1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).

1.1 Lectura y filtrado de la tabla censal de viviendas

Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 1:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 16) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 16101011001 1 16101 52 2017
2 16101011002 1 16101 105 2017
3 16101011003 1 16101 142 2017
4 16101011004 1 16101 163 2017
5 16101021001 1 16101 10 2017
6 16101021002 1 16101 114 2017
7 16101021003 1 16101 87 2017
8 16101021004 1 16101 79 2017
9 16101031001 1 16101 335 2017
10 16101031002 1 16101 116 2017
11 16101031003 1 16101 125 2017
12 16101031004 1 16101 55 2017
13 16101041001 1 16101 119 2017
14 16101041002 1 16101 41 2017
15 16101041003 1 16101 67 2017
16 16101041004 1 16101 35 2017
17 16101042032 1 16101 1 2017
18 16101051001 1 16101 44 2017
19 16101051002 1 16101 382 2017
20 16101051003 1 16101 73 2017
21 16101051004 1 16101 16 2017
22 16101051005 1 16101 424 2017
23 16101052010 1 16101 7 2017
24 16101052026 1 16101 9 2017
25 16101052027 1 16101 9 2017
26 16101052028 1 16101 32 2017
27 16101061001 1 16101 5 2017
28 16101062003 1 16101 29 2017
29 16101062014 1 16101 18 2017
30 16101062024 1 16101 22 2017
31 16101062027 1 16101 18 2017
32 16101062901 1 16101 1 2017
33 16101071001 1 16101 61 2017
34 16101071002 1 16101 21 2017
35 16101072001 1 16101 18 2017
36 16101072901 1 16101 7 2017
37 16101081001 1 16101 37 2017
38 16101082007 1 16101 6 2017
39 16101082008 1 16101 4 2017
40 16101082011 1 16101 14 2017
41 16101082012 1 16101 7 2017
42 16101082015 1 16101 9 2017
43 16101082031 1 16101 4 2017
44 16101082037 1 16101 14 2017
45 16101092901 1 16101 5 2017
46 16101102004 1 16101 88 2017
47 16101112030 1 16101 2 2017
48 16101112901 1 16101 3 2017
49 16101121001 1 16101 154 2017
50 16101122002 1 16101 16 2017
51 16101122017 1 16101 49 2017
52 16101122020 1 16101 8 2017
53 16101122034 1 16101 24 2017
54 16101122035 1 16101 34 2017
55 16101131001 1 16101 866 2017
56 16101131002 1 16101 107 2017
57 16101131003 1 16101 103 2017
58 16101131004 1 16101 160 2017
59 16101141001 1 16101 446 2017
60 16101141002 1 16101 882 2017
61 16101141003 1 16101 243 2017
62 16101141004 1 16101 789 2017
63 16101142009 1 16101 95 2017
64 16101142018 1 16101 69 2017
65 16101142036 1 16101 33 2017
66 16101151001 1 16101 222 2017
67 16101151002 1 16101 34 2017
68 16101151003 1 16101 31 2017
69 16101151004 1 16101 76 2017
70 16101151005 1 16101 39 2017
71 16101151006 1 16101 65 2017
72 16101151007 1 16101 46 2017
73 16101151008 1 16101 28 2017
74 16101151009 1 16101 314 2017
75 16101151010 1 16101 294 2017
76 16101151011 1 16101 84 2017
77 16101151012 1 16101 51 2017
78 16101151013 1 16101 46 2017
79 16101151014 1 16101 24 2017
80 16101151015 1 16101 13 2017
81 16101152016 1 16101 16 2017
82 16101152025 1 16101 182 2017
83 16101152033 1 16101 9 2017
84 16101161001 1 16101 96 2017
85 16101161002 1 16101 97 2017
86 16101161003 1 16101 109 2017
87 16101161004 1 16101 186 2017
88 16101161005 1 16101 148 2017
89 16101171001 1 16101 76 2017
90 16101171002 1 16101 82 2017
91 16101171003 1 16101 90 2017
92 16101171004 1 16101 30 2017
93 16101991999 1 16101 9 2017
975 16102011001 1 16102 54 2017
976 16102011002 1 16102 84 2017
977 16102011003 1 16102 83 2017
978 16102012006 1 16102 6 2017
979 16102012044 1 16102 1 2017
980 16102021001 1 16102 6 2017
981 16102022005 1 16102 5 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 16101011001 52 2017 16101
2 16101011002 105 2017 16101
3 16101011003 142 2017 16101
4 16101011004 163 2017 16101
5 16101021001 10 2017 16101
6 16101021002 114 2017 16101
7 16101021003 87 2017 16101
8 16101021004 79 2017 16101
9 16101031001 335 2017 16101
10 16101031002 116 2017 16101
11 16101031003 125 2017 16101
12 16101031004 55 2017 16101
13 16101041001 119 2017 16101
14 16101041002 41 2017 16101
15 16101041003 67 2017 16101
16 16101041004 35 2017 16101
17 16101042032 1 2017 16101
18 16101051001 44 2017 16101
19 16101051002 382 2017 16101
20 16101051003 73 2017 16101
21 16101051004 16 2017 16101
22 16101051005 424 2017 16101
23 16101052010 7 2017 16101
24 16101052026 9 2017 16101
25 16101052027 9 2017 16101
26 16101052028 32 2017 16101
27 16101061001 5 2017 16101
28 16101062003 29 2017 16101
29 16101062014 18 2017 16101
30 16101062024 22 2017 16101
31 16101062027 18 2017 16101
32 16101062901 1 2017 16101
33 16101071001 61 2017 16101
34 16101071002 21 2017 16101
35 16101072001 18 2017 16101
36 16101072901 7 2017 16101
37 16101081001 37 2017 16101
38 16101082007 6 2017 16101
39 16101082008 4 2017 16101
40 16101082011 14 2017 16101
41 16101082012 7 2017 16101
42 16101082015 9 2017 16101
43 16101082031 4 2017 16101
44 16101082037 14 2017 16101
45 16101092901 5 2017 16101
46 16101102004 88 2017 16101
47 16101112030 2 2017 16101
48 16101112901 3 2017 16101
49 16101121001 154 2017 16101
50 16101122002 16 2017 16101
51 16101122017 49 2017 16101
52 16101122020 8 2017 16101
53 16101122034 24 2017 16101
54 16101122035 34 2017 16101
55 16101131001 866 2017 16101
56 16101131002 107 2017 16101
57 16101131003 103 2017 16101
58 16101131004 160 2017 16101
59 16101141001 446 2017 16101
60 16101141002 882 2017 16101
61 16101141003 243 2017 16101
62 16101141004 789 2017 16101
63 16101142009 95 2017 16101
64 16101142018 69 2017 16101
65 16101142036 33 2017 16101
66 16101151001 222 2017 16101
67 16101151002 34 2017 16101
68 16101151003 31 2017 16101
69 16101151004 76 2017 16101
70 16101151005 39 2017 16101
71 16101151006 65 2017 16101
72 16101151007 46 2017 16101
73 16101151008 28 2017 16101
74 16101151009 314 2017 16101
75 16101151010 294 2017 16101
76 16101151011 84 2017 16101
77 16101151012 51 2017 16101
78 16101151013 46 2017 16101
79 16101151014 24 2017 16101
80 16101151015 13 2017 16101
81 16101152016 16 2017 16101
82 16101152025 182 2017 16101
83 16101152033 9 2017 16101
84 16101161001 96 2017 16101
85 16101161002 97 2017 16101
86 16101161003 109 2017 16101
87 16101161004 186 2017 16101
88 16101161005 148 2017 16101
89 16101171001 76 2017 16101
90 16101171002 82 2017 16101
91 16101171003 90 2017 16101
92 16101171004 30 2017 16101
93 16101991999 9 2017 16101
975 16102011001 54 2017 16102
976 16102011002 84 2017 16102
977 16102011003 83 2017 16102
978 16102012006 6 2017 16102
979 16102012044 1 2017 16102
980 16102021001 6 2017 16102
981 16102022005 5 2017 16102


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 Iquique 354820.7 2017 1101 191468 67936815240
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397
01401 Pozo Almonte 285981.8 2017 1401 15711 4493059532
01402 Camiña 262850.3 2017 1402 1250 328562901
01404 Huara 253968.5 2017 1404 2730 693334131
01405 Pica 313007.5 2017 1405 9296 2909717399
02101 Antofagasta 347580.2 2017 2101 361873 125779893517
02102 Mejillones 369770.7 2017 2102 13467 4979702302
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188
02104 Taltal 364539.1 2017 2104 13317 4854566842
02201 Calama 409671.3 2017 2201 165731 67895226712
02203 San Pedro de Atacama 426592.0 2017 2203 10996 4690805471
02301 Tocopilla 246615.3 2017 2301 25186 6211253937
02302 María Elena 466266.9 2017 2302 6457 3010685220
03101 Copiapó 330075.2 2017 3101 153937 50810778473
03102 Caldera 299314.8 2017 3102 17662 5286498241
03103 Tierra Amarilla 314643.9 2017 3103 14019 4410992711
03201 Chañaral 286389.3 2017 3201 12219 3499391196
03202 Diego de Almagro 336256.8 2017 3202 13925 4682376047
03301 Vallenar 304336.7 2017 3301 51917 15800246795
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833
03303 Freirina 253086.7 2017 3303 7041 1781983257
03304 Huasco 287406.6 2017 3304 10149 2916889629
04101 La Serena 270221.9 2017 4101 221054 59733627577
04102 Coquimbo 261852.6 2017 4102 227730 59631700074
04103 Andacollo 248209.3 2017 4103 11044 2741223967
04104 La Higuera 228356.8 2017 4104 4241 968461330
04105 Paiguano 205942.1 2017 4105 4497 926121774
04106 Vicuña 211431.9 2017 4106 27771 5871675449
04201 Illapel 238674.4 2017 4201 30848 7362627007
04202 Canela 207933.6 2017 4202 9093 1890740321
04203 Los Vilos 255200.4 2017 4203 21382 5456695139
04204 Salamanca 242879.5 2017 4204 29347 7127783272
04301 Ovalle 266522.9 2017 4301 111272 29656533187
04302 Combarbalá 210409.7 2017 4302 13322 2803077721
04303 Monte Patria 211907.9 2017 4303 30751 6516380780
04304 Punitaqui 194997.8 2017 4304 10956 2136395349
04305 Río Hurtado 182027.2 2017 4305 4278 778712384
05101 Valparaíso 298720.7 2017 5101 296655 88616992249
05102 Casablanca 312802.7 2017 5102 26867 8404070481
05103 Concón 318496.3 2017 5103 42152 13425257057
05105 Puchuncaví 288737.2 2017 5105 18546 5354920887
05107 Quintero 316659.1 2017 5107 31923 10108709691
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611
05301 Los Andes 338182.5 2017 5301 66708 22559476922
05302 Calle Larga 245165.4 2017 5302 14832 3636293159
05303 Rinconada 281633.2 2017 5303 10207 2874630315
05304 San Esteban 220958.4 2017 5304 18855 4166170587
05401 La Ligua 229623.7 2017 5401 35390 8126381563
05402 Cabildo 249717.7 2017 5402 19388 4841527150

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
16101 16101011001 52 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101011002 105 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101011003 142 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101011004 163 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101021001 10 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101021002 114 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101021003 87 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101021004 79 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101031001 335 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101031002 116 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101031003 125 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101031004 55 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101041001 119 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101041002 41 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101041003 67 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101041004 35 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101042032 1 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051001 44 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051002 382 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051003 73 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051004 16 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051005 424 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101052010 7 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101052026 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101052027 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101052028 32 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101061001 5 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062003 29 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062014 18 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062024 22 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062027 18 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062901 1 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101071001 61 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101071002 21 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101072001 18 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101072901 7 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101081001 37 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082007 6 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082008 4 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082011 14 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082012 7 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082015 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082031 4 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082037 14 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101092901 5 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101102004 88 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101112030 2 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101112901 3 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101121001 154 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122002 16 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122017 49 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122020 8 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122034 24 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122035 34 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101131001 866 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101131002 107 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101131003 103 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101131004 160 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101141001 446 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101141002 882 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101141003 243 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101141004 789 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101142009 95 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101142018 69 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101142036 33 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151001 222 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151002 34 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151003 31 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151004 76 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151005 39 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151006 65 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151007 46 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151008 28 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151009 314 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151010 294 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151011 84 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151012 51 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151013 46 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151014 24 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151015 13 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101152016 16 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101152025 182 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101152033 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161001 96 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161002 97 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161003 109 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161004 186 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161005 148 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101171001 76 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101171002 82 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101171003 90 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101171004 30 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101991999 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16102 16102011001 54 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102011002 84 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102011003 83 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102012006 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102012044 1 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102021001 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102022005 5 2017 Bulnes 209128.5 2017 16102 21493 4494798610


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
16101 16101011001 52 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101011002 105 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101011003 142 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101011004 163 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101021001 10 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101021002 114 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101021003 87 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101021004 79 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101031001 335 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101031002 116 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101031003 125 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101031004 55 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101041001 119 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101041002 41 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101041003 67 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101041004 35 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101042032 1 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051001 44 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051002 382 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051003 73 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051004 16 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101051005 424 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101052010 7 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101052026 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101052027 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101052028 32 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101061001 5 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062003 29 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062014 18 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062024 22 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062027 18 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101062901 1 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101071001 61 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101071002 21 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101072001 18 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101072901 7 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101081001 37 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082007 6 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082008 4 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082011 14 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082012 7 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082015 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082031 4 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101082037 14 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101092901 5 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101102004 88 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101112030 2 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101112901 3 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101121001 154 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122002 16 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122017 49 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122020 8 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122034 24 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101122035 34 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101131001 866 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101131002 107 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101131003 103 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101131004 160 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101141001 446 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101141002 882 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101141003 243 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101141004 789 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101142009 95 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101142018 69 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101142036 33 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151001 222 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151002 34 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151003 31 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151004 76 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151005 39 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151006 65 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151007 46 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151008 28 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151009 314 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151010 294 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151011 84 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151012 51 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151013 46 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151014 24 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101151015 13 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101152016 16 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101152025 182 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101152033 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161001 96 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161002 97 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161003 109 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161004 186 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101161005 148 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101171001 76 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101171002 82 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101171003 90 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101171004 30 2017 Chillán 267443.2 2017 16101 184739 49407186552
16101 16101991999 9 2017 Chillán 267443.2 2017 16101 184739 49407186552
16102 16102011001 54 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102011002 84 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102011003 83 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102012006 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102012044 1 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102021001 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610
16102 16102022005 5 2017 Bulnes 209128.5 2017 16102 21493 4494798610


