112 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4978 | 0.0202438 | 10101 | 1337750105 | 559033223 | 112300.77 |
10101071004 | 10101 | 75 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3443 | 0.0140015 | 10101 | 925245804 | 395039959 | 114737.14 |
10101071005 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2751 | 0.0111874 | 10101 | 739282953 | 330328120 | 120075.65 |
10101071006 | 10101 | 60 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4214 | 0.0171369 | 10101 | 1132438518 | 325634076 | 77274.34 |
10101071007 | 10101 | 29 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2345 | 0.0095363 | 10101 | 630177581 | 173512003 | 73992.33 |
10101071008 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5480 | 0.0222853 | 10101 | 1472653792 | 404145197 | 73749.12 |
10101071009 | 10101 | 49 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3549 | 0.0144326 | 10101 | 953731443 | 273257673 | 76995.68 |
10101071010 | 10101 | 48 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3521 | 0.0143187 | 10101 | 946206935 | 268422343 | 76234.69 |
10101071011 | 10101 | 43 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3094 | 0.0125822 | 10101 | 831458181 | 244035938 | 78873.93 |
10101071012 | 10101 | 47 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2621 | 0.0106587 | 10101 | 704347735 | 263573481 | 100562.18 |
10101071014 | 10101 | 26 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 875 | 0.0035583 | 10101 | 235140888 | 157857814 | 180408.93 |
10101072014 | 10101 | 36 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 997 | 0.0040545 | 10101 | 267926246 | 209236928 | 209866.53 |
10101072021 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 44 | 0.0001789 | 10101 | 11824228 | 31217005 | 709477.39 |
10101072028 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 145 | 0.0005897 | 10101 | 38966204 | 31217005 | 215289.69 |
10101072029 | 10101 | 36 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1051 | 0.0042741 | 10101 | 282437798 | 209236928 | 199083.66 |
10101072036 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 118 | 0.0004799 | 10101 | 31710428 | 9399124 | 79653.59 |
10101072045 | 10101 | 7 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 113 | 0.0004595 | 10101 | 30366766 | 50679213 | 448488.61 |
10101082016 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 121 | 0.0004921 | 10101 | 32516626 | 86619195 | 715861.12 |
10101082017 | 10101 | 5 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 38 | 0.0001545 | 10101 | 10211833 | 37870620 | 996595.27 |
10101082018 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 623 | 0.0025335 | 10101 | 167420312 | 86619195 | 139035.63 |
10101082030 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 176 | 0.0007157 | 10101 | 47296910 | 24333854 | 138260.54 |
10101082034 | 10101 | 5 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 66 | 0.0002684 | 10101 | 17736341 | 37870620 | 573797.28 |
10101082042 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 253 | 0.0010289 | 10101 | 67989308 | 80819244 | 319443.65 |
10101082045 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 123 | 0.0005002 | 10101 | 33054091 | 44346857 | 360543.55 |
10101092004 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 97 | 0.0003945 | 10101 | 26067047 | 44346857 | 457184.09 |
10101092008 | 10101 | 83 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 752 | 0.0030581 | 10101 | 202086798 | 431274467 | 573503.28 |
10101092037 | 10101 | 11 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 276 | 0.0011224 | 10101 | 74170154 | 74954018 | 271572.53 |
10101092040 | 10101 | 33 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 509 | 0.0020699 | 10101 | 136784814 | 194052153 | 381241.95 |
10101092041 | 10101 | 44 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1683 | 0.0068442 | 10101 | 452276703 | 248942356 | 147915.84 |
10101092044 | 10101 | 21 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 530 | 0.0021553 | 10101 | 142428195 | 131205914 | 247558.33 |
10101102005 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 147 | 0.0005978 | 10101 | 39503669 | 9399124 | 63939.62 |
10101102007 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 824 | 0.0033509 | 10101 | 221435534 | 80819244 | 98081.61 |
10101102035 | 10101 | 22 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 940 | 0.0038227 | 10101 | 252608497 | 136598791 | 145317.86 |
10101102037 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 164 | 0.0006669 | 10101 | 44072121 | 24333854 | 148377.16 |
10101102051 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 57 | 0.0002318 | 10101 | 15317749 | 9399124 | 164896.90 |
10101112025 | 10101 | 13 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1078 | 0.0043839 | 10101 | 289693574 | 86619195 | 80351.76 |
10101122024 | 10101 | 6 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 952 | 0.0038715 | 10101 | 255833286 | 44346857 | 46582.83 |
10101131001 | 10101 | 88 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 604 | 0.0024563 | 10101 | 162314396 | 453681150 | 751127.73 |
10101132022 | 10101 | 15 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 703 | 0.0028589 | 10101 | 188918908 | 98045117 | 139466.74 |
10101132023 | 10101 | 12 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 603 | 0.0024522 | 10101 | 162045664 | 80819244 | 134028.60 |
10101132027 | 10101 | 1 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 105 | 0.0004270 | 10101 | 28216907 | 9399124 | 89515.46 |
10101132049 | 10101 | 77 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1883 | 0.0076575 | 10101 | 506023192 | 404145197 | 214628.36 |
10101142009 | 10101 | 2 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 59 | 0.0002399 | 10101 | 15855214 | 17129287 | 290326.91 |
10101142015 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 124 | 0.0005043 | 10101 | 33322823 | 31217005 | 251750.04 |
10101142027 | 10101 | 4 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 192 | 0.0007808 | 10101 | 51596629 | 31217005 | 162588.57 |
10101142038 | 10101 | 3 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 53 | 0.0002155 | 10101 | 14242820 | 24333854 | 459129.33 |
10101142046 | 10101 | 9 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 317 | 0.0012891 | 10101 | 85188185 | 62999116 | 198735.38 |
10101142047 | 10101 | 11 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 263 | 0.0010695 | 10101 | 70676633 | 74954018 | 284996.27 |
10101142049 | 10101 | 61 | 2017 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 973 | 0.0039569 | 10101 | 261476668 | 330328120 | 339494.47 |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "casen_censo_nivel_nacional.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda