De ingresos sobre una categoría de respuesta
Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 16.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 16)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[2] <- "Tipo de techo"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 16101011001 | 1 | 16101 | 52 | 2017 |
2 | 16101011002 | 1 | 16101 | 105 | 2017 |
3 | 16101011003 | 1 | 16101 | 142 | 2017 |
4 | 16101011004 | 1 | 16101 | 163 | 2017 |
5 | 16101021001 | 1 | 16101 | 10 | 2017 |
6 | 16101021002 | 1 | 16101 | 114 | 2017 |
7 | 16101021003 | 1 | 16101 | 87 | 2017 |
8 | 16101021004 | 1 | 16101 | 79 | 2017 |
9 | 16101031001 | 1 | 16101 | 335 | 2017 |
10 | 16101031002 | 1 | 16101 | 116 | 2017 |
11 | 16101031003 | 1 | 16101 | 125 | 2017 |
12 | 16101031004 | 1 | 16101 | 55 | 2017 |
13 | 16101041001 | 1 | 16101 | 119 | 2017 |
14 | 16101041002 | 1 | 16101 | 41 | 2017 |
15 | 16101041003 | 1 | 16101 | 67 | 2017 |
16 | 16101041004 | 1 | 16101 | 35 | 2017 |
17 | 16101042032 | 1 | 16101 | 1 | 2017 |
18 | 16101051001 | 1 | 16101 | 44 | 2017 |
19 | 16101051002 | 1 | 16101 | 382 | 2017 |
20 | 16101051003 | 1 | 16101 | 73 | 2017 |
21 | 16101051004 | 1 | 16101 | 16 | 2017 |
22 | 16101051005 | 1 | 16101 | 424 | 2017 |
23 | 16101052010 | 1 | 16101 | 7 | 2017 |
24 | 16101052026 | 1 | 16101 | 9 | 2017 |
25 | 16101052027 | 1 | 16101 | 9 | 2017 |
26 | 16101052028 | 1 | 16101 | 32 | 2017 |
27 | 16101061001 | 1 | 16101 | 5 | 2017 |
28 | 16101062003 | 1 | 16101 | 29 | 2017 |
29 | 16101062014 | 1 | 16101 | 18 | 2017 |
30 | 16101062024 | 1 | 16101 | 22 | 2017 |
31 | 16101062027 | 1 | 16101 | 18 | 2017 |
32 | 16101062901 | 1 | 16101 | 1 | 2017 |
33 | 16101071001 | 1 | 16101 | 61 | 2017 |
34 | 16101071002 | 1 | 16101 | 21 | 2017 |
35 | 16101072001 | 1 | 16101 | 18 | 2017 |
36 | 16101072901 | 1 | 16101 | 7 | 2017 |
37 | 16101081001 | 1 | 16101 | 37 | 2017 |
38 | 16101082007 | 1 | 16101 | 6 | 2017 |
39 | 16101082008 | 1 | 16101 | 4 | 2017 |
40 | 16101082011 | 1 | 16101 | 14 | 2017 |
41 | 16101082012 | 1 | 16101 | 7 | 2017 |
42 | 16101082015 | 1 | 16101 | 9 | 2017 |
43 | 16101082031 | 1 | 16101 | 4 | 2017 |
44 | 16101082037 | 1 | 16101 | 14 | 2017 |
45 | 16101092901 | 1 | 16101 | 5 | 2017 |
46 | 16101102004 | 1 | 16101 | 88 | 2017 |
47 | 16101112030 | 1 | 16101 | 2 | 2017 |
48 | 16101112901 | 1 | 16101 | 3 | 2017 |
49 | 16101121001 | 1 | 16101 | 154 | 2017 |
50 | 16101122002 | 1 | 16101 | 16 | 2017 |
51 | 16101122017 | 1 | 16101 | 49 | 2017 |
52 | 16101122020 | 1 | 16101 | 8 | 2017 |
53 | 16101122034 | 1 | 16101 | 24 | 2017 |
54 | 16101122035 | 1 | 16101 | 34 | 2017 |
55 | 16101131001 | 1 | 16101 | 866 | 2017 |
56 | 16101131002 | 1 | 16101 | 107 | 2017 |
57 | 16101131003 | 1 | 16101 | 103 | 2017 |
58 | 16101131004 | 1 | 16101 | 160 | 2017 |
59 | 16101141001 | 1 | 16101 | 446 | 2017 |
60 | 16101141002 | 1 | 16101 | 882 | 2017 |
61 | 16101141003 | 1 | 16101 | 243 | 2017 |
62 | 16101141004 | 1 | 16101 | 789 | 2017 |
63 | 16101142009 | 1 | 16101 | 95 | 2017 |
64 | 16101142018 | 1 | 16101 | 69 | 2017 |
65 | 16101142036 | 1 | 16101 | 33 | 2017 |
66 | 16101151001 | 1 | 16101 | 222 | 2017 |
67 | 16101151002 | 1 | 16101 | 34 | 2017 |
68 | 16101151003 | 1 | 16101 | 31 | 2017 |
69 | 16101151004 | 1 | 16101 | 76 | 2017 |
70 | 16101151005 | 1 | 16101 | 39 | 2017 |
71 | 16101151006 | 1 | 16101 | 65 | 2017 |
72 | 16101151007 | 1 | 16101 | 46 | 2017 |
73 | 16101151008 | 1 | 16101 | 28 | 2017 |
74 | 16101151009 | 1 | 16101 | 314 | 2017 |
75 | 16101151010 | 1 | 16101 | 294 | 2017 |
76 | 16101151011 | 1 | 16101 | 84 | 2017 |
77 | 16101151012 | 1 | 16101 | 51 | 2017 |
78 | 16101151013 | 1 | 16101 | 46 | 2017 |
79 | 16101151014 | 1 | 16101 | 24 | 2017 |
80 | 16101151015 | 1 | 16101 | 13 | 2017 |
81 | 16101152016 | 1 | 16101 | 16 | 2017 |
82 | 16101152025 | 1 | 16101 | 182 | 2017 |
83 | 16101152033 | 1 | 16101 | 9 | 2017 |
84 | 16101161001 | 1 | 16101 | 96 | 2017 |
85 | 16101161002 | 1 | 16101 | 97 | 2017 |
86 | 16101161003 | 1 | 16101 | 109 | 2017 |
87 | 16101161004 | 1 | 16101 | 186 | 2017 |
88 | 16101161005 | 1 | 16101 | 148 | 2017 |
89 | 16101171001 | 1 | 16101 | 76 | 2017 |
90 | 16101171002 | 1 | 16101 | 82 | 2017 |
91 | 16101171003 | 1 | 16101 | 90 | 2017 |
92 | 16101171004 | 1 | 16101 | 30 | 2017 |
93 | 16101991999 | 1 | 16101 | 9 | 2017 |
975 | 16102011001 | 1 | 16102 | 54 | 2017 |
976 | 16102011002 | 1 | 16102 | 84 | 2017 |
977 | 16102011003 | 1 | 16102 | 83 | 2017 |
978 | 16102012006 | 1 | 16102 | 6 | 2017 |
979 | 16102012044 | 1 | 16102 | 1 | 2017 |
980 | 16102021001 | 1 | 16102 | 6 | 2017 |
981 | 16102022005 | 1 | 16102 | 5 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 16101011001 | 52 | 2017 | 16101 |
2 | 16101011002 | 105 | 2017 | 16101 |
3 | 16101011003 | 142 | 2017 | 16101 |
4 | 16101011004 | 163 | 2017 | 16101 |
5 | 16101021001 | 10 | 2017 | 16101 |
6 | 16101021002 | 114 | 2017 | 16101 |
7 | 16101021003 | 87 | 2017 | 16101 |
8 | 16101021004 | 79 | 2017 | 16101 |
9 | 16101031001 | 335 | 2017 | 16101 |
10 | 16101031002 | 116 | 2017 | 16101 |
11 | 16101031003 | 125 | 2017 | 16101 |
12 | 16101031004 | 55 | 2017 | 16101 |
13 | 16101041001 | 119 | 2017 | 16101 |
14 | 16101041002 | 41 | 2017 | 16101 |
15 | 16101041003 | 67 | 2017 | 16101 |
16 | 16101041004 | 35 | 2017 | 16101 |
17 | 16101042032 | 1 | 2017 | 16101 |
18 | 16101051001 | 44 | 2017 | 16101 |
19 | 16101051002 | 382 | 2017 | 16101 |
20 | 16101051003 | 73 | 2017 | 16101 |
21 | 16101051004 | 16 | 2017 | 16101 |
22 | 16101051005 | 424 | 2017 | 16101 |
23 | 16101052010 | 7 | 2017 | 16101 |
24 | 16101052026 | 9 | 2017 | 16101 |
25 | 16101052027 | 9 | 2017 | 16101 |
26 | 16101052028 | 32 | 2017 | 16101 |
27 | 16101061001 | 5 | 2017 | 16101 |
28 | 16101062003 | 29 | 2017 | 16101 |
29 | 16101062014 | 18 | 2017 | 16101 |
30 | 16101062024 | 22 | 2017 | 16101 |
31 | 16101062027 | 18 | 2017 | 16101 |
32 | 16101062901 | 1 | 2017 | 16101 |
33 | 16101071001 | 61 | 2017 | 16101 |
34 | 16101071002 | 21 | 2017 | 16101 |
35 | 16101072001 | 18 | 2017 | 16101 |
36 | 16101072901 | 7 | 2017 | 16101 |
37 | 16101081001 | 37 | 2017 | 16101 |
38 | 16101082007 | 6 | 2017 | 16101 |
39 | 16101082008 | 4 | 2017 | 16101 |
40 | 16101082011 | 14 | 2017 | 16101 |
41 | 16101082012 | 7 | 2017 | 16101 |
42 | 16101082015 | 9 | 2017 | 16101 |
43 | 16101082031 | 4 | 2017 | 16101 |
44 | 16101082037 | 14 | 2017 | 16101 |
45 | 16101092901 | 5 | 2017 | 16101 |
46 | 16101102004 | 88 | 2017 | 16101 |
47 | 16101112030 | 2 | 2017 | 16101 |
48 | 16101112901 | 3 | 2017 | 16101 |
49 | 16101121001 | 154 | 2017 | 16101 |
50 | 16101122002 | 16 | 2017 | 16101 |
51 | 16101122017 | 49 | 2017 | 16101 |
52 | 16101122020 | 8 | 2017 | 16101 |
53 | 16101122034 | 24 | 2017 | 16101 |
54 | 16101122035 | 34 | 2017 | 16101 |
55 | 16101131001 | 866 | 2017 | 16101 |
56 | 16101131002 | 107 | 2017 | 16101 |
57 | 16101131003 | 103 | 2017 | 16101 |
58 | 16101131004 | 160 | 2017 | 16101 |
59 | 16101141001 | 446 | 2017 | 16101 |
60 | 16101141002 | 882 | 2017 | 16101 |
61 | 16101141003 | 243 | 2017 | 16101 |
62 | 16101141004 | 789 | 2017 | 16101 |
63 | 16101142009 | 95 | 2017 | 16101 |
64 | 16101142018 | 69 | 2017 | 16101 |
65 | 16101142036 | 33 | 2017 | 16101 |
66 | 16101151001 | 222 | 2017 | 16101 |
67 | 16101151002 | 34 | 2017 | 16101 |
68 | 16101151003 | 31 | 2017 | 16101 |
69 | 16101151004 | 76 | 2017 | 16101 |
70 | 16101151005 | 39 | 2017 | 16101 |
71 | 16101151006 | 65 | 2017 | 16101 |
72 | 16101151007 | 46 | 2017 | 16101 |
73 | 16101151008 | 28 | 2017 | 16101 |
74 | 16101151009 | 314 | 2017 | 16101 |
75 | 16101151010 | 294 | 2017 | 16101 |
76 | 16101151011 | 84 | 2017 | 16101 |
77 | 16101151012 | 51 | 2017 | 16101 |
78 | 16101151013 | 46 | 2017 | 16101 |
79 | 16101151014 | 24 | 2017 | 16101 |
80 | 16101151015 | 13 | 2017 | 16101 |
81 | 16101152016 | 16 | 2017 | 16101 |
82 | 16101152025 | 182 | 2017 | 16101 |
83 | 16101152033 | 9 | 2017 | 16101 |
84 | 16101161001 | 96 | 2017 | 16101 |
85 | 16101161002 | 97 | 2017 | 16101 |
86 | 16101161003 | 109 | 2017 | 16101 |
87 | 16101161004 | 186 | 2017 | 16101 |
88 | 16101161005 | 148 | 2017 | 16101 |
89 | 16101171001 | 76 | 2017 | 16101 |
90 | 16101171002 | 82 | 2017 | 16101 |
91 | 16101171003 | 90 | 2017 | 16101 |
92 | 16101171004 | 30 | 2017 | 16101 |
93 | 16101991999 | 9 | 2017 | 16101 |
975 | 16102011001 | 54 | 2017 | 16102 |
976 | 16102011002 | 84 | 2017 | 16102 |
977 | 16102011003 | 83 | 2017 | 16102 |
978 | 16102012006 | 6 | 2017 | 16102 |
979 | 16102012044 | 1 | 2017 | 16102 |
980 | 16102021001 | 6 | 2017 | 16102 |
981 | 16102022005 | 5 | 2017 | 16102 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01107 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01401 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
01402 | Camiña | 262850.3 | 2017 | 1402 | 1250 | 328562901 |
01404 | Huara | 253968.5 | 2017 | 1404 | 2730 | 693334131 |
01405 | Pica | 313007.5 | 2017 | 1405 | 9296 | 2909717399 |
02101 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02103 | Sierra Gorda | 403458.5 | 2017 | 2103 | 10186 | 4109628188 |
02104 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 |
02201 | Calama | 409671.3 | 2017 | 2201 | 165731 | 67895226712 |
02203 | San Pedro de Atacama | 426592.0 | 2017 | 2203 | 10996 | 4690805471 |
02301 | Tocopilla | 246615.3 | 2017 | 2301 | 25186 | 6211253937 |
02302 | María Elena | 466266.9 | 2017 | 2302 | 6457 | 3010685220 |
03101 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03102 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03103 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03301 | Vallenar | 304336.7 | 2017 | 3301 | 51917 | 15800246795 |
03302 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 |
03303 | Freirina | 253086.7 | 2017 | 3303 | 7041 | 1781983257 |
03304 | Huasco | 287406.6 | 2017 | 3304 | 10149 | 2916889629 |
04101 | La Serena | 270221.9 | 2017 | 4101 | 221054 | 59733627577 |
04102 | Coquimbo | 261852.6 | 2017 | 4102 | 227730 | 59631700074 |
04103 | Andacollo | 248209.3 | 2017 | 4103 | 11044 | 2741223967 |
04104 | La Higuera | 228356.8 | 2017 | 4104 | 4241 | 968461330 |
04105 | Paiguano | 205942.1 | 2017 | 4105 | 4497 | 926121774 |
04106 | Vicuña | 211431.9 | 2017 | 4106 | 27771 | 5871675449 |
04201 | Illapel | 238674.4 | 2017 | 4201 | 30848 | 7362627007 |
04202 | Canela | 207933.6 | 2017 | 4202 | 9093 | 1890740321 |
04203 | Los Vilos | 255200.4 | 2017 | 4203 | 21382 | 5456695139 |
04204 | Salamanca | 242879.5 | 2017 | 4204 | 29347 | 7127783272 |
04301 | Ovalle | 266522.9 | 2017 | 4301 | 111272 | 29656533187 |
04302 | Combarbalá | 210409.7 | 2017 | 4302 | 13322 | 2803077721 |
04303 | Monte Patria | 211907.9 | 2017 | 4303 | 30751 | 6516380780 |
04304 | Punitaqui | 194997.8 | 2017 | 4304 | 10956 | 2136395349 |
04305 | Río Hurtado | 182027.2 | 2017 | 4305 | 4278 | 778712384 |
05101 | Valparaíso | 298720.7 | 2017 | 5101 | 296655 | 88616992249 |
05102 | Casablanca | 312802.7 | 2017 | 5102 | 26867 | 8404070481 |
05103 | Concón | 318496.3 | 2017 | 5103 | 42152 | 13425257057 |
05105 | Puchuncaví | 288737.2 | 2017 | 5105 | 18546 | 5354920887 |
05107 | Quintero | 316659.1 | 2017 | 5107 | 31923 | 10108709691 |
05109 | Viña del Mar | 337006.1 | 2017 | 5109 | 334248 | 112643604611 |
05301 | Los Andes | 338182.5 | 2017 | 5301 | 66708 | 22559476922 |
05302 | Calle Larga | 245165.4 | 2017 | 5302 | 14832 | 3636293159 |
05303 | Rinconada | 281633.2 | 2017 | 5303 | 10207 | 2874630315 |
05304 | San Esteban | 220958.4 | 2017 | 5304 | 18855 | 4166170587 |
05401 | La Ligua | 229623.7 | 2017 | 5401 | 35390 | 8126381563 |
05402 | Cabildo | 249717.7 | 2017 | 5402 | 19388 | 4841527150 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
16101 | 16101011001 | 52 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101011002 | 105 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101011003 | 142 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101011004 | 163 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101021001 | 10 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101021002 | 114 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101021003 | 87 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101021004 | 79 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101031001 | 335 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101031002 | 116 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101031003 | 125 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101031004 | 55 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101041001 | 119 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101041002 | 41 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101041003 | 67 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101041004 | 35 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101042032 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051001 | 44 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051002 | 382 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051003 | 73 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051004 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051005 | 424 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101052010 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101052026 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101052027 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101052028 | 32 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101061001 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062003 | 29 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062014 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062024 | 22 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062027 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062901 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101071001 | 61 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101071002 | 21 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101072001 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101072901 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101081001 | 37 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082007 | 6 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082008 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082011 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082012 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082015 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082031 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082037 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101092901 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101102004 | 88 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101112030 | 2 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101112901 | 3 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101121001 | 154 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122002 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122017 | 49 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122020 | 8 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122034 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122035 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101131001 | 866 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101131002 | 107 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101131003 | 103 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101131004 | 160 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101141001 | 446 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101141002 | 882 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101141003 | 243 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101141004 | 789 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101142009 | 95 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101142018 | 69 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101142036 | 33 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151001 | 222 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151002 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151003 | 31 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151004 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151005 | 39 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151006 | 65 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151007 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151008 | 28 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151009 | 314 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151010 | 294 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151011 | 84 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151012 | 51 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151013 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151014 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151015 | 13 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101152016 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101152025 | 182 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101152033 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161001 | 96 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161002 | 97 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161003 | 109 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161004 | 186 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161005 | 148 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101171001 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101171002 | 82 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101171003 | 90 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101171004 | 30 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101991999 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16102 | 16102011001 | 54 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102011002 | 84 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102011003 | 83 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102012006 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102012044 | 1 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102021001 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102022005 | 5 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
16101 | 16101011001 | 52 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101011002 | 105 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101011003 | 142 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101011004 | 163 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101021001 | 10 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101021002 | 114 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101021003 | 87 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101021004 | 79 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101031001 | 335 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101031002 | 116 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101031003 | 125 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101031004 | 55 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101041001 | 119 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101041002 | 41 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101041003 | 67 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101041004 | 35 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101042032 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051001 | 44 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051002 | 382 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051003 | 73 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051004 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101051005 | 424 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101052010 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101052026 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101052027 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101052028 | 32 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101061001 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062003 | 29 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062014 