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y
16101011001 16101 52 2017 Chillán 267443.2 2017 16101 184739 49407186552 1080 0.0058461 16101
16101011002 16101 105 2017 Chillán 267443.2 2017 16101 184739 49407186552 1525 0.0082549 16101
16101011003 16101 142 2017 Chillán 267443.2 2017 16101 184739 49407186552 2051 0.0111021 16101
16101011004 16101 163 2017 Chillán 267443.2 2017 16101 184739 49407186552 1819 0.0098463 16101
16101021001 16101 10 2017 Chillán 267443.2 2017 16101 184739 49407186552 1345 0.0072805 16101
16101021002 16101 114 2017 Chillán 267443.2 2017 16101 184739 49407186552 1991 0.0107774 16101
16101021003 16101 87 2017 Chillán 267443.2 2017 16101 184739 49407186552 2007 0.0108640 16101
16101021004 16101 79 2017 Chillán 267443.2 2017 16101 184739 49407186552 1882 0.0101873 16101
16101031001 16101 335 2017 Chillán 267443.2 2017 16101 184739 49407186552 3622 0.0196060 16101
16101031002 16101 116 2017 Chillán 267443.2 2017 16101 184739 49407186552 2516 0.0136192 16101
16101031003 16101 125 2017 Chillán 267443.2 2017 16101 184739 49407186552 2184 0.0118221 16101
16101031004 16101 55 2017 Chillán 267443.2 2017 16101 184739 49407186552 1866 0.0101007 16101
16101041001 16101 119 2017 Chillán 267443.2 2017 16101 184739 49407186552 3315 0.0179442 16101
16101041002 16101 41 2017 Chillán 267443.2 2017 16101 184739 49407186552 1999 0.0108207 16101
16101041003 16101 67 2017 Chillán 267443.2 2017 16101 184739 49407186552 4799 0.0259772 16101
16101041004 16101 35 2017 Chillán 267443.2 2017 16101 184739 49407186552 2766 0.0149725 16101
16101042032 16101 1 2017 Chillán 267443.2 2017 16101 184739 49407186552 30 0.0001624 16101
16101051001 16101 44 2017 Chillán 267443.2 2017 16101 184739 49407186552 1466 0.0079355 16101
16101051002 16101 382 2017 Chillán 267443.2 2017 16101 184739 49407186552 4764 0.0257877 16101
16101051003 16101 73 2017 Chillán 267443.2 2017 16101 184739 49407186552 2374 0.0128506 16101
16101051004 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 2018 0.0109235 16101
16101051005 16101 424 2017 Chillán 267443.2 2017 16101 184739 49407186552 4539 0.0245698 16101
16101052010 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 112 0.0006063 16101
16101052026 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 355 0.0019216 16101
16101052027 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 362 0.0019595 16101
16101052028 16101 32 2017 Chillán 267443.2 2017 16101 184739 49407186552 345 0.0018675 16101
16101061001 16101 5 2017 Chillán 267443.2 2017 16101 184739 49407186552 941 0.0050937 16101
16101062003 16101 29 2017 Chillán 267443.2 2017 16101 184739 49407186552 638 0.0034535 16101
16101062014 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 348 0.0018837 16101
16101062024 16101 22 2017 Chillán 267443.2 2017 16101 184739 49407186552 451 0.0024413 16101
16101062027 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 620 0.0033561 16101
16101062901 16101 1 2017 Chillán 267443.2 2017 16101 184739 49407186552 373 0.0020191 16101
16101071001 16101 61 2017 Chillán 267443.2 2017 16101 184739 49407186552 1599 0.0086555 16101
16101071002 16101 21 2017 Chillán 267443.2 2017 16101 184739 49407186552 950 0.0051424 16101
16101072001 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 593 0.0032099 16101
16101072901 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 491 0.0026578 16101
16101081001 16101 37 2017 Chillán 267443.2 2017 16101 184739 49407186552 1276 0.0069070 16101
16101082007 16101 6 2017 Chillán 267443.2 2017 16101 184739 49407186552 184 0.0009960 16101
16101082008 16101 4 2017 Chillán 267443.2 2017 16101 184739 49407186552 147 0.0007957 16101
16101082011 16101 14 2017 Chillán 267443.2 2017 16101 184739 49407186552 408 0.0022085 16101
16101082012 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 139 0.0007524 16101
16101082015 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 313 0.0016943 16101
16101082031 16101 4 2017 Chillán 267443.2 2017 16101 184739 49407186552 104 0.0005630 16101
16101082037 16101 14 2017 Chillán 267443.2 2017 16101 184739 49407186552 451 0.0024413 16101
16101092901 16101 5 2017 Chillán 267443.2 2017 16101 184739 49407186552 87 0.0004709 16101
16101102004 16101 88 2017 Chillán 267443.2 2017 16101 184739 49407186552 3591 0.0194382 16101
16101112030 16101 2 2017 Chillán 267443.2 2017 16101 184739 49407186552 37 0.0002003 16101
16101112901 16101 3 2017 Chillán 267443.2 2017 16101 184739 49407186552 16 0.0000866 16101
16101121001 16101 154 2017 Chillán 267443.2 2017 16101 184739 49407186552 4876 0.0263940 16101
16101122002 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 280 0.0015157 16101
16101122017 16101 49 2017 Chillán 267443.2 2017 16101 184739 49407186552 682 0.0036917 16101
16101122020 16101 8 2017 Chillán 267443.2 2017 16101 184739 49407186552 102 0.0005521 16101
16101122034 16101 24 2017 Chillán 267443.2 2017 16101 184739 49407186552 171 0.0009256 16101
16101122035 16101 34 2017 Chillán 267443.2 2017 16101 184739 49407186552 534 0.0028906 16101
16101131001 16101 866 2017 Chillán 267443.2 2017 16101 184739 49407186552 5741 0.0310763 16101
16101131002 16101 107 2017 Chillán 267443.2 2017 16101 184739 49407186552 2211 0.0119682 16101
16101131003 16101 103 2017 Chillán 267443.2 2017 16101 184739 49407186552 2135 0.0115568 16101
16101131004 16101 160 2017 Chillán 267443.2 2017 16101 184739 49407186552 4141 0.0224154 16101
16101141001 16101 446 2017 Chillán 267443.2 2017 16101 184739 49407186552 5365 0.0290410 16101
16101141002 16101 882 2017 Chillán 267443.2 2017 16101 184739 49407186552 5814 0.0314714 16101
16101141003 16101 243 2017 Chillán 267443.2 2017 16101 184739 49407186552 3016 0.0163257 16101
16101141004 16101 789 2017 Chillán 267443.2 2017 16101 184739 49407186552 3759 0.0203476 16101
16101142009 16101 95 2017 Chillán 267443.2 2017 16101 184739 49407186552 607 0.0032857 16101
16101142018 16101 69 2017 Chillán 267443.2 2017 16101 184739 49407186552 625 0.0033832 16101
16101142036 16101 33 2017 Chillán 267443.2 2017 16101 184739 49407186552 443 0.0023980 16101
16101151001 16101 222 2017 Chillán 267443.2 2017 16101 184739 49407186552 3362 0.0181986 16101
16101151002 16101 34 2017 Chillán 267443.2 2017 16101 184739 49407186552 3634 0.0196710 16101
16101151003 16101 31 2017 Chillán 267443.2 2017 16101 184739 49407186552 1805 0.0097705 16101
16101151004 16101 76 2017 Chillán 267443.2 2017 16101 184739 49407186552 3489 0.0188861 16101
16101151005 16101 39 2017 Chillán 267443.2 2017 16101 184739 49407186552 4931 0.0266917 16101
16101151006 16101 65 2017 Chillán 267443.2 2017 16101 184739 49407186552 4103 0.0222097 16101
16101151007 16101 46 2017 Chillán 267443.2 2017 16101 184739 49407186552 2402 0.0130021 16101
16101151008 16101 28 2017 Chillán 267443.2 2017 16101 184739 49407186552 3208 0.0173650 16101
16101151009 16101 314 2017 Chillán 267443.2 2017 16101 184739 49407186552 4520 0.0244670 16101
16101151010 16101 294 2017 Chillán 267443.2 2017 16101 184739 49407186552 4906 0.0265564 16101
16101151011 16101 84 2017 Chillán 267443.2 2017 16101 184739 49407186552 2718 0.0147126 16101
16101151012 16101 51 2017 Chillán 267443.2 2017 16101 184739 49407186552 2161 0.0116976 16101
16101151013 16101 46 2017 Chillán 267443.2 2017 16101 184739 49407186552 3743 0.0202610 16101
16101151014 16101 24 2017 Chillán 267443.2 2017 16101 184739 49407186552 3883 0.0210188 16101
16101151015 16101 13 2017 Chillán 267443.2 2017 16101 184739 49407186552 248 0.0013424 16101
16101152016 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 521 0.0028202 16101
16101152025 16101 182 2017 Chillán 267443.2 2017 16101 184739 49407186552 1780 0.0096352 16101
16101152033 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 122 0.0006604 16101
16101161001 16101 96 2017 Chillán 267443.2 2017 16101 184739 49407186552 2140 0.0115839 16101
16101161002 16101 97 2017 Chillán 267443.2 2017 16101 184739 49407186552 2196 0.0118870 16101
16101161003 16101 109 2017 Chillán 267443.2 2017 16101 184739 49407186552 3884 0.0210243 16101
16101161004 16101 186 2017 Chillán 267443.2 2017 16101 184739 49407186552 2612 0.0141389 16101
16101161005 16101 148 2017 Chillán 267443.2 2017 16101 184739 49407186552 3326 0.0180038 16101
16101171001 16101 76 2017 Chillán 267443.2 2017 16101 184739 49407186552 4382 0.0237200 16101
16101171002 16101 82 2017 Chillán 267443.2 2017 16101 184739 49407186552 2900 0.0156978 16101
16101171003 16101 90 2017 Chillán 267443.2 2017 16101 184739 49407186552 2262 0.0122443 16101
16101171004 16101 30 2017 Chillán 267443.2 2017 16101 184739 49407186552 1590 0.0086067 16101
16101991999 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 304 0.0016456 16101
16102011001 16102 54 2017 Bulnes 209128.5 2017 16102 21493 4494798610 2452 0.1140837 16102
16102011002 16102 84 2017 Bulnes 209128.5 2017 16102 21493 4494798610 4765 0.2217001 16102
16102011003 16102 83 2017 Bulnes 209128.5 2017 16102 21493 4494798610 3184 0.1481413 16102
16102012006 16102 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610 183 0.0085144 16102
16102012044 16102 1 2017 Bulnes 209128.5 2017 16102 21493 4494798610 32 0.0014889 16102
16102021001 16102 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610 537 0.0249849 16102
16102022005 16102 5 2017 Bulnes 209128.5 2017 16102 21493 4494798610 102 0.0047457 16102


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
16101011001 16101 52 2017 Chillán 267443.2 2017 16101 184739 49407186552 1080 0.0058461 16101 288838640
16101011002 16101 105 2017 Chillán 267443.2 2017 16101 184739 49407186552 1525 0.0082549 16101 407850857
16101011003 16101 142 2017 Chillán 267443.2 2017 16101 184739 49407186552 2051 0.0111021 16101 548525972
16101011004 16101 163 2017 Chillán 267443.2 2017 16101 184739 49407186552 1819 0.0098463 16101 486479154
16101021001 16101 10 2017 Chillán 267443.2 2017 16101 184739 49407186552 1345 0.0072805 16101 359711084
16101021002 16101 114 2017 Chillán 267443.2 2017 16101 184739 49407186552 1991 0.0107774 16101 532479381
16101021003 16101 87 2017 Chillán 267443.2 2017 16101 184739 49407186552 2007 0.0108640 16101 536758472
16101021004 16101 79 2017 Chillán 267443.2 2017 16101 184739 49407186552 1882 0.0101873 16101 503328074
16101031001 16101 335 2017 Chillán 267443.2 2017 16101 184739 49407186552 3622 0.0196060 16101 968679216
16101031002 16101 116 2017 Chillán 267443.2 2017 16101 184739 49407186552 2516 0.0136192 16101 672887053
16101031003 16101 125 2017 Chillán 267443.2 2017 16101 184739 49407186552 2184 0.0118221 16101 584095916
16101031004 16101 55 2017 Chillán 267443.2 2017 16101 184739 49407186552 1866 0.0101007 16101 499048983
16101041001 16101 119 2017 Chillán 267443.2 2017 16101 184739 49407186552 3315 0.0179442 16101 886574158
16101041002 16101 41 2017 Chillán 267443.2 2017 16101 184739 49407186552 1999 0.0108207 16101 534618927
16101041003 16101 67 2017 Chillán 267443.2 2017 16101 184739 49407186552 4799 0.0259772 16101 1283459845
16101041004 16101 35 2017 Chillán 267443.2 2017 16101 184739 49407186552 2766 0.0149725 16101 739747850
16101042032 16101 1 2017 Chillán 267443.2 2017 16101 184739 49407186552 30 0.0001624 16101 8023296
16101051001 16101 44 2017 Chillán 267443.2 2017 16101 184739 49407186552 1466 0.0079355 16101 392071709
16101051002 16101 382 2017 Chillán 267443.2 2017 16101 184739 49407186552 4764 0.0257877 16101 1274099333
16101051003 16101 73 2017 Chillán 267443.2 2017 16101 184739 49407186552 2374 0.0128506 16101 634910121
16101051004 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 2018 0.0109235 16101 539700347
16101051005 16101 424 2017 Chillán 267443.2 2017 16101 184739 49407186552 4539 0.0245698 16101 1213924617
16101052010 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 112 0.0006063 16101 29953637
16101052026 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 355 0.0019216 16101 94942331
16101052027 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 362 0.0019595 16101 96814433
16101052028 16101 32 2017 Chillán 267443.2 2017 16101 184739 49407186552 345 0.0018675 16101 92267899
16101061001 16101 5 2017 Chillán 267443.2 2017 16101 184739 49407186552 941 0.0050937 16101 251664037
16101062003 16101 29 2017 Chillán 267443.2 2017 16101 184739 49407186552 638 0.0034535 16101 170628752
16101062014 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 348 0.0018837 16101 93070228
16101062024 16101 22 2017 Chillán 267443.2 2017 16101 184739 49407186552 451 0.0024413 16101 120616876
16101062027 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 620 0.0033561 16101 165814775
16101062901 16101 1 2017 Chillán 267443.2 2017 16101 184739 49407186552 373 0.0020191 16101 99756308
16101071001 16101 61 2017 Chillán 267443.2 2017 16101 184739 49407186552 1599 0.0086555 16101 427641653
16101071002 16101 21 2017 Chillán 267443.2 2017 16101 184739 49407186552 950 0.0051424 16101 254071026
16101072001 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 593 0.0032099 16101 158593809
16101072901 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 491 0.0026578 16101 131314604
16101081001 16101 37 2017 Chillán 267443.2 2017 16101 184739 49407186552 1276 0.0069070 16101 341257504
16101082007 16101 6 2017 Chillán 267443.2 2017 16101 184739 49407186552 184 0.0009960 16101 49209546
16101082008 16101 4 2017 Chillán 267443.2 2017 16101 184739 49407186552 147 0.0007957 16101 39314148
16101082011 16101 14 2017 Chillán 267443.2 2017 16101 184739 49407186552 408 0.0022085 16101 109116819
16101082012 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 139 0.0007524 16101 37174603
16101082015 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 313 0.0016943 16101 83709717
16101082031 16101 4 2017 Chillán 267443.2 2017 16101 184739 49407186552 104 0.0005630 16101 27814091
16101082037 16101 14 2017 Chillán 267443.2 2017 16101 184739 49407186552 451 0.0024413 16101 120616876
16101092901 16101 5 2017 Chillán 267443.2 2017 16101 184739 49407186552 87 0.0004709 16101 23267557
16101102004 16101 88 2017 Chillán 267443.2 2017 16101 184739 49407186552 3591 0.0194382 16101 960388477
16101112030 16101 2 2017 Chillán 267443.2 2017 16101 184739 49407186552 37 0.0002003 16101 9895398
16101112901 16101 3 2017 Chillán 267443.2 2017 16101 184739 49407186552 16 0.0000866 16101 4279091
16101121001 16101 154 2017 Chillán 267443.2 2017 16101 184739 49407186552 4876 0.0263940 16101 1304052970
16101122002 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 280 0.0015157 16101 74884092
16101122017 16101 49 2017 Chillán 267443.2 2017 16101 184739 49407186552 682 0.0036917 16101 182396252
16101122020 16101 8 2017 Chillán 267443.2 2017 16101 184739 49407186552 102 0.0005521 16101 27279205
16101122034 16101 24 2017 Chillán 267443.2 2017 16101 184739 49407186552 171 0.0009256 16101 45732785
16101122035 16101 34 2017 Chillán 267443.2 2017 16101 184739 49407186552 534 0.0028906 16101 142814661
16101131001 16101 866 2017 Chillán 267443.2 2017 16101 184739 49407186552 5741 0.0310763 16101 1535391325
16101131002 16101 107 2017 Chillán 267443.2 2017 16101 184739 49407186552 2211 0.0119682 16101 591316882
16101131003 16101 103 2017 Chillán 267443.2 2017 16101 184739 49407186552 2135 0.0115568 16101 570991200
16101131004 16101 160 2017 Chillán 267443.2 2017 16101 184739 49407186552 4141 0.0224154 16101 1107482229
16101141001 16101 446 2017 Chillán 267443.2 2017 16101 184739 49407186552 5365 0.0290410 16101 1434832687
16101141002 16101 882 2017 Chillán 267443.2 2017 16101 184739 49407186552 5814 0.0314714 16101 1554914678
16101141003 16101 243 2017 Chillán 267443.2 2017 16101 184739 49407186552 3016 0.0163257 16101 806608646
16101141004 16101 789 2017 Chillán 267443.2 2017 16101 184739 49407186552 3759 0.0203476 16101 1005318932
16101142009 16101 95 2017 Chillán 267443.2 2017 16101 184739 49407186552 607 0.0032857 16101 162338013
16101142018 16101 69 2017 Chillán 267443.2 2017 16101 184739 49407186552 625 0.0033832 16101 167151991
16101142036 16101 33 2017 Chillán 267443.2 2017 16101 184739 49407186552 443 0.0023980 16101 118477331
16101151001 16101 222 2017 Chillán 267443.2 2017 16101 184739 49407186552 3362 0.0181986 16101 899143988
16101151002 16101 34 2017 Chillán 267443.2 2017 16101 184739 49407186552 3634 0.0196710 16101 971888534
16101151003 16101 31 2017 Chillán 267443.2 2017 16101 184739 49407186552 1805 0.0097705 16101 482734949
16101151004 16101 76 2017 Chillán 267443.2 2017 16101 184739 49407186552 3489 0.0188861 16101 933109272
16101151005 16101 39 2017 Chillán 267443.2 2017 16101 184739 49407186552 4931 0.0266917 16101 1318762345
16101151006 16101 65 2017 Chillán 267443.2 2017 16101 184739 49407186552 4103 0.0222097 16101 1097319388
16101151007 16101 46 2017 Chillán 267443.2 2017 16101 184739 49407186552 2402 0.0130021 16101 642398530
16101151008 16101 28 2017 Chillán 267443.2 2017 16101 184739 49407186552 3208 0.0173650 16101 857957737
16101151009 16101 314 2017 Chillán 267443.2 2017 16101 184739 49407186552 4520 0.0244670 16101 1208843196
16101151010 16101 294 2017 Chillán 267443.2 2017 16101 184739 49407186552 4906 0.0265564 16101 1312076266
16101151011 16101 84 2017 Chillán 267443.2 2017 16101 184739 49407186552 2718 0.0147126 16101 726910577
16101151012 16101 51 2017 Chillán 267443.2 2017 16101 184739 49407186552 2161 0.0116976 16101 577944723
16101151013 16101 46 2017 Chillán 267443.2 2017 16101 184739 49407186552 3743 0.0202610 16101 1001039841
16101151014 16101 24 2017 Chillán 267443.2 2017 16101 184739 49407186552 3883 0.0210188 16101 1038481887
16101151015 16101 13 2017 Chillán 267443.2 2017 16101 184739 49407186552 248 0.0013424 16101 66325910
16101152016 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 521 0.0028202 16101 139337899
16101152025 16101 182 2017 Chillán 267443.2 2017 16101 184739 49407186552 1780 0.0096352 16101 476048869
16101152033 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 122 0.0006604 16101 32628069
16101161001 16101 96 2017 Chillán 267443.2 2017 16101 184739 49407186552 2140 0.0115839 16101 572328416
16101161002 16101 97 2017 Chillán 267443.2 2017 16101 184739 49407186552 2196 0.0118870 16101 587305234
16101161003 16101 109 2017 Chillán 267443.2 2017 16101 184739 49407186552 3884 0.0210243 16101 1038749331
16101161004 16101 186 2017 Chillán 267443.2 2017 16101 184739 49407186552 2612 0.0141389 16101 698561599
16101161005 16101 148 2017 Chillán 267443.2 2017 16101 184739 49407186552 3326 0.0180038 16101 889516033
16101171001 16101 76 2017 Chillán 267443.2 2017 16101 184739 49407186552 4382 0.0237200 16101 1171936037
16101171002 16101 82 2017 Chillán 267443.2 2017 16101 184739 49407186552 2900 0.0156978 16101 775585236
16101171003 16101 90 2017 Chillán 267443.2 2017 16101 184739 49407186552 2262 0.0122443 16101 604956484
16101171004 16101 30 2017 Chillán 267443.2 2017 16101 184739 49407186552 1590 0.0086067 16101 425234664
16101991999 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 304 0.0016456 16101 81302728
16102011001 16102 54 2017 Bulnes 209128.5 2017 16102 21493 4494798610 2452 0.1140837 16102 512783055
16102011002 16102 84 2017 Bulnes 209128.5 2017 16102 21493 4494798610 4765 0.2217001 16102 996497249
16102011003 16102 83 2017 Bulnes 209128.5 2017 16102 21493 4494798610 3184 0.1481413 16102 665865108
16102012006 16102 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610 183 0.0085144 16102 38270513
16102012044 16102 1 2017 Bulnes 209128.5 2017 16102 21493 4494798610 32 0.0014889 16102 6692112
16102021001 16102 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610 537 0.0249849 16102 112301998
16102022005 16102 5 2017 Bulnes 209128.5 2017 16102 21493 4494798610 102 0.0047457 16102 21331106