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062024 | 22 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062027 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101062901 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101071001 | 61 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101071002 | 21 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101072001 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101072901 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101081001 | 37 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082007 | 6 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082008 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082011 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082012 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082015 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082031 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101082037 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101092901 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101102004 | 88 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101112030 | 2 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101112901 | 3 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101121001 | 154 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122002 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122017 | 49 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122020 | 8 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122034 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101122035 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101131001 | 866 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101131002 | 107 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101131003 | 103 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101131004 | 160 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101141001 | 446 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101141002 | 882 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101141003 | 243 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101141004 | 789 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101142009 | 95 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101142018 | 69 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101142036 | 33 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151001 | 222 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151002 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151003 | 31 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151004 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151005 | 39 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151006 | 65 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151007 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151008 | 28 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151009 | 314 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151010 | 294 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151011 | 84 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151012 | 51 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151013 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151014 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101151015 | 13 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101152016 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101152025 | 182 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101152033 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161001 | 96 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161002 | 97 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161003 | 109 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161004 | 186 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101161005 | 148 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101171001 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101171002 | 82 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101171003 | 90 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101171004 | 30 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16101 | 16101991999 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 |
16102 | 16102011001 | 54 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102011002 | 84 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102011003 | 83 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102012006 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102012044 | 1 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102021001 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
16102 | 16102022005 | 5 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
16101011001 | 16101 | 52 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1080 | 0.0058461 | 16101 |
16101011002 | 16101 | 105 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1525 | 0.0082549 | 16101 |
16101011003 | 16101 | 142 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2051 | 0.0111021 | 16101 |
16101011004 | 16101 | 163 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1819 | 0.0098463 | 16101 |
16101021001 | 16101 | 10 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1345 | 0.0072805 | 16101 |
16101021002 | 16101 | 114 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1991 | 0.0107774 | 16101 |
16101021003 | 16101 | 87 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2007 | 0.0108640 | 16101 |
16101021004 | 16101 | 79 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1882 | 0.0101873 | 16101 |
16101031001 | 16101 | 335 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3622 | 0.0196060 | 16101 |
16101031002 | 16101 | 116 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2516 | 0.0136192 | 16101 |
16101031003 | 16101 | 125 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2184 | 0.0118221 | 16101 |
16101031004 | 16101 | 55 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1866 | 0.0101007 | 16101 |
16101041001 | 16101 | 119 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3315 | 0.0179442 | 16101 |
16101041002 | 16101 | 41 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1999 | 0.0108207 | 16101 |
16101041003 | 16101 | 67 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4799 | 0.0259772 | 16101 |
16101041004 | 16101 | 35 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2766 | 0.0149725 | 16101 |
16101042032 | 16101 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 30 | 0.0001624 | 16101 |
16101051001 | 16101 | 44 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1466 | 0.0079355 | 16101 |
16101051002 | 16101 | 382 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4764 | 0.0257877 | 16101 |
16101051003 | 16101 | 73 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2374 | 0.0128506 | 16101 |
16101051004 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2018 | 0.0109235 | 16101 |
16101051005 | 16101 | 424 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4539 | 0.0245698 | 16101 |
16101052010 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 112 | 0.0006063 | 16101 |
16101052026 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 355 | 0.0019216 | 16101 |
16101052027 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 362 | 0.0019595 | 16101 |
16101052028 | 16101 | 32 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 345 | 0.0018675 | 16101 |
16101061001 | 16101 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 941 | 0.0050937 | 16101 |
16101062003 | 16101 | 29 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 638 | 0.0034535 | 16101 |
16101062014 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 348 | 0.0018837 | 16101 |
16101062024 | 16101 | 22 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 451 | 0.0024413 | 16101 |
16101062027 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 620 | 0.0033561 | 16101 |
16101062901 | 16101 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 373 | 0.0020191 | 16101 |
16101071001 | 16101 | 61 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1599 | 0.0086555 | 16101 |
16101071002 | 16101 | 21 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 950 | 0.0051424 | 16101 |
16101072001 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 593 | 0.0032099 | 16101 |
16101072901 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 491 | 0.0026578 | 16101 |
16101081001 | 16101 | 37 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1276 | 0.0069070 | 16101 |
16101082007 | 16101 | 6 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 184 | 0.0009960 | 16101 |
16101082008 | 16101 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 147 | 0.0007957 | 16101 |
16101082011 | 16101 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 408 | 0.0022085 | 16101 |
16101082012 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 139 | 0.0007524 | 16101 |
16101082015 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 313 | 0.0016943 | 16101 |
16101082031 | 16101 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 104 | 0.0005630 | 16101 |
16101082037 | 16101 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 451 | 0.0024413 | 16101 |
16101092901 | 16101 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 87 | 0.0004709 | 16101 |
16101102004 | 16101 | 88 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3591 | 0.0194382 | 16101 |
16101112030 | 16101 | 2 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 37 | 0.0002003 | 16101 |
16101112901 | 16101 | 3 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 16 | 0.0000866 | 16101 |
16101121001 | 16101 | 154 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4876 | 0.0263940 | 16101 |
16101122002 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 280 | 0.0015157 | 16101 |
16101122017 | 16101 | 49 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 682 | 0.0036917 | 16101 |
16101122020 | 16101 | 8 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 102 | 0.0005521 | 16101 |
16101122034 | 16101 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 171 | 0.0009256 | 16101 |
16101122035 | 16101 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 534 | 0.0028906 | 16101 |
16101131001 | 16101 | 866 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5741 | 0.0310763 | 16101 |
16101131002 | 16101 | 107 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2211 | 0.0119682 | 16101 |
16101131003 | 16101 | 103 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2135 | 0.0115568 | 16101 |
16101131004 | 16101 | 160 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4141 | 0.0224154 | 16101 |
16101141001 | 16101 | 446 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5365 | 0.0290410 | 16101 |
16101141002 | 16101 | 882 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5814 | 0.0314714 | 16101 |
16101141003 | 16101 | 243 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3016 | 0.0163257 | 16101 |
16101141004 | 16101 | 789 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3759 | 0.0203476 | 16101 |
16101142009 | 16101 | 95 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 607 | 0.0032857 | 16101 |
16101142018 | 16101 | 69 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 625 | 0.0033832 | 16101 |
16101142036 | 16101 | 33 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 443 | 0.0023980 | 16101 |
16101151001 | 16101 | 222 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3362 | 0.0181986 | 16101 |
16101151002 | 16101 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3634 | 0.0196710 | 16101 |
16101151003 | 16101 | 31 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1805 | 0.0097705 | 16101 |
16101151004 | 16101 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3489 | 0.0188861 | 16101 |
16101151005 | 16101 | 39 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4931 | 0.0266917 | 16101 |
16101151006 | 16101 | 65 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4103 | 0.0222097 | 16101 |
16101151007 | 16101 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2402 | 0.0130021 | 16101 |
16101151008 | 16101 | 28 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3208 | 0.0173650 | 16101 |
16101151009 | 16101 | 314 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4520 | 0.0244670 | 16101 |
16101151010 | 16101 | 294 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4906 | 0.0265564 | 16101 |
16101151011 | 16101 | 84 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2718 | 0.0147126 | 16101 |
16101151012 | 16101 | 51 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2161 | 0.0116976 | 16101 |
16101151013 | 16101 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3743 | 0.0202610 | 16101 |
16101151014 | 16101 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3883 | 0.0210188 | 16101 |
16101151015 | 16101 | 13 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 248 | 0.0013424 | 16101 |
16101152016 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 521 | 0.0028202 | 16101 |
16101152025 | 16101 | 182 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1780 | 0.0096352 | 16101 |
16101152033 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 122 | 0.0006604 | 16101 |
16101161001 | 16101 | 96 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2140 | 0.0115839 | 16101 |
16101161002 | 16101 | 97 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2196 | 0.0118870 | 16101 |
16101161003 | 16101 | 109 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3884 | 0.0210243 | 16101 |
16101161004 | 16101 | 186 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2612 | 0.0141389 | 16101 |
16101161005 | 16101 | 148 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3326 | 0.0180038 | 16101 |
16101171001 | 16101 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4382 | 0.0237200 | 16101 |
16101171002 | 16101 | 82 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2900 | 0.0156978 | 16101 |
16101171003 | 16101 | 90 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2262 | 0.0122443 | 16101 |
16101171004 | 16101 | 30 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1590 | 0.0086067 | 16101 |
16101991999 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 304 | 0.0016456 | 16101 |
16102011001 | 16102 | 54 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 2452 | 0.1140837 | 16102 |
16102011002 | 16102 | 84 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 4765 | 0.2217001 | 16102 |
16102011003 | 16102 | 83 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 3184 | 0.1481413 | 16102 |
16102012006 | 16102 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 183 | 0.0085144 | 16102 |
16102012044 | 16102 | 1 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 32 | 0.0014889 | 16102 |
16102021001 | 16102 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 537 | 0.0249849 | 16102 |
16102022005 | 16102 | 5 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 102 | 0.0047457 | 16102 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16101011001 | 16101 | 52 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1080 | 0.0058461 | 16101 | 288838640 |
16101011002 | 16101 | 105 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1525 | 0.0082549 | 16101 | 407850857 |
16101011003 | 16101 | 142 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2051 | 0.0111021 | 16101 | 548525972 |
16101011004 | 16101 | 163 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1819 | 0.0098463 | 16101 | 486479154 |
16101021001 | 16101 | 10 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1345 | 0.0072805 | 16101 | 359711084 |
16101021002 | 16101 | 114 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1991 | 0.0107774 | 16101 | 532479381 |
16101021003 | 16101 | 87 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2007 | 0.0108640 | 16101 | 536758472 |
16101021004 | 16101 | 79 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1882 | 0.0101873 | 16101 | 503328074 |
16101031001 | 16101 | 335 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3622 | 0.0196060 | 16101 | 968679216 |
16101031002 | 16101 | 116 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2516 | 0.0136192 | 16101 | 672887053 |
16101031003 | 16101 | 125 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2184 | 0.0118221 | 16101 | 584095916 |
16101031004 | 16101 | 55 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1866 | 0.0101007 | 16101 | 499048983 |
16101041001 | 16101 | 119 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3315 | 0.0179442 | 16101 | 886574158 |
16101041002 | 16101 | 41 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1999 | 0.0108207 | 16101 | 534618927 |
16101041003 | 16101 | 67 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4799 | 0.0259772 | 16101 | 1283459845 |
16101041004 | 16101 | 35 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2766 | 0.0149725 | 16101 | 739747850 |
16101042032 | 16101 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 30 | 0.0001624 | 16101 | 8023296 |
16101051001 | 16101 | 44 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1466 | 0.0079355 | 16101 | 392071709 |
16101051002 | 16101 | 382 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4764 | 0.0257877 | 16101 | 1274099333 |
16101051003 | 16101 | 73 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2374 | 0.0128506 | 16101 | 634910121 |
16101051004 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2018 | 0.0109235 | 16101 | 539700347 |
16101051005 | 16101 | 424 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4539 | 0.0245698 | 16101 | 1213924617 |
16101052010 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 112 | 0.0006063 | 16101 | 29953637 |
16101052026 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 355 | 0.0019216 | 16101 | 94942331 |
16101052027 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 362 | 0.0019595 | 16101 | 96814433 |
16101052028 | 16101 | 32 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 345 | 0.0018675 | 16101 | 92267899 |
16101061001 | 16101 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 941 | 0.0050937 | 16101 | 251664037 |
16101062003 | 16101 | 29 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 638 | 0.0034535 | 16101 | 170628752 |
16101062014 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 348 | 0.0018837 | 16101 | 93070228 |
16101062024 | 16101 | 22 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 451 | 0.0024413 | 16101 | 120616876 |
16101062027 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 620 | 0.0033561 | 16101 | 165814775 |
16101062901 | 16101 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 373 | 0.0020191 | 16101 | 99756308 |
16101071001 | 16101 | 61 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1599 | 0.0086555 | 16101 | 427641653 |
16101071002 | 16101 | 21 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 950 | 0.0051424 | 16101 | 254071026 |
16101072001 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 593 | 0.0032099 | 16101 | 158593809 |
16101072901 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 491 | 0.0026578 | 16101 | 131314604 |
16101081001 | 16101 | 37 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1276 | 0.0069070 | 16101 | 341257504 |
16101082007 | 16101 | 6 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 184 | 0.0009960 | 16101 | 49209546 |
16101082008 | 16101 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 147 | 0.0007957 | 16101 | 39314148 |
16101082011 | 16101 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 408 | 0.0022085 | 16101 | 109116819 |
16101082012 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 139 | 0.0007524 | 16101 | 37174603 |
16101082015 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 313 | 0.0016943 | 16101 | 83709717 |
16101082031 | 16101 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 104 | 0.0005630 | 16101 | 27814091 |
16101082037 | 16101 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 451 | 0.0024413 | 16101 | 120616876 |
16101092901 | 16101 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 87 | 0.0004709 | 16101 | 23267557 |