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.355e+09 -6.366e+07 -5.075e+07 -1.821e+07  1.139e+09 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 66716935    6156145   10.84   <2e-16 ***
## Freq.x       2906369      91396   31.80   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 174400000 on 879 degrees of freedom
## Multiple R-squared:  0.535,  Adjusted R-squared:  0.5344 
## F-statistic:  1011 on 1 and 879 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.355e+09 -6.366e+07 -5.075e+07 -1.821e+07  1.139e+09 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 66716935    6156145   10.84   <2e-16 ***
## Freq.x       2906369      91396   31.80   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 174400000 on 879 degrees of freedom
## Multiple R-squared:  0.535,  Adjusted R-squared:  0.5344 
## F-statistic:  1011 on 1 and 879 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.355e+09 -6.366e+07 -5.075e+07 -1.821e+07  1.139e+09 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 66716935    6156145   10.84   <2e-16 ***
## Freq.x       2906369      91396   31.80   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 174400000 on 879 degrees of freedom
## Multiple R-squared:  0.535,  Adjusted R-squared:  0.5344 
## F-statistic:  1011 on 1 and 879 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -398660297 -106101772  -24519545  107024332  913907217 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -102613225    8378144  -12.25   <2e-16 ***
## log(Freq.x)  138517760    3852106   35.96   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 162700000 on 879 degrees of freedom
## Multiple R-squared:  0.5953, Adjusted R-squared:  0.5949 
## F-statistic:  1293 on 1 and 879 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -837014900  -45589952   -4175876   26767814  977025428 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -87267028    5761736  -15.15   <2e-16 ***
## sqrt(Freq.x)  68695610    1283600   53.52   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 123900000 on 879 degrees of freedom
## Multiple R-squared:  0.7652, Adjusted R-squared:  0.7649 
## F-statistic:  2864 on 1 and 879 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -28087  -1916   -613   1095  21670 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1736.48     174.03   9.978   <2e-16 ***
## sqrt(Freq.x)  2066.91      38.77  53.311   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3742 on 879 degrees of freedom
## Multiple R-squared:  0.7638, Adjusted R-squared:  0.7635 
## F-statistic:  2842 on 1 and 879 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.6818 -0.6101  0.1052  0.6797  2.7577 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  16.25640    0.04708   345.3   <2e-16 ***
## sqrt(Freq.x)  0.35659    0.01049    34.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.012 on 879 degrees of freedom
## Multiple R-squared:  0.5681, Adjusted R-squared:  0.5676 
## F-statistic:  1156 on 1 and 879 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11481.3  -2916.9   -338.5   2299.9  18848.0 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   522.10     205.39   2.542   0.0112 *  
## log(Freq.x)  4625.19      94.43  48.978   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3987 on 879 degrees of freedom
## Multiple R-squared:  0.7318, Adjusted R-squared:  0.7315 
## F-statistic:  2399 on 1 and 879 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.93398 -0.50305  0.03724  0.51433  2.60261 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.84901    0.04193  378.02   <2e-16 ***
## log(Freq.x)  0.91823    0.01928   47.63   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.814 on 879 degrees of freedom
## Multiple R-squared:  0.7208, Adjusted R-squared:  0.7204 
## F-statistic:  2269 on 1 and 879 DF,  p-value: < 2.2e-16

9 Modelo raíz cuadrada (r_sqrt)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7649).

9.1 Diagrama de dispersión sobre r_sqrt

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo r_sqrt

Observemos nuevamente el resultado sobre r_sqrt.

linearMod <- lm(( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = (multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -837014900  -45589952   -4175876   26767814  977025428 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -87267028    5761736  -15.15   <2e-16 ***
## sqrt(Freq.x)  68695610    1283600   53.52   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 123900000 on 879 degrees of freedom
## Multiple R-squared:  0.7652, Adjusted R-squared:  0.7649 
## F-statistic:  2864 on 1 and 879 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = (multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = -87267028 + 68695610 \cdot \sqrt {X} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- -87267028 + 68695610 * sqrt (h_y_m_comuna_corr_01$Freq.x)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
16101011001 16101 52 2017 Chillán 267443.2 2017 16101 184739 49407186552 1080 0.0058461 16101 288838640 408104061
16101011002 16101 105 2017 Chillán 267443.2 2017 16101 184739 49407186552 1525 0.0082549 16101 407850857 616653506
16101011003 16101 142 2017 Chillán 267443.2 2017 16101 184739 49407186552 2051 0.0111021 16101 548525972 731335641
16101011004 16101 163 2017 Chillán 267443.2 2017 16101 184739 49407186552 1819 0.0098463 16101 486479154 789779809
16101021001 16101 10 2017 Chillán 267443.2 2017 16101 184739 49407186552 1345 0.0072805 16101 359711084 129967565
16101021002 16101 114 2017 Chillán 267443.2 2017 16101 184739 49407186552 1991 0.0107774 16101 532479381 646201376
16101021003 16101 87 2017 Chillán 267443.2 2017 16101 184739 49407186552 2007 0.0108640 16101 536758472 553482966
16101021004 16101 79 2017 Chillán 267443.2 2017 16101 184739 49407186552 1882 0.0101873 16101 503328074 523312909
16101031001 16101 335 2017 Chillán 267443.2 2017 16101 184739 49407186552 3622 0.0196060 16101 968679216 1170069080
16101031002 16101 116 2017 Chillán 267443.2 2017 16101 184739 49407186552 2516 0.0136192 16101 672887053 652607335
16101031003 16101 125 2017 Chillán 267443.2 2017 16101 184739 49407186552 2184 0.0118221 16101 584095916 680773241
16101031004 16101 55 2017 Chillán 267443.2 2017 16101 184739 49407186552 1866 0.0101007 16101 499048983 422193251
16101041001 16101 119 2017 Chillán 267443.2 2017 16101 184739 49407186552 3315 0.0179442 16101 886574158 662113605
16101041002 16101 41 2017 Chillán 267443.2 2017 16101 184739 49407186552 1999 0.0108207 16101 534618927 352599497
16101041003 16101 67 2017 Chillán 267443.2 2017 16101 184739 49407186552 4799 0.0259772 16101 1283459845 475030774
16101041004 16101 35 2017 Chillán 267443.2 2017 16101 184739 49407186552 2766 0.0149725 16101 739747850 319141682
16101042032 16101 1 2017 Chillán 267443.2 2017 16101 184739 49407186552 30 0.0001624 16101 8023296 -18571418
16101051001 16101 44 2017 Chillán 267443.2 2017 16101 184739 49407186552 1466 0.0079355 16101 392071709 368408098
16101051002 16101 382 2017 Chillán 267443.2 2017 16101 184739 49407186552 4764 0.0257877 16101 1274099333 1255376324
16101051003 16101 73 2017 Chillán 267443.2 2017 16101 184739 49407186552 2374 0.0128506 16101 634910121 499668521
16101051004 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 2018 0.0109235 16101 539700347 187515412
16101051005 16101 424 2017 Chillán 267443.2 2017 16101 184739 49407186552 4539 0.0245698 16101 1213924617 1327262158
16101052010 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 112 0.0006063 16101 29953637 94484472
16101052026 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 355 0.0019216 16101 94942331 118819802
16101052027 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 362 0.0019595 16101 96814433 118819802
16101052028 16101 32 2017 Chillán 267443.2 2017 16101 184739 49407186552 345 0.0018675 16101 92267899 301334025
16101061001 16101 5 2017 Chillán 267443.2 2017 16101 184739 49407186552 941 0.0050937 16101 251664037 66341026
16101062003 16101 29 2017 Chillán 267443.2 2017 16101 184739 49407186552 638 0.0034535 16101 170628752 282670153
16101062014 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 348 0.0018837 16101 93070228 204183762
16101062024 16101 22 2017 Chillán 267443.2 2017 16101 184739 49407186552 451 0.0024413 16101 120616876 234943944
16101062027 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 620 0.0033561 16101 165814775 204183762
16101062901 16101 1 2017 Chillán 267443.2 2017 16101 184739 49407186552 373 0.0020191 16101 99756308 -18571418
16101071001 16101 61 2017 Chillán 267443.2 2017 16101 184739 49407186552 1599 0.0086555 16101 427641653 449262838
16101071002 16101 21 2017 Chillán 267443.2 2017 16101 184739 49407186552 950 0.0051424 16101 254071026 227535805
16101072001 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 593 0.0032099 16101 158593809 204183762
16101072901 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 491 0.0026578 16101 131314604 94484472
16101081001 16101 37 2017 Chillán 267443.2 2017 16101 184739 49407186552 1276 0.0069070 16101 341257504 330592055
16101082007 16101 6 2017 Chillán 267443.2 2017 16101 184739 49407186552 184 0.0009960 16101 49209546 81002164
16101082008 16101 4 2017 Chillán 267443.2 2017 16101 184739 49407186552 147 0.0007957 16101 39314148 50124192
16101082011 16101 14 2017 Chillán 267443.2 2017 16101 184739 49407186552 408 0.0022085 16101 109116819 169768409
16101082012 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 139 0.0007524 16101 37174603 94484472
16101082015 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 313 0.0016943 16101 83709717 118819802
16101082031 16101 4 2017 Chillán 267443.2 2017 16101 184739 49407186552 104 0.0005630 16101 27814091 50124192
16101082037 16101 14 2017 Chillán 267443.2 2017 16101 184739 49407186552 451 0.0024413 16101 120616876 169768409
16101092901 16101 5 2017 Chillán 267443.2 2017 16101 184739 49407186552 87 0.0004709 16101 23267557 66341026
16101102004 16101 88 2017 Chillán 267443.2 2017 16101 184739 49407186552 3591 0.0194382 16101 960388477 557154916
16101112030 16101 2 2017 Chillán 267443.2 2017 16101 184739 49407186552 37 0.0002003 16101 9895398 9883235
16101112901 16101 3 2017 Chillán 267443.2 2017 16101 184739 49407186552 16 0.0000866 16101 4279091 31717259
16101121001 16101 154 2017 Chillán 267443.2 2017 16101 184739 49407186552 4876 0.0263940 16101 1304052970 765223073
16101122002 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 280 0.0015157 16101 74884092 187515412
16101122017 16101 49 2017 Chillán 267443.2 2017 16101 184739 49407186552 682 0.0036917 16101 182396252 393602242
16101122020 16101 8 2017 Chillán 267443.2 2017 16101 184739 49407186552 102 0.0005521 16101 27279205 107033499
16101122034 16101 24 2017 Chillán 267443.2 2017 16101 184739 49407186552 171 0.0009256 16101 45732785 249271356
16101122035 16101 34 2017 Chillán 267443.2 2017 16101 184739 49407186552 534 0.0028906 16101 142814661 313293769
16101131001 16101 866 2017 Chillán 267443.2 2017 16101 184739 49407186552 5741 0.0310763 16101 1535391325 1934298998
16101131002 16101 107 2017 Chillán 267443.2 2017 16101 184739 49407186552 2211 0.0119682 16101 591316882 623325887
16101131003 16101 103 2017 Chillán 267443.2 2017 16101 184739 49407186552 2135 0.0115568 16101 570991200 609917269
16101131004 16101 160 2017 Chillán 267443.2 2017 16101 184739 49407186552 4141 0.0224154 16101 1107482229 781671343
16101141001 16101 446 2017 Chillán 267443.2 2017 16101 184739 49407186552 5365 0.0290410 16101 1434832687 1363495781
16101141002 16101 882 2017 Chillán 267443.2 2017 16101 184739 49407186552 5814 0.0314714 16101 1554914678 1952888502
16101141003 16101 243 2017 Chillán 267443.2 2017 16101 184739 49407186552 3016 0.0163257 16101 806608646 983591553
16101141004 16101 789 2017 Chillán 267443.2 2017 16101 184739 49407186552 3759 0.0203476 16101 1005318932 1842333840
16101142009 16101 95 2017 Chillán 267443.2 2017 16101 184739 49407186552 607 0.0032857 16101 162338013 582294955
16101142018 16101 69 2017 Chillán 267443.2 2017 16101 184739 49407186552 625 0.0033832 16101 167151991 483361565
16101142036 16101 33 2017 Chillán 267443.2 2017 16101 184739 49407186552 443 0.0023980 16101 118477331 307359207
16101151001 16101 222 2017 Chillán 267443.2 2017 16101 184739 49407186552 3362 0.0181986 16101 899143988 936274509
16101151002 16101 34 2017 Chillán 267443.2 2017 16101 184739 49407186552 3634 0.0196710 16101 971888534 313293769
16101151003 16101 31 2017 Chillán 267443.2 2017 16101 184739 49407186552 1805 0.0097705 16101 482734949 295213941
16101151004 16101 76 2017 Chillán 267443.2 2017 16101 184739 49407186552 3489 0.0188861 16101 933109272 511607416
16101151005 16101 39 2017 Chillán 267443.2 2017 16101 184739 49407186552 4931 0.0266917 16101 1318762345 341736919
16101151006 16101 65 2017 Chillán 267443.2 2017 16101 184739 49407186552 4103 0.0222097 16101 1097319388 466574686
16101151007 16101 46 2017 Chillán 267443.2 2017 16101 184739 49407186552 2402 0.0130021 16101 642398530 378649267
16101151008 16101 28 2017 Chillán 267443.2 2017 16101 184739 49407186552 3208 0.0173650 16101 857957737 276235972
16101151009 16101 314 2017 Chillán 267443.2 2017 16101 184739 49407186552 4520 0.0244670 16101 1208843196 1130022283
16101151010 16101 294 2017 Chillán 267443.2 2017 16101 184739 49407186552 4906 0.0265564 16101 1312076266 1090617316
16101151011 16101 84 2017 Chillán 267443.2 2017 16101 184739 49407186552 2718 0.0147126 16101 726910577 542338637
16101151012 16101 51 2017 Chillán 267443.2 2017 16101 184739 49407186552 2161 0.0116976 16101 577944723 403317754
16101151013 16101 46 2017 Chillán 267443.2 2017 16101 184739 49407186552 3743 0.0202610 16101 1001039841 378649267
16101151014 16101 24 2017 Chillán 267443.2 2017 16101 184739 49407186552 3883 0.0210188 16101 1038481887 249271356
16101151015 16101 13 2017 Chillán 267443.2 2017 16101 184739 49407186552 248 0.0013424 16101 66325910 160418516
16101152016 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 521 0.0028202 16101 139337899 187515412
16101152025 16101 182 2017 Chillán 267443.2 2017 16101 184739 49407186552 1780 0.0096352 16101 476048869 839487418
16101152033 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 122 0.0006604 16101 32628069 118819802
16101161001 16101 96 2017 Chillán 267443.2 2017 16101 184739 49407186552 2140 0.0115839 16101 572328416 585809740
16101161002 16101 97 2017 Chillán 267443.2 2017 16101 184739 49407186552 2196 0.0118870 16101 587305234 589306266
16101161003 16101 109 2017 Chillán 267443.2 2017 16101 184739 49407186552 3884 0.0210243 16101 1038749331 629936196
16101161004 16101 186 2017 Chillán 267443.2 2017 16101 184739 49407186552 2612 0.0141389 16101 698561599 849616183
16101161005 16101 148 2017 Chillán 267443.2 2017 16101 184739 49407186552 3326 0.0180038 16101 889516033 748451137
16101171001 16101 76 2017 Chillán 267443.2 2017 16101 184739 49407186552 4382 0.0237200 16101 1171936037 511607416
16101171002 16101 82 2017 Chillán 267443.2 2017 16101 184739 49407186552 2900 0.0156978 16101 775585236 534798178
16101171003 16101 90 2017 Chillán 267443.2 2017 16101 184739 49407186552 2262 0.0122443 16101 604956484 564436751
16101171004 16101 30 2017 Chillán 267443.2 2017 16101 184739 49407186552 1590 0.0086067 16101 425234664 288994324
16101991999 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 304 0.0016456 16101 81302728 118819802
16102011001 16102 54 2017 Bulnes 209128.5 2017 16102 21493 4494798610 2452 0.1140837 16102 512783055 417540548
16102011002 16102 84 2017 Bulnes 209128.5 2017 16102 21493 4494798610 4765 0.2217001 16102 996497249 542338637
16102011003 16102 83 2017 Bulnes 209128.5 2017 16102 21493 4494798610 3184 0.1481413 16102 665865108 538579764
16102012006 16102 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610 183 0.0085144 16102 38270513 81002164
16102012044 16102 1 2017 Bulnes 209128.5 2017 16102 21493 4494798610 32 0.0014889 16102 6692112 -18571418
16102021001 16102 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610 537 0.0249849 16102 112301998 81002164
16102022005 16102 5 2017 Bulnes 209128.5 2017 16102 21493 4494798610 102 0.0047457 16102 21331106 66341026