16101102004 | 16101 | 88 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3591 | 0.0194382 | 16101 | 960388477 |
16101112030 | 16101 | 2 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 37 | 0.0002003 | 16101 | 9895398 |
16101112901 | 16101 | 3 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 16 | 0.0000866 | 16101 | 4279091 |
16101121001 | 16101 | 154 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4876 | 0.0263940 | 16101 | 1304052970 |
16101122002 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 280 | 0.0015157 | 16101 | 74884092 |
16101122017 | 16101 | 49 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 682 | 0.0036917 | 16101 | 182396252 |
16101122020 | 16101 | 8 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 102 | 0.0005521 | 16101 | 27279205 |
16101122034 | 16101 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 171 | 0.0009256 | 16101 | 45732785 |
16101122035 | 16101 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 534 | 0.0028906 | 16101 | 142814661 |
16101131001 | 16101 | 866 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5741 | 0.0310763 | 16101 | 1535391325 |
16101131002 | 16101 | 107 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2211 | 0.0119682 | 16101 | 591316882 |
16101131003 | 16101 | 103 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2135 | 0.0115568 | 16101 | 570991200 |
16101131004 | 16101 | 160 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4141 | 0.0224154 | 16101 | 1107482229 |
16101141001 | 16101 | 446 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5365 | 0.0290410 | 16101 | 1434832687 |
16101141002 | 16101 | 882 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5814 | 0.0314714 | 16101 | 1554914678 |
16101141003 | 16101 | 243 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3016 | 0.0163257 | 16101 | 806608646 |
16101141004 | 16101 | 789 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3759 | 0.0203476 | 16101 | 1005318932 |
16101142009 | 16101 | 95 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 607 | 0.0032857 | 16101 | 162338013 |
16101142018 | 16101 | 69 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 625 | 0.0033832 | 16101 | 167151991 |
16101142036 | 16101 | 33 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 443 | 0.0023980 | 16101 | 118477331 |
16101151001 | 16101 | 222 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3362 | 0.0181986 | 16101 | 899143988 |
16101151002 | 16101 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3634 | 0.0196710 | 16101 | 971888534 |
16101151003 | 16101 | 31 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1805 | 0.0097705 | 16101 | 482734949 |
16101151004 | 16101 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3489 | 0.0188861 | 16101 | 933109272 |
16101151005 | 16101 | 39 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4931 | 0.0266917 | 16101 | 1318762345 |
16101151006 | 16101 | 65 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4103 | 0.0222097 | 16101 | 1097319388 |
16101151007 | 16101 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2402 | 0.0130021 | 16101 | 642398530 |
16101151008 | 16101 | 28 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3208 | 0.0173650 | 16101 | 857957737 |
16101151009 | 16101 | 314 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4520 | 0.0244670 | 16101 | 1208843196 |
16101151010 | 16101 | 294 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4906 | 0.0265564 | 16101 | 1312076266 |
16101151011 | 16101 | 84 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2718 | 0.0147126 | 16101 | 726910577 |
16101151012 | 16101 | 51 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2161 | 0.0116976 | 16101 | 577944723 |
16101151013 | 16101 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3743 | 0.0202610 | 16101 | 1001039841 |
16101151014 | 16101 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3883 | 0.0210188 | 16101 | 1038481887 |
16101151015 | 16101 | 13 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 248 | 0.0013424 | 16101 | 66325910 |
16101152016 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 521 | 0.0028202 | 16101 | 139337899 |
16101152025 | 16101 | 182 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1780 | 0.0096352 | 16101 | 476048869 |
16101152033 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 122 | 0.0006604 | 16101 | 32628069 |
16101161001 | 16101 | 96 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2140 | 0.0115839 | 16101 | 572328416 |
16101161002 | 16101 | 97 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2196 | 0.0118870 | 16101 | 587305234 |
16101161003 | 16101 | 109 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3884 | 0.0210243 | 16101 | 1038749331 |
16101161004 | 16101 | 186 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2612 | 0.0141389 | 16101 | 698561599 |
16101161005 | 16101 | 148 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3326 | 0.0180038 | 16101 | 889516033 |
16101171001 | 16101 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4382 | 0.0237200 | 16101 | 1171936037 |
16101171002 | 16101 | 82 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2900 | 0.0156978 | 16101 | 775585236 |
16101171003 | 16101 | 90 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2262 | 0.0122443 | 16101 | 604956484 |
16101171004 | 16101 | 30 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1590 | 0.0086067 | 16101 | 425234664 |
16101991999 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 304 | 0.0016456 | 16101 | 81302728 |
16102011001 | 16102 | 54 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 2452 | 0.1140837 | 16102 | 512783055 |
16102011002 | 16102 | 84 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 4765 | 0.2217001 | 16102 | 996497249 |
16102011003 | 16102 | 83 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 3184 | 0.1481413 | 16102 | 665865108 |
16102012006 | 16102 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 183 | 0.0085144 | 16102 | 38270513 |
16102012044 | 16102 | 1 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 32 | 0.0014889 | 16102 | 6692112 |
16102021001 | 16102 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 537 | 0.0249849 | 16102 | 112301998 |
16102022005 | 16102 | 5 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 102 | 0.0047457 | 16102 | 21331106 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.355e+09 -6.366e+07 -5.075e+07 -1.821e+07 1.139e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 66716935 6156145 10.84 <2e-16 ***
## Freq.x 2906369 91396 31.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 174400000 on 879 degrees of freedom
## Multiple R-squared: 0.535, Adjusted R-squared: 0.5344
## F-statistic: 1011 on 1 and 879 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.355e+09 -6.366e+07 -5.075e+07 -1.821e+07 1.139e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 66716935 6156145 10.84 <2e-16 ***
## Freq.x 2906369 91396 31.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 174400000 on 879 degrees of freedom
## Multiple R-squared: 0.535, Adjusted R-squared: 0.5344
## F-statistic: 1011 on 1 and 879 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.355e+09 -6.366e+07 -5.075e+07 -1.821e+07 1.139e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 66716935 6156145 10.84 <2e-16 ***
## Freq.x 2906369 91396 31.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 174400000 on 879 degrees of freedom
## Multiple R-squared: 0.535, Adjusted R-squared: 0.5344
## F-statistic: 1011 on 1 and 879 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -398660297 -106101772 -24519545 107024332 913907217
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -102613225 8378144 -12.25 <2e-16 ***
## log(Freq.x) 138517760 3852106 35.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 162700000 on 879 degrees of freedom
## Multiple R-squared: 0.5953, Adjusted R-squared: 0.5949
## F-statistic: 1293 on 1 and 879 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -837014900 -45589952 -4175876 26767814 977025428
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -87267028 5761736 -15.15 <2e-16 ***
## sqrt(Freq.x) 68695610 1283600 53.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 123900000 on 879 degrees of freedom
## Multiple R-squared: 0.7652, Adjusted R-squared: 0.7649
## F-statistic: 2864 on 1 and 879 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28087 -1916 -613 1095 21670
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1736.48 174.03 9.978 <2e-16 ***
## sqrt(Freq.x) 2066.91 38.77 53.311 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3742 on 879 degrees of freedom
## Multiple R-squared: 0.7638, Adjusted R-squared: 0.7635
## F-statistic: 2842 on 1 and 879 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6818 -0.6101 0.1052 0.6797 2.7577
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.25640 0.04708 345.3 <2e-16 ***
## sqrt(Freq.x) 0.35659 0.01049 34.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.012 on 879 degrees of freedom
## Multiple R-squared: 0.5681, Adjusted R-squared: 0.5676
## F-statistic: 1156 on 1 and 879 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11481.3 -2916.9 -338.5 2299.9 18848.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 522.10 205.39 2.542 0.0112 *
## log(Freq.x) 4625.19 94.43 48.978 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3987 on 879 degrees of freedom
## Multiple R-squared: 0.7318, Adjusted R-squared: 0.7315
## F-statistic: 2399 on 1 and 879 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.93398 -0.50305 0.03724 0.51433 2.60261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.84901 0.04193 378.02 <2e-16 ***
## log(Freq.x) 0.91823 0.01928 47.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.814 on 879 degrees of freedom
## Multiple R-squared: 0.7208, Adjusted R-squared: 0.7204
## F-statistic: 2269 on 1 and 879 DF, p-value: < 2.2e-16
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7649).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre r_sqrt.