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
16101011001 16101 52 2017 Chillán 267443.2 2017 16101 184739 49407186552 1080 0.0058461 16101 288838640 408104061 377874.13
16101011002 16101 105 2017 Chillán 267443.2 2017 16101 184739 49407186552 1525 0.0082549 16101 407850857 616653506 404362.95
16101011003 16101 142 2017 Chillán 267443.2 2017 16101 184739 49407186552 2051 0.0111021 16101 548525972 731335641 356575.15
16101011004 16101 163 2017 Chillán 267443.2 2017 16101 184739 49407186552 1819 0.0098463 16101 486479154 789779809 434183.51
16101021001 16101 10 2017 Chillán 267443.2 2017 16101 184739 49407186552 1345 0.0072805 16101 359711084 129967565 96630.16
16101021002 16101 114 2017 Chillán 267443.2 2017 16101 184739 49407186552 1991 0.0107774 16101 532479381 646201376 324561.21
16101021003 16101 87 2017 Chillán 267443.2 2017 16101 184739 49407186552 2007 0.0108640 16101 536758472 553482966 275776.27
16101021004 16101 79 2017 Chillán 267443.2 2017 16101 184739 49407186552 1882 0.0101873 16101 503328074 523312909 278062.12
16101031001 16101 335 2017 Chillán 267443.2 2017 16101 184739 49407186552 3622 0.0196060 16101 968679216 1170069080 323045.02
16101031002 16101 116 2017 Chillán 267443.2 2017 16101 184739 49407186552 2516 0.0136192 16101 672887053 652607335 259382.88
16101031003 16101 125 2017 Chillán 267443.2 2017 16101 184739 49407186552 2184 0.0118221 16101 584095916 680773241 311709.36
16101031004 16101 55 2017 Chillán 267443.2 2017 16101 184739 49407186552 1866 0.0101007 16101 499048983 422193251 226255.76
16101041001 16101 119 2017 Chillán 267443.2 2017 16101 184739 49407186552 3315 0.0179442 16101 886574158 662113605 199732.61
16101041002 16101 41 2017 Chillán 267443.2 2017 16101 184739 49407186552 1999 0.0108207 16101 534618927 352599497 176387.94
16101041003 16101 67 2017 Chillán 267443.2 2017 16101 184739 49407186552 4799 0.0259772 16101 1283459845 475030774 98985.37
16101041004 16101 35 2017 Chillán 267443.2 2017 16101 184739 49407186552 2766 0.0149725 16101 739747850 319141682 115380.22
16101042032 16101 1 2017 Chillán 267443.2 2017 16101 184739 49407186552 30 0.0001624 16101 8023296 -18571418 -619047.27
16101051001 16101 44 2017 Chillán 267443.2 2017 16101 184739 49407186552 1466 0.0079355 16101 392071709 368408098 251301.57
16101051002 16101 382 2017 Chillán 267443.2 2017 16101 184739 49407186552 4764 0.0257877 16101 1274099333 1255376324 263513.08
16101051003 16101 73 2017 Chillán 267443.2 2017 16101 184739 49407186552 2374 0.0128506 16101 634910121 499668521 210475.37
16101051004 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 2018 0.0109235 16101 539700347 187515412 92921.41
16101051005 16101 424 2017 Chillán 267443.2 2017 16101 184739 49407186552 4539 0.0245698 16101 1213924617 1327262158 292412.90
16101052010 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 112 0.0006063 16101 29953637 94484472 843611.36
16101052026 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 355 0.0019216 16101 94942331 118819802 334703.67
16101052027 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 362 0.0019595 16101 96814433 118819802 328231.50
16101052028 16101 32 2017 Chillán 267443.2 2017 16101 184739 49407186552 345 0.0018675 16101 92267899 301334025 873431.96
16101061001 16101 5 2017 Chillán 267443.2 2017 16101 184739 49407186552 941 0.0050937 16101 251664037 66341026 70500.56
16101062003 16101 29 2017 Chillán 267443.2 2017 16101 184739 49407186552 638 0.0034535 16101 170628752 282670153 443056.67
16101062014 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 348 0.0018837 16101 93070228 204183762 586734.95
16101062024 16101 22 2017 Chillán 267443.2 2017 16101 184739 49407186552 451 0.0024413 16101 120616876 234943944 520940.01
16101062027 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 620 0.0033561 16101 165814775 204183762 329328.65
16101062901 16101 1 2017 Chillán 267443.2 2017 16101 184739 49407186552 373 0.0020191 16101 99756308 -18571418 -49789.32
16101071001 16101 61 2017 Chillán 267443.2 2017 16101 184739 49407186552 1599 0.0086555 16101 427641653 449262838 280964.88
16101071002 16101 21 2017 Chillán 267443.2 2017 16101 184739 49407186552 950 0.0051424 16101 254071026 227535805 239511.37
16101072001 16101 18 2017 Chillán 267443.2 2017 16101 184739 49407186552 593 0.0032099 16101 158593809 204183762 344323.38
16101072901 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 491 0.0026578 16101 131314604 94484472 192432.73
16101081001 16101 37 2017 Chillán 267443.2 2017 16101 184739 49407186552 1276 0.0069070 16101 341257504 330592055 259084.68
16101082007 16101 6 2017 Chillán 267443.2 2017 16101 184739 49407186552 184 0.0009960 16101 49209546 81002164 440229.15
16101082008 16101 4 2017 Chillán 267443.2 2017 16101 184739 49407186552 147 0.0007957 16101 39314148 50124192 340980.90
16101082011 16101 14 2017 Chillán 267443.2 2017 16101 184739 49407186552 408 0.0022085 16101 109116819 169768409 416099.04
16101082012 16101 7 2017 Chillán 267443.2 2017 16101 184739 49407186552 139 0.0007524 16101 37174603 94484472 679744.40
16101082015 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 313 0.0016943 16101 83709717 118819802 379615.98
16101082031 16101 4 2017 Chillán 267443.2 2017 16101 184739 49407186552 104 0.0005630 16101 27814091 50124192 481963.38
16101082037 16101 14 2017 Chillán 267443.2 2017 16101 184739 49407186552 451 0.0024413 16101 120616876 169768409 376426.63
16101092901 16101 5 2017 Chillán 267443.2 2017 16101 184739 49407186552 87 0.0004709 16101 23267557 66341026 762540.53
16101102004 16101 88 2017 Chillán 267443.2 2017 16101 184739 49407186552 3591 0.0194382 16101 960388477 557154916 155153.14
16101112030 16101 2 2017 Chillán 267443.2 2017 16101 184739 49407186552 37 0.0002003 16101 9895398 9883235 267114.47
16101112901 16101 3 2017 Chillán 267443.2 2017 16101 184739 49407186552 16 0.0000866 16101 4279091 31717259 1982328.67
16101121001 16101 154 2017 Chillán 267443.2 2017 16101 184739 49407186552 4876 0.0263940 16101 1304052970 765223073 156936.64
16101122002 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 280 0.0015157 16101 74884092 187515412 669697.90