linearMod <- lm(( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = (multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -837014900 -45589952 -4175876 26767814 977025428
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -87267028 5761736 -15.15 <2e-16 ***
## sqrt(Freq.x) 68695610 1283600 53.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 123900000 on 879 degrees of freedom
## Multiple R-squared: 0.7652, Adjusted R-squared: 0.7649
## F-statistic: 2864 on 1 and 879 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = (multi_pob))) +
geom_point() +
stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = -87267028 + 68695610 \cdot \sqrt {X} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <- -87267028 + 68695610 * sqrt (h_y_m_comuna_corr_01$Freq.x)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16101011001 | 16101 | 52 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1080 | 0.0058461 | 16101 | 288838640 | 408104061 |
16101011002 | 16101 | 105 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1525 | 0.0082549 | 16101 | 407850857 | 616653506 |
16101011003 | 16101 | 142 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2051 | 0.0111021 | 16101 | 548525972 | 731335641 |
16101011004 | 16101 | 163 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1819 | 0.0098463 | 16101 | 486479154 | 789779809 |
16101021001 | 16101 | 10 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1345 | 0.0072805 | 16101 | 359711084 | 129967565 |
16101021002 | 16101 | 114 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1991 | 0.0107774 | 16101 | 532479381 | 646201376 |
16101021003 | 16101 | 87 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2007 | 0.0108640 | 16101 | 536758472 | 553482966 |
16101021004 | 16101 | 79 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1882 | 0.0101873 | 16101 | 503328074 | 523312909 |
16101031001 | 16101 | 335 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3622 | 0.0196060 | 16101 | 968679216 | 1170069080 |
16101031002 | 16101 | 116 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2516 | 0.0136192 | 16101 | 672887053 | 652607335 |
16101031003 | 16101 | 125 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2184 | 0.0118221 | 16101 | 584095916 | 680773241 |
16101031004 | 16101 | 55 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1866 | 0.0101007 | 16101 | 499048983 | 422193251 |
16101041001 | 16101 | 119 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3315 | 0.0179442 | 16101 | 886574158 | 662113605 |
16101041002 | 16101 | 41 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1999 | 0.0108207 | 16101 | 534618927 | 352599497 |
16101041003 | 16101 | 67 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4799 | 0.0259772 | 16101 | 1283459845 | 475030774 |
16101041004 | 16101 | 35 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2766 | 0.0149725 | 16101 | 739747850 | 319141682 |
16101042032 | 16101 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 30 | 0.0001624 | 16101 | 8023296 | -18571418 |
16101051001 | 16101 | 44 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1466 | 0.0079355 | 16101 | 392071709 | 368408098 |
16101051002 | 16101 | 382 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4764 | 0.0257877 | 16101 | 1274099333 | 1255376324 |
16101051003 | 16101 | 73 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2374 | 0.0128506 | 16101 | 634910121 | 499668521 |
16101051004 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2018 | 0.0109235 | 16101 | 539700347 | 187515412 |
16101051005 | 16101 | 424 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4539 | 0.0245698 | 16101 | 1213924617 | 1327262158 |
16101052010 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 112 | 0.0006063 | 16101 | 29953637 | 94484472 |
16101052026 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 355 | 0.0019216 | 16101 | 94942331 | 118819802 |
16101052027 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 362 | 0.0019595 | 16101 | 96814433 | 118819802 |
16101052028 | 16101 | 32 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 345 | 0.0018675 | 16101 | 92267899 | 301334025 |
16101061001 | 16101 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 941 | 0.0050937 | 16101 | 251664037 | 66341026 |
16101062003 | 16101 | 29 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 638 | 0.0034535 | 16101 | 170628752 | 282670153 |
16101062014 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 348 | 0.0018837 | 16101 | 93070228 | 204183762 |
16101062024 | 16101 | 22 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 451 | 0.0024413 | 16101 | 120616876 | 234943944 |
16101062027 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 620 | 0.0033561 | 16101 | 165814775 | 204183762 |
16101062901 | 16101 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 373 | 0.0020191 | 16101 | 99756308 | -18571418 |
16101071001 | 16101 | 61 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1599 | 0.0086555 | 16101 | 427641653 | 449262838 |
16101071002 | 16101 | 21 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 950 | 0.0051424 | 16101 | 254071026 | 227535805 |
16101072001 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 593 | 0.0032099 | 16101 | 158593809 | 204183762 |
16101072901 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 491 | 0.0026578 | 16101 | 131314604 | 94484472 |
16101081001 | 16101 | 37 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1276 | 0.0069070 | 16101 | 341257504 | 330592055 |
16101082007 | 16101 | 6 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 184 | 0.0009960 | 16101 | 49209546 | 81002164 |
16101082008 | 16101 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 147 | 0.0007957 | 16101 | 39314148 | 50124192 |
16101082011 | 16101 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 408 | 0.0022085 | 16101 | 109116819 | 169768409 |
16101082012 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 139 | 0.0007524 | 16101 | 37174603 | 94484472 |
16101082015 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 313 | 0.0016943 | 16101 | 83709717 | 118819802 |
16101082031 | 16101 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 104 | 0.0005630 | 16101 | 27814091 | 50124192 |
16101082037 | 16101 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 451 | 0.0024413 | 16101 | 120616876 | 169768409 |
16101092901 | 16101 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 87 | 0.0004709 | 16101 | 23267557 | 66341026 |
16101102004 | 16101 | 88 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3591 | 0.0194382 | 16101 | 960388477 | 557154916 |
16101112030 | 16101 | 2 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 37 | 0.0002003 | 16101 | 9895398 | 9883235 |
16101112901 | 16101 | 3 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 16 | 0.0000866 | 16101 | 4279091 | 31717259 |
16101121001 | 16101 | 154 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4876 | 0.0263940 | 16101 | 1304052970 | 765223073 |
16101122002 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 280 | 0.0015157 | 16101 | 74884092 | 187515412 |
16101122017 | 16101 | 49 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 682 | 0.0036917 | 16101 | 182396252 | 393602242 |
16101122020 | 16101 | 8 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 102 | 0.0005521 | 16101 | 27279205 | 107033499 |
16101122034 | 16101 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 171 | 0.0009256 | 16101 | 45732785 | 249271356 |
16101122035 | 16101 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 534 | 0.0028906 | 16101 | 142814661 | 313293769 |
16101131001 | 16101 | 866 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5741 | 0.0310763 | 16101 | 1535391325 | 1934298998 |
16101131002 | 16101 | 107 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2211 | 0.0119682 | 16101 | 591316882 | 623325887 |
16101131003 | 16101 | 103 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2135 | 0.0115568 | 16101 | 570991200 | 609917269 |
16101131004 | 16101 | 160 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4141 | 0.0224154 | 16101 | 1107482229 | 781671343 |
16101141001 | 16101 | 446 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5365 | 0.0290410 | 16101 | 1434832687 | 1363495781 |
16101141002 | 16101 | 882 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5814 | 0.0314714 | 16101 | 1554914678 | 1952888502 |
16101141003 | 16101 | 243 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3016 | 0.0163257 | 16101 | 806608646 | 983591553 |
16101141004 | 16101 | 789 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3759 | 0.0203476 | 16101 | 1005318932 | 1842333840 |
16101142009 | 16101 | 95 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 607 | 0.0032857 | 16101 | 162338013 | 582294955 |
16101142018 | 16101 | 69 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 625 | 0.0033832 | 16101 | 167151991 | 483361565 |
16101142036 | 16101 | 33 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 443 | 0.0023980 | 16101 | 118477331 | 307359207 |
16101151001 | 16101 | 222 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3362 | 0.0181986 | 16101 | 899143988 | 936274509 |
16101151002 | 16101 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3634 | 0.0196710 | 16101 | 971888534 | 313293769 |
16101151003 | 16101 | 31 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1805 | 0.0097705 | 16101 | 482734949 | 295213941 |
16101151004 | 16101 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3489 | 0.0188861 | 16101 | 933109272 | 511607416 |
16101151005 | 16101 | 39 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4931 | 0.0266917 | 16101 | 1318762345 | 341736919 |
16101151006 | 16101 | 65 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4103 | 0.0222097 | 16101 | 1097319388 | 466574686 |
16101151007 | 16101 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2402 | 0.0130021 | 16101 | 642398530 | 378649267 |
16101151008 | 16101 | 28 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3208 | 0.0173650 | 16101 | 857957737 | 276235972 |
16101151009 | 16101 | 314 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4520 | 0.0244670 | 16101 | 1208843196 | 1130022283 |
16101151010 | 16101 | 294 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4906 | 0.0265564 | 16101 | 1312076266 | 1090617316 |
16101151011 | 16101 | 84 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2718 | 0.0147126 | 16101 | 726910577 | 542338637 |
16101151012 | 16101 | 51 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2161 | 0.0116976 | 16101 | 577944723 | 403317754 |
16101151013 | 16101 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3743 | 0.0202610 | 16101 | 1001039841 | 378649267 |
16101151014 | 16101 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3883 | 0.0210188 | 16101 | 1038481887 | 249271356 |
16101151015 | 16101 | 13 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 248 | 0.0013424 | 16101 | 66325910 | 160418516 |
16101152016 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 521 | 0.0028202 | 16101 | 139337899 | 187515412 |
16101152025 | 16101 | 182 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1780 | 0.0096352 | 16101 | 476048869 | 839487418 |
16101152033 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 122 | 0.0006604 | 16101 | 32628069 | 118819802 |
16101161001 | 16101 | 96 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2140 | 0.0115839 | 16101 | 572328416 | 585809740 |
16101161002 | 16101 | 97 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2196 | 0.0118870 | 16101 | 587305234 | 589306266 |
16101161003 | 16101 | 109 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3884 | 0.0210243 | 16101 | 1038749331 | 629936196 |
16101161004 | 16101 | 186 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2612 | 0.0141389 | 16101 | 698561599 | 849616183 |
16101161005 | 16101 | 148 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3326 | 0.0180038 | 16101 | 889516033 | 748451137 |
16101171001 | 16101 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4382 | 0.0237200 | 16101 | 1171936037 | 511607416 |
16101171002 | 16101 | 82 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2900 | 0.0156978 | 16101 | 775585236 | 534798178 |
16101171003 | 16101 | 90 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2262 | 0.0122443 | 16101 | 604956484 | 564436751 |
16101171004 | 16101 | 30 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1590 | 0.0086067 | 16101 | 425234664 | 288994324 |
16101991999 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 304 | 0.0016456 | 16101 | 81302728 | 118819802 |
16102011001 | 16102 | 54 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 2452 | 0.1140837 | 16102 | 512783055 | 417540548 |
16102011002 | 16102 | 84 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 4765 | 0.2217001 | 16102 | 996497249 | 542338637 |
16102011003 | 16102 | 83 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 3184 | 0.1481413 | 16102 | 665865108 | 538579764 |
16102012006 | 16102 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 183 | 0.0085144 | 16102 | 38270513 | 81002164 |
16102012044 | 16102 | 1 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 32 | 0.0014889 | 16102 | 6692112 | -18571418 |
16102021001 | 16102 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 537 | 0.0249849 | 16102 | 112301998 | 81002164 |
16102022005 | 16102 | 5 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 102 | 0.0047457 | 16102 | 21331106 | 66341026 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16101011001 | 16101 | 52 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1080 | 0.0058461 | 16101 | 288838640 | 408104061 | 377874.13 |
16101011002 | 16101 | 105 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1525 | 0.0082549 | 16101 | 407850857 | 616653506 | 404362.95 |
16101011003 | 16101 | 142 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2051 | 0.0111021 | 16101 | 548525972 | 731335641 | 356575.15 |
16101011004 | 16101 | 163 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1819 | 0.0098463 | 16101 | 486479154 | 789779809 | 434183.51 |
16101021001 | 16101 | 10 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1345 | 0.0072805 | 16101 | 359711084 | 129967565 | 96630.16 |
16101021002 | 16101 | 114 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1991 | 0.0107774 | 16101 | 532479381 | 646201376 | 324561.21 |
16101021003 | 16101 | 87 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2007 | 0.0108640 | 16101 | 536758472 | 553482966 | 275776.27 |
16101021004 | 16101 | 79 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1882 | 0.0101873 | 16101 | 503328074 | 523312909 | 278062.12 |
16101031001 | 16101 | 335 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3622 | 0.0196060 | 16101 | 968679216 | 1170069080 | 323045.02 |
16101031002 | 16101 | 116 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2516 | 0.0136192 | 16101 | 672887053 | 652607335 | 259382.88 |
16101031003 | 16101 | 125 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2184 | 0.0118221 | 16101 | 584095916 | 680773241 | 311709.36 |
16101031004 | 16101 | 55 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1866 | 0.0101007 | 16101 | 499048983 | 422193251 | 226255.76 |
16101041001 | 16101 | 119 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3315 | 0.0179442 | 16101 | 886574158 | 662113605 | 199732.61 |
16101041002 | 16101 | 41 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1999 | 0.0108207 | 16101 | 534618927 | 352599497 | 176387.94 |
16101041003 | 16101 | 67 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4799 | 0.0259772 | 16101 | 1283459845 | 475030774 | 98985.37 |
16101041004 | 16101 | 35 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2766 | 0.0149725 | 16101 | 739747850 | 319141682 | 115380.22 |
16101042032 | 16101 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 30 | 0.0001624 | 16101 | 8023296 | -18571418 | -619047.27 |
16101051001 | 16101 | 44 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1466 | 0.0079355 | 16101 | 392071709 | 368408098 | 251301.57 |
16101051002 | 16101 | 382 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4764 | 0.0257877 | 16101 | 1274099333 | 1255376324 | 263513.08 |
16101051003 | 16101 | 73 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2374 | 0.0128506 | 16101 | 634910121 | 499668521 | 210475.37 |
16101051004 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2018 | 0.0109235 | 16101 | 539700347 | 187515412 | 92921.41 |
16101051005 | 16101 | 424 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4539 | 0.0245698 | 16101 | 1213924617 | 1327262158 | 292412.90 |
16101052010 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 112 | 0.0006063 | 16101 | 29953637 | 94484472 | 843611.36 |
16101052026 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 355 | 0.0019216 | 16101 | 94942331 | 118819802 | 334703.67 |
16101052027 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 362 | 0.0019595 | 16101 | 96814433 | 118819802 | 328231.50 |
16101052028 | 16101 | 32 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 345 | 0.0018675 | 16101 | 92267899 | 301334025 | 873431.96 |
16101061001 | 16101 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 941 | 0.0050937 | 16101 | 251664037 | 66341026 | 70500.56 |
16101062003 | 16101 | 29 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 638 | 0.0034535 | 16101 | 170628752 | 282670153 | 443056.67 |
16101062014 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 348 | 0.0018837 | 16101 | 93070228 | 204183762 | 586734.95 |
16101062024 | 16101 | 22 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 451 | 0.0024413 | 16101 | 120616876 | 234943944 | 520940.01 |
16101062027 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 620 | 0.0033561 | 16101 | 165814775 | 204183762 | 329328.65 |
16101062901 | 16101 | 1 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 373 | 0.0020191 | 16101 | 99756308 | -18571418 | -49789.32 |
16101071001 | 16101 | 61 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1599 | 0.0086555 | 16101 | 427641653 | 449262838 | 280964.88 |
16101071002 | 16101 | 21 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 950 | 0.0051424 | 16101 | 254071026 | 227535805 | 239511.37 |
16101072001 | 16101 | 18 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 593 | 0.0032099 | 16101 | 158593809 | 204183762 | 344323.38 |