16101122017 16101 49 2017 Chillán 267443.2 2017 16101 184739 49407186552 682 0.0036917 16101 182396252 393602242 577129.39
16101122020 16101 8 2017 Chillán 267443.2 2017 16101 184739 49407186552 102 0.0005521 16101 27279205 107033499 1049348.03
16101122034 16101 24 2017 Chillán 267443.2 2017 16101 184739 49407186552 171 0.0009256 16101 45732785 249271356 1457727.23
16101122035 16101 34 2017 Chillán 267443.2 2017 16101 184739 49407186552 534 0.0028906 16101 142814661 313293769 586692.45
16101131001 16101 866 2017 Chillán 267443.2 2017 16101 184739 49407186552 5741 0.0310763 16101 1535391325 1934298998 336927.19
16101131002 16101 107 2017 Chillán 267443.2 2017 16101 184739 49407186552 2211 0.0119682 16101 591316882 623325887 281920.35
16101131003 16101 103 2017 Chillán 267443.2 2017 16101 184739 49407186552 2135 0.0115568 16101 570991200 609917269 285675.54
16101131004 16101 160 2017 Chillán 267443.2 2017 16101 184739 49407186552 4141 0.0224154 16101 1107482229 781671343 188763.91
16101141001 16101 446 2017 Chillán 267443.2 2017 16101 184739 49407186552 5365 0.0290410 16101 1434832687 1363495781 254146.46
16101141002 16101 882 2017 Chillán 267443.2 2017 16101 184739 49407186552 5814 0.0314714 16101 1554914678 1952888502 335894.14
16101141003 16101 243 2017 Chillán 267443.2 2017 16101 184739 49407186552 3016 0.0163257 16101 806608646 983591553 326124.52
16101141004 16101 789 2017 Chillán 267443.2 2017 16101 184739 49407186552 3759 0.0203476 16101 1005318932 1842333840 490112.75
16101142009 16101 95 2017 Chillán 267443.2 2017 16101 184739 49407186552 607 0.0032857 16101 162338013 582294955 959299.76
16101142018 16101 69 2017 Chillán 267443.2 2017 16101 184739 49407186552 625 0.0033832 16101 167151991 483361565 773378.50
16101142036 16101 33 2017 Chillán 267443.2 2017 16101 184739 49407186552 443 0.0023980 16101 118477331 307359207 693813.11
16101151001 16101 222 2017 Chillán 267443.2 2017 16101 184739 49407186552 3362 0.0181986 16101 899143988 936274509 278487.36
16101151002 16101 34 2017 Chillán 267443.2 2017 16101 184739 49407186552 3634 0.0196710 16101 971888534 313293769 86211.82
16101151003 16101 31 2017 Chillán 267443.2 2017 16101 184739 49407186552 1805 0.0097705 16101 482734949 295213941 163553.43
16101151004 16101 76 2017 Chillán 267443.2 2017 16101 184739 49407186552 3489 0.0188861 16101 933109272 511607416 146634.40
16101151005 16101 39 2017 Chillán 267443.2 2017 16101 184739 49407186552 4931 0.0266917 16101 1318762345 341736919 69303.78
16101151006 16101 65 2017 Chillán 267443.2 2017 16101 184739 49407186552 4103 0.0222097 16101 1097319388 466574686 113715.50
16101151007 16101 46 2017 Chillán 267443.2 2017 16101 184739 49407186552 2402 0.0130021 16101 642398530 378649267 157639.16
16101151008 16101 28 2017 Chillán 267443.2 2017 16101 184739 49407186552 3208 0.0173650 16101 857957737 276235972 86108.47
16101151009 16101 314 2017 Chillán 267443.2 2017 16101 184739 49407186552 4520 0.0244670 16101 1208843196 1130022283 250004.93
16101151010 16101 294 2017 Chillán 267443.2 2017 16101 184739 49407186552 4906 0.0265564 16101 1312076266 1090617316 222302.76
16101151011 16101 84 2017 Chillán 267443.2 2017 16101 184739 49407186552 2718 0.0147126 16101 726910577 542338637 199535.92
16101151012 16101 51 2017 Chillán 267443.2 2017 16101 184739 49407186552 2161 0.0116976 16101 577944723 403317754 186634.78
16101151013 16101 46 2017 Chillán 267443.2 2017 16101 184739 49407186552 3743 0.0202610 16101 1001039841 378649267 101161.97
16101151014 16101 24 2017 Chillán 267443.2 2017 16101 184739 49407186552 3883 0.0210188 16101 1038481887 249271356 64195.56
16101151015 16101 13 2017 Chillán 267443.2 2017 16101 184739 49407186552 248 0.0013424 16101 66325910 160418516 646848.86
16101152016 16101 16 2017 Chillán 267443.2 2017 16101 184739 49407186552 521 0.0028202 16101 139337899 187515412 359914.42
16101152025 16101 182 2017 Chillán 267443.2 2017 16101 184739 49407186552 1780 0.0096352 16101 476048869 839487418 471622.15
16101152033 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 122 0.0006604 16101 32628069 118819802 973932.80
16101161001 16101 96 2017 Chillán 267443.2 2017 16101 184739 49407186552 2140 0.0115839 16101 572328416 585809740 273742.87
16101161002 16101 97 2017 Chillán 267443.2 2017 16101 184739 49407186552 2196 0.0118870 16101 587305234 589306266 268354.40
16101161003 16101 109 2017 Chillán 267443.2 2017 16101 184739 49407186552 3884 0.0210243 16101 1038749331 629936196 162187.49
16101161004 16101 186 2017 Chillán 267443.2 2017 16101 184739 49407186552 2612 0.0141389 16101 698561599 849616183 325274.19
16101161005 16101 148 2017 Chillán 267443.2 2017 16101 184739 49407186552 3326 0.0180038 16101 889516033 748451137 225030.41
16101171001 16101 76 2017 Chillán 267443.2 2017 16101 184739 49407186552 4382 0.0237200 16101 1171936037 511607416 116752.03
16101171002 16101 82 2017 Chillán 267443.2 2017 16101 184739 49407186552 2900 0.0156978 16101 775585236 534798178 184413.16
16101171003 16101 90 2017 Chillán 267443.2 2017 16101 184739 49407186552 2262 0.0122443 16101 604956484 564436751 249529.95
16101171004 16101 30 2017 Chillán 267443.2 2017 16101 184739 49407186552 1590 0.0086067 16101 425234664 288994324 181757.44
16101991999 16101 9 2017 Chillán 267443.2 2017 16101 184739 49407186552 304 0.0016456 16101 81302728 118819802 390854.61
16102011001 16102 54 2017 Bulnes 209128.5 2017 16102 21493 4494798610 2452 0.1140837 16102 512783055 417540548 170285.70
16102011002 16102 84 2017 Bulnes 209128.5 2017 16102 21493 4494798610 4765 0.2217001 16102 996497249 542338637 113817.13
16102011003 16102 83 2017 Bulnes 209128.5 2017 16102 21493 4494798610 3184 0.1481413 16102 665865108 538579764 169151.94
16102012006 16102 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610 183 0.0085144 16102 38270513 81002164 442634.78
16102012044 16102 1 2017 Bulnes 209128.5 2017 16102 21493 4494798610 32 0.0014889 16102 6692112 -18571418 -580356.81
16102021001 16102 6 2017 Bulnes 209128.5 2017 16102 21493 4494798610 537 0.0249849 16102 112301998 81002164 150842.02
16102022005 16102 5 2017 Bulnes 209128.5 2017 16102 21493 4494798610 102 0.0047457 16102 21331106 66341026 650402.21


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_16.rds")