16101072901 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 491 | 0.0026578 | 16101 | 131314604 | 94484472 | 192432.73 |
16101081001 | 16101 | 37 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1276 | 0.0069070 | 16101 | 341257504 | 330592055 | 259084.68 |
16101082007 | 16101 | 6 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 184 | 0.0009960 | 16101 | 49209546 | 81002164 | 440229.15 |
16101082008 | 16101 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 147 | 0.0007957 | 16101 | 39314148 | 50124192 | 340980.90 |
16101082011 | 16101 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 408 | 0.0022085 | 16101 | 109116819 | 169768409 | 416099.04 |
16101082012 | 16101 | 7 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 139 | 0.0007524 | 16101 | 37174603 | 94484472 | 679744.40 |
16101082015 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 313 | 0.0016943 | 16101 | 83709717 | 118819802 | 379615.98 |
16101082031 | 16101 | 4 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 104 | 0.0005630 | 16101 | 27814091 | 50124192 | 481963.38 |
16101082037 | 16101 | 14 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 451 | 0.0024413 | 16101 | 120616876 | 169768409 | 376426.63 |
16101092901 | 16101 | 5 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 87 | 0.0004709 | 16101 | 23267557 | 66341026 | 762540.53 |
16101102004 | 16101 | 88 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3591 | 0.0194382 | 16101 | 960388477 | 557154916 | 155153.14 |
16101112030 | 16101 | 2 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 37 | 0.0002003 | 16101 | 9895398 | 9883235 | 267114.47 |
16101112901 | 16101 | 3 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 16 | 0.0000866 | 16101 | 4279091 | 31717259 | 1982328.67 |
16101121001 | 16101 | 154 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4876 | 0.0263940 | 16101 | 1304052970 | 765223073 | 156936.64 |
16101122002 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 280 | 0.0015157 | 16101 | 74884092 | 187515412 | 669697.90 |
16101122017 | 16101 | 49 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 682 | 0.0036917 | 16101 | 182396252 | 393602242 | 577129.39 |
16101122020 | 16101 | 8 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 102 | 0.0005521 | 16101 | 27279205 | 107033499 | 1049348.03 |
16101122034 | 16101 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 171 | 0.0009256 | 16101 | 45732785 | 249271356 | 1457727.23 |
16101122035 | 16101 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 534 | 0.0028906 | 16101 | 142814661 | 313293769 | 586692.45 |
16101131001 | 16101 | 866 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5741 | 0.0310763 | 16101 | 1535391325 | 1934298998 | 336927.19 |
16101131002 | 16101 | 107 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2211 | 0.0119682 | 16101 | 591316882 | 623325887 | 281920.35 |
16101131003 | 16101 | 103 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2135 | 0.0115568 | 16101 | 570991200 | 609917269 | 285675.54 |
16101131004 | 16101 | 160 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4141 | 0.0224154 | 16101 | 1107482229 | 781671343 | 188763.91 |
16101141001 | 16101 | 446 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5365 | 0.0290410 | 16101 | 1434832687 | 1363495781 | 254146.46 |
16101141002 | 16101 | 882 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 5814 | 0.0314714 | 16101 | 1554914678 | 1952888502 | 335894.14 |
16101141003 | 16101 | 243 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3016 | 0.0163257 | 16101 | 806608646 | 983591553 | 326124.52 |
16101141004 | 16101 | 789 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3759 | 0.0203476 | 16101 | 1005318932 | 1842333840 | 490112.75 |
16101142009 | 16101 | 95 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 607 | 0.0032857 | 16101 | 162338013 | 582294955 | 959299.76 |
16101142018 | 16101 | 69 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 625 | 0.0033832 | 16101 | 167151991 | 483361565 | 773378.50 |
16101142036 | 16101 | 33 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 443 | 0.0023980 | 16101 | 118477331 | 307359207 | 693813.11 |
16101151001 | 16101 | 222 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3362 | 0.0181986 | 16101 | 899143988 | 936274509 | 278487.36 |
16101151002 | 16101 | 34 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3634 | 0.0196710 | 16101 | 971888534 | 313293769 | 86211.82 |
16101151003 | 16101 | 31 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1805 | 0.0097705 | 16101 | 482734949 | 295213941 | 163553.43 |
16101151004 | 16101 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3489 | 0.0188861 | 16101 | 933109272 | 511607416 | 146634.40 |
16101151005 | 16101 | 39 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4931 | 0.0266917 | 16101 | 1318762345 | 341736919 | 69303.78 |
16101151006 | 16101 | 65 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4103 | 0.0222097 | 16101 | 1097319388 | 466574686 | 113715.50 |
16101151007 | 16101 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2402 | 0.0130021 | 16101 | 642398530 | 378649267 | 157639.16 |
16101151008 | 16101 | 28 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3208 | 0.0173650 | 16101 | 857957737 | 276235972 | 86108.47 |
16101151009 | 16101 | 314 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4520 | 0.0244670 | 16101 | 1208843196 | 1130022283 | 250004.93 |
16101151010 | 16101 | 294 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4906 | 0.0265564 | 16101 | 1312076266 | 1090617316 | 222302.76 |
16101151011 | 16101 | 84 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2718 | 0.0147126 | 16101 | 726910577 | 542338637 | 199535.92 |
16101151012 | 16101 | 51 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2161 | 0.0116976 | 16101 | 577944723 | 403317754 | 186634.78 |
16101151013 | 16101 | 46 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3743 | 0.0202610 | 16101 | 1001039841 | 378649267 | 101161.97 |
16101151014 | 16101 | 24 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3883 | 0.0210188 | 16101 | 1038481887 | 249271356 | 64195.56 |
16101151015 | 16101 | 13 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 248 | 0.0013424 | 16101 | 66325910 | 160418516 | 646848.86 |
16101152016 | 16101 | 16 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 521 | 0.0028202 | 16101 | 139337899 | 187515412 | 359914.42 |
16101152025 | 16101 | 182 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1780 | 0.0096352 | 16101 | 476048869 | 839487418 | 471622.15 |
16101152033 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 122 | 0.0006604 | 16101 | 32628069 | 118819802 | 973932.80 |
16101161001 | 16101 | 96 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2140 | 0.0115839 | 16101 | 572328416 | 585809740 | 273742.87 |
16101161002 | 16101 | 97 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2196 | 0.0118870 | 16101 | 587305234 | 589306266 | 268354.40 |
16101161003 | 16101 | 109 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3884 | 0.0210243 | 16101 | 1038749331 | 629936196 | 162187.49 |
16101161004 | 16101 | 186 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2612 | 0.0141389 | 16101 | 698561599 | 849616183 | 325274.19 |
16101161005 | 16101 | 148 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 3326 | 0.0180038 | 16101 | 889516033 | 748451137 | 225030.41 |
16101171001 | 16101 | 76 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 4382 | 0.0237200 | 16101 | 1171936037 | 511607416 | 116752.03 |
16101171002 | 16101 | 82 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2900 | 0.0156978 | 16101 | 775585236 | 534798178 | 184413.16 |
16101171003 | 16101 | 90 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 2262 | 0.0122443 | 16101 | 604956484 | 564436751 | 249529.95 |
16101171004 | 16101 | 30 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 1590 | 0.0086067 | 16101 | 425234664 | 288994324 | 181757.44 |
16101991999 | 16101 | 9 | 2017 | Chillán | 267443.2 | 2017 | 16101 | 184739 | 49407186552 | 304 | 0.0016456 | 16101 | 81302728 | 118819802 | 390854.61 |
16102011001 | 16102 | 54 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 2452 | 0.1140837 | 16102 | 512783055 | 417540548 | 170285.70 |
16102011002 | 16102 | 84 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 4765 | 0.2217001 | 16102 | 996497249 | 542338637 | 113817.13 |
16102011003 | 16102 | 83 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 3184 | 0.1481413 | 16102 | 665865108 | 538579764 | 169151.94 |
16102012006 | 16102 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 183 | 0.0085144 | 16102 | 38270513 | 81002164 | 442634.78 |
16102012044 | 16102 | 1 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 32 | 0.0014889 | 16102 | 6692112 | -18571418 | -580356.81 |
16102021001 | 16102 | 6 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 537 | 0.0249849 | 16102 | 112301998 | 81002164 | 150842.02 |
16102022005 | 16102 | 5 | 2017 | Bulnes | 209128.5 | 2017 | 16102 | 21493 | 4494798610 | 102 | 0.0047457 | 16102 | 21331106 | 66341026 | 650402.21 |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_16.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda