De ingresos sobre una categoría de respuesta
Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 14.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 14)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[2] <- "Tipo de techo"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 14101011001 | 1 | 14101 | 94 | 2017 |
2 | 14101021001 | 1 | 14101 | 577 | 2017 |
3 | 14101031001 | 1 | 14101 | 106 | 2017 |
4 | 14101041001 | 1 | 14101 | 77 | 2017 |
5 | 14101041002 | 1 | 14101 | 11 | 2017 |
6 | 14101041003 | 1 | 14101 | 202 | 2017 |
7 | 14101041004 | 1 | 14101 | 18 | 2017 |
8 | 14101041005 | 1 | 14101 | 167 | 2017 |
9 | 14101042005 | 1 | 14101 | 5 | 2017 |
10 | 14101042058 | 1 | 14101 | 3 | 2017 |
11 | 14101051001 | 1 | 14101 | 67 | 2017 |
12 | 14101051002 | 1 | 14101 | 61 | 2017 |
13 | 14101051003 | 1 | 14101 | 36 | 2017 |
14 | 14101051004 | 1 | 14101 | 38 | 2017 |
15 | 14101051005 | 1 | 14101 | 182 | 2017 |
16 | 14101061001 | 1 | 14101 | 67 | 2017 |
17 | 14101061002 | 1 | 14101 | 30 | 2017 |
18 | 14101061003 | 1 | 14101 | 77 | 2017 |
19 | 14101061004 | 1 | 14101 | 60 | 2017 |
20 | 14101061005 | 1 | 14101 | 58 | 2017 |
21 | 14101061006 | 1 | 14101 | 10 | 2017 |
22 | 14101061007 | 1 | 14101 | 1 | 2017 |
23 | 14101062011 | 1 | 14101 | 2 | 2017 |
24 | 14101062013 | 1 | 14101 | 2 | 2017 |
25 | 14101062021 | 1 | 14101 | 6 | 2017 |
26 | 14101062047 | 1 | 14101 | 1 | 2017 |
27 | 14101071001 | 1 | 14101 | 85 | 2017 |
28 | 14101071002 | 1 | 14101 | 65 | 2017 |
29 | 14101071003 | 1 | 14101 | 131 | 2017 |
30 | 14101071004 | 1 | 14101 | 47 | 2017 |
31 | 14101071005 | 1 | 14101 | 337 | 2017 |
32 | 14101071006 | 1 | 14101 | 61 | 2017 |
33 | 14101072002 | 1 | 14101 | 6 | 2017 |
34 | 14101072045 | 1 | 14101 | 15 | 2017 |
35 | 14101081001 | 1 | 14101 | 352 | 2017 |
36 | 14101081002 | 1 | 14101 | 198 | 2017 |
37 | 14101081003 | 1 | 14101 | 471 | 2017 |
38 | 14101081004 | 1 | 14101 | 99 | 2017 |
39 | 14101081005 | 1 | 14101 | 314 | 2017 |
40 | 14101081006 | 1 | 14101 | 38 | 2017 |
41 | 14101081007 | 1 | 14101 | 26 | 2017 |
42 | 14101081008 | 1 | 14101 | 65 | 2017 |
43 | 14101081009 | 1 | 14101 | 54 | 2017 |
44 | 14101081010 | 1 | 14101 | 136 | 2017 |
45 | 14101081011 | 1 | 14101 | 26 | 2017 |
46 | 14101082002 | 1 | 14101 | 54 | 2017 |
47 | 14101091001 | 1 | 14101 | 169 | 2017 |
48 | 14101091002 | 1 | 14101 | 152 | 2017 |
49 | 14101101001 | 1 | 14101 | 61 | 2017 |
50 | 14101101002 | 1 | 14101 | 104 | 2017 |
51 | 14101101003 | 1 | 14101 | 80 | 2017 |
52 | 14101112005 | 1 | 14101 | 24 | 2017 |
53 | 14101112010 | 1 | 14101 | 8 | 2017 |
54 | 14101112017 | 1 | 14101 | 35 | 2017 |
55 | 14101112037 | 1 | 14101 | 14 | 2017 |
56 | 14101112046 | 1 | 14101 | 6 | 2017 |
57 | 14101112058 | 1 | 14101 | 2 | 2017 |
58 | 14101122007 | 1 | 14101 | 26 | 2017 |
59 | 14101122009 | 1 | 14101 | 2 | 2017 |
60 | 14101122042 | 1 | 14101 | 5 | 2017 |
61 | 14101122058 | 1 | 14101 | 31 | 2017 |
62 | 14101132003 | 1 | 14101 | 9 | 2017 |
63 | 14101132050 | 1 | 14101 | 2 | 2017 |
64 | 14101132901 | 1 | 14101 | 5 | 2017 |
65 | 14101142014 | 1 | 14101 | 5 | 2017 |
66 | 14101142039 | 1 | 14101 | 1 | 2017 |
67 | 14101142059 | 1 | 14101 | 1 | 2017 |
68 | 14101152059 | 1 | 14101 | 1 | 2017 |
69 | 14101161001 | 1 | 14101 | 380 | 2017 |
70 | 14101162018 | 1 | 14101 | 2 | 2017 |
71 | 14101162019 | 1 | 14101 | 8 | 2017 |
72 | 14101162034 | 1 | 14101 | 1 | 2017 |
73 | 14101162053 | 1 | 14101 | 5 | 2017 |
74 | 14101162061 | 1 | 14101 | 6 | 2017 |
75 | 14101171001 | 1 | 14101 | 73 | 2017 |
76 | 14101172001 | 1 | 14101 | 42 | 2017 |
77 | 14101172016 | 1 | 14101 | 7 | 2017 |
78 | 14101172027 | 1 | 14101 | 3 | 2017 |
79 | 14101172036 | 1 | 14101 | 1 | 2017 |
80 | 14101172055 | 1 | 14101 | 1 | 2017 |
81 | 14101182004 | 1 | 14101 | 2 | 2017 |
82 | 14101182006 | 1 | 14101 | 2 | 2017 |
83 | 14101182015 | 1 | 14101 | 16 | 2017 |
84 | 14101182040 | 1 | 14101 | 4 | 2017 |
85 | 14101991999 | 1 | 14101 | 18 | 2017 |
612 | 14102011001 | 1 | 14102 | 51 | 2017 |
613 | 14102012011 | 1 | 14102 | 1 | 2017 |
614 | 14102012018 | 1 | 14102 | 2 | 2017 |
615 | 14102022008 | 1 | 14102 | 5 | 2017 |
616 | 14102022010 | 1 | 14102 | 6 | 2017 |
617 | 14102032001 | 1 | 14102 | 2 | 2017 |
618 | 14102032005 | 1 | 14102 | 1 | 2017 |
619 | 14102032019 | 1 | 14102 | 1 | 2017 |
620 | 14102032901 | 1 | 14102 | 1 | 2017 |
621 | 14102042006 | 1 | 14102 | 1 | 2017 |
622 | 14102042007 | 1 | 14102 | 1 | 2017 |
623 | 14102042015 | 1 | 14102 | 1 | 2017 |
624 | 14102042018 | 1 | 14102 | 4 | 2017 |
625 | 14102991999 | 1 | 14102 | 1 | 2017 |
1152 | 14103011001 | 1 | 14103 | 38 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 14101011001 | 94 | 2017 | 14101 |
2 | 14101021001 | 577 | 2017 | 14101 |
3 | 14101031001 | 106 | 2017 | 14101 |
4 | 14101041001 | 77 | 2017 | 14101 |
5 | 14101041002 | 11 | 2017 | 14101 |
6 | 14101041003 | 202 | 2017 | 14101 |
7 | 14101041004 | 18 | 2017 | 14101 |
8 | 14101041005 | 167 | 2017 | 14101 |
9 | 14101042005 | 5 | 2017 | 14101 |
10 | 14101042058 | 3 | 2017 | 14101 |
11 | 14101051001 | 67 | 2017 | 14101 |
12 | 14101051002 | 61 | 2017 | 14101 |
13 | 14101051003 | 36 | 2017 | 14101 |
14 | 14101051004 | 38 | 2017 | 14101 |
15 | 14101051005 | 182 | 2017 | 14101 |
16 | 14101061001 | 67 | 2017 | 14101 |
17 | 14101061002 | 30 | 2017 | 14101 |
18 | 14101061003 | 77 | 2017 | 14101 |
19 | 14101061004 | 60 | 2017 | 14101 |
20 | 14101061005 | 58 | 2017 | 14101 |
21 | 14101061006 | 10 | 2017 | 14101 |
22 | 14101061007 | 1 | 2017 | 14101 |
23 | 14101062011 | 2 | 2017 | 14101 |
24 | 14101062013 | 2 | 2017 | 14101 |
25 | 14101062021 | 6 | 2017 | 14101 |
26 | 14101062047 | 1 | 2017 | 14101 |
27 | 14101071001 | 85 | 2017 | 14101 |
28 | 14101071002 | 65 | 2017 | 14101 |
29 | 14101071003 | 131 | 2017 | 14101 |
30 | 14101071004 | 47 | 2017 | 14101 |
31 | 14101071005 | 337 | 2017 | 14101 |
32 | 14101071006 | 61 | 2017 | 14101 |
33 | 14101072002 | 6 | 2017 | 14101 |
34 | 14101072045 | 15 | 2017 | 14101 |
35 | 14101081001 | 352 | 2017 | 14101 |
36 | 14101081002 | 198 | 2017 | 14101 |
37 | 14101081003 | 471 | 2017 | 14101 |
38 | 14101081004 | 99 | 2017 | 14101 |
39 | 14101081005 | 314 | 2017 | 14101 |
40 | 14101081006 | 38 | 2017 | 14101 |
41 | 14101081007 | 26 | 2017 | 14101 |
42 | 14101081008 | 65 | 2017 | 14101 |
43 | 14101081009 | 54 | 2017 | 14101 |
44 | 14101081010 | 136 | 2017 | 14101 |
45 | 14101081011 | 26 | 2017 | 14101 |
46 | 14101082002 | 54 | 2017 | 14101 |
47 | 14101091001 | 169 | 2017 | 14101 |
48 | 14101091002 | 152 | 2017 | 14101 |
49 | 14101101001 | 61 | 2017 | 14101 |
50 | 14101101002 | 104 | 2017 | 14101 |
51 | 14101101003 | 80 | 2017 | 14101 |
52 | 14101112005 | 24 | 2017 | 14101 |
53 | 14101112010 | 8 | 2017 | 14101 |
54 | 14101112017 | 35 | 2017 | 14101 |
55 | 14101112037 | 14 | 2017 | 14101 |
56 | 14101112046 | 6 | 2017 | 14101 |
57 | 14101112058 | 2 | 2017 | 14101 |
58 | 14101122007 | 26 | 2017 | 14101 |
59 | 14101122009 | 2 | 2017 | 14101 |
60 | 14101122042 | 5 | 2017 | 14101 |
61 | 14101122058 | 31 | 2017 | 14101 |
62 | 14101132003 | 9 | 2017 | 14101 |
63 | 14101132050 | 2 | 2017 | 14101 |
64 | 14101132901 | 5 | 2017 | 14101 |
65 | 14101142014 | 5 | 2017 | 14101 |
66 | 14101142039 | 1 | 2017 | 14101 |
67 | 14101142059 | 1 | 2017 | 14101 |
68 | 14101152059 | 1 | 2017 | 14101 |
69 | 14101161001 | 380 | 2017 | 14101 |
70 | 14101162018 | 2 | 2017 | 14101 |
71 | 14101162019 | 8 | 2017 | 14101 |
72 | 14101162034 | 1 | 2017 | 14101 |
73 | 14101162053 | 5 | 2017 | 14101 |
74 | 14101162061 | 6 | 2017 | 14101 |
75 | 14101171001 | 73 | 2017 | 14101 |
76 | 14101172001 | 42 | 2017 | 14101 |
77 | 14101172016 | 7 | 2017 | 14101 |
78 | 14101172027 | 3 | 2017 | 14101 |
79 | 14101172036 | 1 | 2017 | 14101 |
80 | 14101172055 | 1 | 2017 | 14101 |
81 | 14101182004 | 2 | 2017 | 14101 |
82 | 14101182006 | 2 | 2017 | 14101 |
83 | 14101182015 | 16 | 2017 | 14101 |
84 | 14101182040 | 4 | 2017 | 14101 |
85 | 14101991999 | 18 | 2017 | 14101 |
612 | 14102011001 | 51 | 2017 | 14102 |
613 | 14102012011 | 1 | 2017 | 14102 |
614 | 14102012018 | 2 | 2017 | 14102 |
615 | 14102022008 | 5 | 2017 | 14102 |
616 | 14102022010 | 6 | 2017 | 14102 |
617 | 14102032001 | 2 | 2017 | 14102 |
618 | 14102032005 | 1 | 2017 | 14102 |
619 | 14102032019 | 1 | 2017 | 14102 |
620 | 14102032901 | 1 | 2017 | 14102 |
621 | 14102042006 | 1 | 2017 | 14102 |
622 | 14102042007 | 1 | 2017 | 14102 |
623 | 14102042015 | 1 | 2017 | 14102 |
624 | 14102042018 | 4 | 2017 | 14102 |
625 | 14102991999 | 1 | 2017 | 14102 |
1152 | 14103011001 | 38 | 2017 | 14103 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01107 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01401 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
01402 | Camiña | 262850.3 | 2017 | 1402 | 1250 | 328562901 |
01404 | Huara | 253968.5 | 2017 | 1404 | 2730 | 693334131 |
01405 | Pica | 313007.5 | 2017 | 1405 | 9296 | 2909717399 |
02101 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02103 | Sierra Gorda | 403458.5 | 2017 | 2103 | 10186 | 4109628188 |
02104 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 |
02201 | Calama | 409671.3 | 2017 | 2201 | 165731 | 67895226712 |
02203 | San Pedro de Atacama | 426592.0 | 2017 | 2203 | 10996 | 4690805471 |
02301 | Tocopilla | 246615.3 | 2017 | 2301 | 25186 | 6211253937 |
02302 | María Elena | 466266.9 | 2017 | 2302 | 6457 | 3010685220 |
03101 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03102 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03103 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03301 | Vallenar | 304336.7 | 2017 | 3301 | 51917 | 15800246795 |
03302 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 |
03303 | Freirina | 253086.7 | 2017 | 3303 | 7041 | 1781983257 |
03304 | Huasco | 287406.6 | 2017 | 3304 | 10149 | 2916889629 |
04101 | La Serena | 270221.9 | 2017 | 4101 | 221054 | 59733627577 |
04102 | Coquimbo | 261852.6 | 2017 | 4102 | 227730 | 59631700074 |
04103 | Andacollo | 248209.3 | 2017 | 4103 | 11044 | 2741223967 |
04104 | La Higuera | 228356.8 | 2017 | 4104 | 4241 | 968461330 |
04105 | Paiguano | 205942.1 | 2017 | 4105 | 4497 | 926121774 |
04106 | Vicuña | 211431.9 | 2017 | 4106 | 27771 | 5871675449 |
04201 | Illapel | 238674.4 | 2017 | 4201 | 30848 | 7362627007 |
04202 | Canela | 207933.6 | 2017 | 4202 | 9093 | 1890740321 |
04203 | Los Vilos | 255200.4 | 2017 | 4203 | 21382 | 5456695139 |
04204 | Salamanca | 242879.5 | 2017 | 4204 | 29347 | 7127783272 |
04301 | Ovalle | 266522.9 | 2017 | 4301 | 111272 | 29656533187 |
04302 | Combarbalá | 210409.7 | 2017 | 4302 | 13322 | 2803077721 |
04303 | Monte Patria | 211907.9 | 2017 | 4303 | 30751 | 6516380780 |
04304 | Punitaqui | 194997.8 | 2017 | 4304 | 10956 | 2136395349 |
04305 | Río Hurtado | 182027.2 | 2017 | 4305 | 4278 | 778712384 |
05101 | Valparaíso | 298720.7 | 2017 | 5101 | 296655 | 88616992249 |
05102 | Casablanca | 312802.7 | 2017 | 5102 | 26867 | 8404070481 |
05103 | Concón | 318496.3 | 2017 | 5103 | 42152 | 13425257057 |
05105 | Puchuncaví | 288737.2 | 2017 | 5105 | 18546 | 5354920887 |
05107 | Quintero | 316659.1 | 2017 | 5107 | 31923 | 10108709691 |
05109 | Viña del Mar | 337006.1 | 2017 | 5109 | 334248 | 112643604611 |
05301 | Los Andes | 338182.5 | 2017 | 5301 | 66708 | 22559476922 |
05302 | Calle Larga | 245165.4 | 2017 | 5302 | 14832 | 3636293159 |
05303 | Rinconada | 281633.2 | 2017 | 5303 | 10207 | 2874630315 |
05304 | San Esteban | 220958.4 | 2017 | 5304 | 18855 | 4166170587 |
05401 | La Ligua | 229623.7 | 2017 | 5401 | 35390 | 8126381563 |
05402 | Cabildo | 249717.7 | 2017 | 5402 | 19388 | 4841527150 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
14101 | 14101011001 | 94 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101021001 | 577 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101031001 | 106 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041001 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041002 | 11 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041003 | 202 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041004 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041005 | 167 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101042005 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101042058 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051001 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051002 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051003 | 36 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051004 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051005 | 182 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061001 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061002 | 30 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061003 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061004 | 60 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061005 | 58 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061006 | 10 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061007 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101062011 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101062013 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101062021 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101062047 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071001 | 85 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071002 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071003 | 131 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071004 | 47 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071005 | 337 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071006 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101072002 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101072045 | 15 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081001 | 352 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081002 | 198 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081003 | 471 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081004 | 99 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081005 | 314 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081006 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081007 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081008 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081009 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081010 | 136 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081011 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101082002 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101091001 | 169 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101091002 | 152 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101101001 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101101002 | 104 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101101003 | 80 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112005 | 24 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112010 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112017 | 35 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112037 | 14 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112046 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112058 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101122007 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101122009 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101122042 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101122058 | 31 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101132003 | 9 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101132050 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101132901 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101142014 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101142039 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101142059 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101152059 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101161001 | 380 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162018 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162019 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162034 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162053 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162061 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101171001 | 73 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172001 | 42 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172016 | 7 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172027 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172036 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172055 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101182004 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101182006 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101182015 | 16 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101182040 | 4 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101991999 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14102 | 14102011001 | 51 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102012011 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102012018 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102022008 | 5 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102022010 | 6 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102032001 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102032005 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102032019 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102032901 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102042006 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102042007 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102042015 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102042018 | 4 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102991999 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14103 | 14103011001 | 38 | 2017 | Lanco | 217605.0 | 2017 | 14103 | 16752 | 3645318217 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
14101 | 14101011001 | 94 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101021001 | 577 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101031001 | 106 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041001 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041002 | 11 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041003 | 202 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041004 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101041005 | 167 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101042005 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101042058 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051001 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051002 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051003 | 36 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051004 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101051005 | 182 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061001 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061002 | 30 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061003 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061004 | 60 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061005 | 58 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061006 | 10 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101061007 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101062011 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101062013 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101062021 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101062047 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071001 | 85 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071002 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071003 | 131 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071004 | 47 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071005 | 337 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101071006 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101072002 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101072045 | 15 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081001 | 352 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081002 | 198 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081003 | 471 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081004 | 99 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081005 | 314 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081006 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081007 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081008 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081009 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081010 | 136 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101081011 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101082002 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101091001 | 169 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101091002 | 152 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101101001 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101101002 | 104 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101101003 | 80 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112005 | 24 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112010 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112017 | 35 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112037 | 14 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112046 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101112058 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101122007 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101122009 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101122042 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101122058 | 31 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101132003 | 9 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101132050 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101132901 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101142014 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101142039 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101142059 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101152059 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101161001 | 380 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162018 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162019 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162034 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162053 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101162061 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101171001 | 73 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172001 | 42 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172016 | 7 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172027 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172036 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101172055 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101182004 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101182006 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101182015 | 16 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101182040 | 4 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14101 | 14101991999 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 |
14102 | 14102011001 | 51 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102012011 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102012018 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102022008 | 5 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102022010 | 6 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102032001 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102032005 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102032019 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102032901 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102042006 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102042007 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102042015 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102042018 | 4 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14102 | 14102991999 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 |
14103 | 14103011001 | 38 | 2017 | Lanco | 217605.0 | 2017 | 14103 | 16752 | 3645318217 |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
14101011001 | 14101 | 94 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3316 | 0.0199663 | 14101 |
14101021001 | 14101 | 577 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5505 | 0.0331467 | 14101 |
14101031001 | 14101 | 106 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1916 | 0.0115366 | 14101 |
14101041001 | 14101 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3347 | 0.0201529 | 14101 |
14101041002 | 14101 | 11 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1217 | 0.0073278 | 14101 |
14101041003 | 14101 | 202 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3319 | 0.0199843 | 14101 |
14101041004 | 14101 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3079 | 0.0185393 | 14101 |
14101041005 | 14101 | 167 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4543 | 0.0273543 | 14101 |
14101042005 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 60 | 0.0003613 | 14101 |
14101042058 | 14101 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 40 | 0.0002408 | 14101 |
14101051001 | 14101 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3908 | 0.0235308 | 14101 |
14101051002 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2924 | 0.0176060 | 14101 |
14101051003 | 14101 | 36 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3046 | 0.0183406 | 14101 |
14101051004 | 14101 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1117 | 0.0067257 | 14101 |
14101051005 | 14101 | 182 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3677 | 0.0221399 | 14101 |
14101061001 | 14101 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4741 | 0.0285465 | 14101 |
14101061002 | 14101 | 30 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2213 | 0.0133249 | 14101 |
14101061003 | 14101 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3643 | 0.0219352 | 14101 |
14101061004 | 14101 | 60 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4455 | 0.0268244 | 14101 |
14101061005 | 14101 | 58 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2502 | 0.0150650 | 14101 |
14101061006 | 14101 | 10 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1422 | 0.0085621 | 14101 |
14101061007 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 33 | 0.0001987 | 14101 |
14101062011 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 101 | 0.0006081 | 14101 |
14101062013 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 88 | 0.0005299 | 14101 |
14101062021 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 296 | 0.0017823 | 14101 |
14101062047 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 16 | 0.0000963 | 14101 |
14101071001 | 14101 | 85 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4214 | 0.0253733 | 14101 |
14101071002 | 14101 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3859 | 0.0232358 | 14101 |
14101071003 | 14101 | 131 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4649 | 0.0279925 | 14101 |
14101071004 | 14101 | 47 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1808 | 0.0108863 | 14101 |
14101071005 | 14101 | 337 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 6057 | 0.0364704 | 14101 |
14101071006 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4766 | 0.0286970 | 14101 |
14101072002 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 294 | 0.0017702 | 14101 |
14101072045 | 14101 | 15 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 287 | 0.0017281 | 14101 |
14101081001 | 14101 | 352 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5118 | 0.0308165 | 14101 |
14101081002 | 14101 | 198 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3425 | 0.0206226 | 14101 |
14101081003 | 14101 | 471 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4434 | 0.0266980 | 14101 |
14101081004 | 14101 | 99 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4941 | 0.0297507 | 14101 |
14101081005 | 14101 | 314 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3782 | 0.0227722 | 14101 |
14101081006 | 14101 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5317 | 0.0320147 | 14101 |
14101081007 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3719 | 0.0223928 | 14101 |
14101081008 | 14101 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5423 | 0.0326529 | 14101 |
14101081009 | 14101 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3389 | 0.0204058 | 14101 |
14101081010 | 14101 | 136 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5849 | 0.0352180 | 14101 |
14101081011 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2888 | 0.0173892 | 14101 |
14101082002 | 14101 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 429 | 0.0025831 | 14101 |
14101091001 | 14101 | 169 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3024 | 0.0182081 | 14101 |
14101091002 | 14101 | 152 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4672 | 0.0281310 | 14101 |
14101101001 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1538 | 0.0092606 | 14101 |
14101101002 | 14101 | 104 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2989 | 0.0179974 | 14101 |
14101101003 | 14101 | 80 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2463 | 0.0148302 | 14101 |
14101112005 | 14101 | 24 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 380 | 0.0022881 | 14101 |
14101112010 | 14101 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 176 | 0.0010597 | 14101 |
14101112017 | 14101 | 35 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1083 | 0.0065210 | 14101 |
14101112037 | 14101 | 14 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 535 | 0.0032213 | 14101 |
14101112046 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 103 | 0.0006202 | 14101 |
14101112058 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 59 | 0.0003553 | 14101 |
14101122007 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 297 | 0.0017883 | 14101 |
14101122009 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 266 | 0.0016016 | 14101 |
14101122042 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 233 | 0.0014029 | 14101 |
14101122058 | 14101 | 31 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 509 | 0.0030648 | 14101 |
14101132003 | 14101 | 9 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 290 | 0.0017461 | 14101 |
14101132050 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 66 | 0.0003974 | 14101 |
14101132901 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 250 | 0.0015053 | 14101 |
14101142014 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 325 | 0.0019569 | 14101 |
14101142039 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 58 | 0.0003492 | 14101 |
14101142059 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 96 | 0.0005780 | 14101 |
14101152059 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 82 | 0.0004937 | 14101 |
14101161001 | 14101 | 380 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1801 | 0.0108442 | 14101 |
14101162018 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 97 | 0.0005841 | 14101 |
14101162019 | 14101 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 64 | 0.0003854 | 14101 |
14101162034 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 42 | 0.0002529 | 14101 |
14101162053 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 217 | 0.0013066 | 14101 |
14101162061 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 94 | 0.0005660 | 14101 |
14101171001 | 14101 | 73 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3989 | 0.0240185 | 14101 |
14101172001 | 14101 | 42 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1348 | 0.0081166 | 14101 |
14101172016 | 14101 | 7 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 148 | 0.0008911 | 14101 |
14101172027 | 14101 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 103 | 0.0006202 | 14101 |
14101172036 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 110 | 0.0006623 | 14101 |
14101172055 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 88 | 0.0005299 | 14101 |
14101182004 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 188 | 0.0011320 | 14101 |
14101182006 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 67 | 0.0004034 | 14101 |
14101182015 | 14101 | 16 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 455 | 0.0027396 | 14101 |
14101182040 | 14101 | 4 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 323 | 0.0019448 | 14101 |
14101991999 | 14101 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 679 | 0.0040884 | 14101 |
14102011001 | 14102 | 51 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 3469 | 0.6542814 | 14102 |
14102012011 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 22 | 0.0041494 | 14102 |
14102012018 | 14102 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 80 | 0.0150886 | 14102 |
14102022008 | 14102 | 5 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 507 | 0.0956243 | 14102 |
14102022010 | 14102 | 6 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 41 | 0.0077329 | 14102 |
14102032001 | 14102 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 68 | 0.0128253 | 14102 |
14102032005 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 64 | 0.0120709 | 14102 |
14102032019 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 62 | 0.0116937 | 14102 |
14102032901 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 31 | 0.0058469 | 14102 |
14102042006 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 257 | 0.0484723 | 14102 |
14102042007 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 115 | 0.0216899 | 14102 |
14102042015 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 9 | 0.0016975 | 14102 |
14102042018 | 14102 | 4 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 33 | 0.0062241 | 14102 |
14102991999 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 12 | 0.0022633 | 14102 |
14103011001 | 14103 | 38 | 2017 | Lanco | 217605.0 | 2017 | 14103 | 16752 | 3645318217 | 2488 | 0.1485196 | 14103 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14101011001 | 14101 | 94 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3316 | 0.0199663 | 14101 | 940069890 |
14101021001 | 14101 | 577 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5505 | 0.0331467 | 14101 | 1560640756 |
14101031001 | 14101 | 106 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1916 | 0.0115366 | 14101 | 543176692 |
14101041001 | 14101 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3347 | 0.0201529 | 14101 | 948858240 |
14101041002 | 14101 | 11 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1217 | 0.0073278 | 14101 | 345013588 |
14101041003 | 14101 | 202 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3319 | 0.0199843 | 14101 | 940920376 |
14101041004 | 14101 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3079 | 0.0185393 | 14101 | 872881542 |
14101041005 | 14101 | 167 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4543 | 0.0273543 | 14101 | 1287918429 |
14101042005 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 60 | 0.0003613 | 14101 | 17009709 |
14101042058 | 14101 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 40 | 0.0002408 | 14101 | 11339806 |
14101051001 | 14101 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3908 | 0.0235308 | 14101 | 1107899014 |
14101051002 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2924 | 0.0176060 | 14101 | 828939795 |
14101051003 | 14101 | 36 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3046 | 0.0183406 | 14101 | 863526202 |
14101051004 | 14101 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1117 | 0.0067257 | 14101 | 316664073 |
14101051005 | 14101 | 182 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3677 | 0.0221399 | 14101 | 1042411636 |
14101061001 | 14101 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4741 | 0.0285465 | 14101 | 1344050467 |
14101061002 | 14101 | 30 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2213 | 0.0133249 | 14101 | 627374749 |
14101061003 | 14101 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3643 | 0.0219352 | 14101 | 1032772802 |
14101061004 | 14101 | 60 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4455 | 0.0268244 | 14101 | 1262970857 |
14101061005 | 14101 | 58 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2502 | 0.0150650 | 14101 | 709304845 |
14101061006 | 14101 | 10 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1422 | 0.0085621 | 14101 | 403130092 |
14101061007 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 33 | 0.0001987 | 14101 | 9355340 |
14101062011 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 101 | 0.0006081 | 14101 | 28633009 |
14101062013 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 88 | 0.0005299 | 14101 | 24947572 |
14101062021 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 296 | 0.0017823 | 14101 | 83914562 |
14101062047 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 16 | 0.0000963 | 14101 | 4535922 |
14101071001 | 14101 | 85 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4214 | 0.0253733 | 14101 | 1194648528 |
14101071002 | 14101 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3859 | 0.0232358 | 14101 | 1094007752 |
14101071003 | 14101 | 131 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4649 | 0.0279925 | 14101 | 1317968914 |
14101071004 | 14101 | 47 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1808 | 0.0108863 | 14101 | 512559216 |
14101071005 | 14101 | 337 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 6057 | 0.0364704 | 14101 | 1717130074 |
14101071006 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4766 | 0.0286970 | 14101 | 1351137846 |
14101072002 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 294 | 0.0017702 | 14101 | 83347572 |
14101072045 | 14101 | 15 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 287 | 0.0017281 | 14101 | 81363106 |
14101081001 | 14101 | 352 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5118 | 0.0308165 | 14101 | 1450928136 |
14101081002 | 14101 | 198 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3425 | 0.0206226 | 14101 | 970970861 |
14101081003 | 14101 | 471 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4434 | 0.0266980 | 14101 | 1257017459 |
14101081004 | 14101 | 99 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4941 | 0.0297507 | 14101 | 1400749496 |
14101081005 | 14101 | 314 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3782 | 0.0227722 | 14101 | 1072178626 |
14101081006 | 14101 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5317 | 0.0320147 | 14101 | 1507343669 |
14101081007 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3719 | 0.0223928 | 14101 | 1054318432 |
14101081008 | 14101 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5423 | 0.0326529 | 14101 | 1537394154 |
14101081009 | 14101 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3389 | 0.0204058 | 14101 | 960765036 |
14101081010 | 14101 | 136 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5849 | 0.0352180 | 14101 | 1658163084 |
14101081011 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2888 | 0.0173892 | 14101 | 818733970 |
14101082002 | 14101 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 429 | 0.0025831 | 14101 | 121619416 |
14101091001 | 14101 | 169 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3024 | 0.0182081 | 14101 | 857289309 |
14101091002 | 14101 | 152 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4672 | 0.0281310 | 14101 | 1324489302 |
14101101001 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1538 | 0.0092606 | 14101 | 436015528 |
14101101002 | 14101 | 104 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2989 | 0.0179974 | 14101 | 847366979 |
14101101003 | 14101 | 80 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2463 | 0.0148302 | 14101 | 698248534 |
14101112005 | 14101 | 24 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 380 | 0.0022881 | 14101 | 107728154 |
14101112010 | 14101 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 176 | 0.0010597 | 14101 | 49895145 |
14101112017 | 14101 | 35 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1083 | 0.0065210 | 14101 | 307025239 |
14101112037 | 14101 | 14 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 535 | 0.0032213 | 14101 | 151669901 |
14101112046 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 103 | 0.0006202 | 14101 | 29200000 |
14101112058 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 59 | 0.0003553 | 14101 | 16726213 |
14101122007 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 297 | 0.0017883 | 14101 | 84198057 |
14101122009 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 266 | 0.0016016 | 14101 | 75409708 |
14101122042 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 233 | 0.0014029 | 14101 | 66054368 |
14101122058 | 14101 | 31 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 509 | 0.0030648 | 14101 | 144299027 |
14101132003 | 14101 | 9 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 290 | 0.0017461 | 14101 | 82213591 |
14101132050 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 66 | 0.0003974 | 14101 | 18710679 |
14101132901 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 250 | 0.0015053 | 14101 | 70873785 |
14101142014 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 325 | 0.0019569 | 14101 | 92135921 |
14101142039 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 58 | 0.0003492 | 14101 | 16442718 |
14101142059 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 96 | 0.0005780 | 14101 | 27215534 |
14101152059 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 82 | 0.0004937 | 14101 | 23246602 |
14101161001 | 14101 | 380 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1801 | 0.0108442 | 14101 | 510574750 |
14101162018 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 97 | 0.0005841 | 14101 | 27499029 |
14101162019 | 14101 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 64 | 0.0003854 | 14101 | 18143689 |
14101162034 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 42 | 0.0002529 | 14101 | 11906796 |
14101162053 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 217 | 0.0013066 | 14101 | 61518446 |
14101162061 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 94 | 0.0005660 | 14101 | 26648543 |
14101171001 | 14101 | 73 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3989 | 0.0240185 | 14101 | 1130862121 |
14101172001 | 14101 | 42 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1348 | 0.0081166 | 14101 | 382151451 |
14101172016 | 14101 | 7 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 148 | 0.0008911 | 14101 | 41957281 |
14101172027 | 14101 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 103 | 0.0006202 | 14101 | 29200000 |
14101172036 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 110 | 0.0006623 | 14101 | 31184466 |
14101172055 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 88 | 0.0005299 | 14101 | 24947572 |
14101182004 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 188 | 0.0011320 | 14101 | 53297087 |
14101182006 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 67 | 0.0004034 | 14101 | 18994175 |
14101182015 | 14101 | 16 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 455 | 0.0027396 | 14101 | 128990290 |
14101182040 | 14101 | 4 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 323 | 0.0019448 | 14101 | 91568931 |
14101991999 | 14101 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 679 | 0.0040884 | 14101 | 192493201 |
14102011001 | 14102 | 51 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 3469 | 0.6542814 | 14102 | 719678397 |
14102012011 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 22 | 0.0041494 | 14102 | 4564118 |
14102012018 | 14102 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 80 | 0.0150886 | 14102 | 16596792 |
14102022008 | 14102 | 5 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 507 | 0.0956243 | 14102 | 105182170 |
14102022010 | 14102 | 6 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 41 | 0.0077329 | 14102 | 8505856 |
14102032001 | 14102 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 68 | 0.0128253 | 14102 | 14107273 |
14102032005 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 64 | 0.0120709 | 14102 | 13277434 |
14102032019 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 62 | 0.0116937 | 14102 | 12862514 |
14102032901 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 31 | 0.0058469 | 14102 | 6431257 |
14102042006 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 257 | 0.0484723 | 14102 | 53317195 |
14102042007 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 115 | 0.0216899 | 14102 | 23857889 |
14102042015 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 9 | 0.0016975 | 14102 | 1867139 |
14102042018 | 14102 | 4 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 33 | 0.0062241 | 14102 | 6846177 |
14102991999 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 12 | 0.0022633 | 14102 | 2489519 |
14103011001 | 14103 | 38 | 2017 | Lanco | 217605.0 | 2017 | 14103 | 16752 | 3645318217 | 2488 | 0.1485196 | 14103 | 541401130 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.330e+09 -8.326e+07 -6.729e+07 -2.597e+07 1.244e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 88535556 10532176 8.406 4.02e-16 ***
## Freq.x 4610622 192241 23.984 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 226700000 on 524 degrees of freedom
## Multiple R-squared: 0.5233, Adjusted R-squared: 0.5224
## F-statistic: 575.2 on 1 and 524 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.330e+09 -8.326e+07 -6.729e+07 -2.597e+07 1.244e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 88535556 10532176 8.406 4.02e-16 ***
## Freq.x 4610622 192241 23.984 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 226700000 on 524 degrees of freedom
## Multiple R-squared: 0.5233, Adjusted R-squared: 0.5224
## F-statistic: 575.2 on 1 and 524 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.330e+09 -8.326e+07 -6.729e+07 -2.597e+07 1.244e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 88535556 10532176 8.406 4.02e-16 ***
## Freq.x 4610622 192241 23.984 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 226700000 on 524 degrees of freedom
## Multiple R-squared: 0.5233, Adjusted R-squared: 0.5224
## F-statistic: 575.2 on 1 and 524 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -478462706 -146140175 -3700162 118698814 969532506
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -106802780 13119383 -8.141 2.88e-15 ***
## log(Freq.x) 177209258 6078300 29.154 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 202700000 on 524 degrees of freedom
## Multiple R-squared: 0.6186, Adjusted R-squared: 0.6179
## F-statistic: 850 on 1 and 524 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.149e+09 -6.744e+07 -8.353e+06 2.860e+07 1.050e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -98817629 10355548 -9.542 <2e-16 ***
## sqrt(Freq.x) 90227545 2380136 37.909 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 169700000 on 524 degrees of freedom
## Multiple R-squared: 0.7328, Adjusted R-squared: 0.7323
## F-statistic: 1437 on 1 and 524 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27816 -2211 -662 1473 21317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2290.24 278.80 8.215 1.67e-15 ***
## sqrt(Freq.x) 2468.58 64.08 38.524 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4569 on 524 degrees of freedom
## Multiple R-squared: 0.7391, Adjusted R-squared: 0.7386
## F-statistic: 1484 on 1 and 524 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3572 -0.5430 0.1022 0.6764 2.3903
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.6250 0.0609 272.99 <2e-16 ***
## sqrt(Freq.x) 0.3705 0.0140 26.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.998 on 524 degrees of freedom
## Multiple R-squared: 0.5722, Adjusted R-squared: 0.5713
## F-statistic: 700.7 on 1 and 524 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12624.8 -3210.2 -15.7 2832.6 18396.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1510.0 307.4 4.912 1.21e-06 ***
## log(Freq.x) 5200.6 142.4 36.513 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4751 on 524 degrees of freedom
## Multiple R-squared: 0.7179, Adjusted R-squared: 0.7173
## F-statistic: 1333 on 1 and 524 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6070 -0.5026 0.0535 0.6295 2.2808
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.38046 0.05626 291.17 <2e-16 ***
## log(Freq.x) 0.86052 0.02606 33.02 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8694 on 524 degrees of freedom
## Multiple R-squared: 0.6753, Adjusted R-squared: 0.6747
## F-statistic: 1090 on 1 and 524 DF, p-value: < 2.2e-16
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7386).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre r-r.
linearMod <- lm(sqrt( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27816 -2211 -662 1473 21317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2290.24 278.80 8.215 1.67e-15 ***
## sqrt(Freq.x) 2468.58 64.08 38.524 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4569 on 524 degrees of freedom
## Multiple R-squared: 0.7391, Adjusted R-squared: 0.7386
## F-statistic: 1484 on 1 and 524 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) +
geom_point() +
stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = 2290.24^2 + 2 \cdot 2290.24 \cdot 2468.58 \sqrt{X} + 2468.58 ^2 \cdot X \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <- 2290.24^2 + 2290.24* 2468.58* sqrt(h_y_m_comuna_corr_01$Freq.x)+2468.58 ^2*h_y_m_comuna_corr_01$Freq.x
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14101011001 | 14101 | 94 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3316 | 0.0199663 | 14101 | 940069890 | 632884677 |
14101021001 | 14101 | 577 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5505 | 0.0331467 | 14101 | 1560640756 | 3657223232 |
14101031001 | 14101 | 106 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1916 | 0.0115366 | 14101 | 543176692 | 709405037 |
14101041001 | 14101 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3347 | 0.0201529 | 14101 | 948858240 | 524085010 |
14101041002 | 14101 | 11 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1217 | 0.0073278 | 14101 | 345013588 | 91028963 |
14101041003 | 14101 | 202 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3319 | 0.0199843 | 14101 | 940920376 | 1316563748 |
14101041004 | 14101 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3079 | 0.0185393 | 14101 | 872881542 | 138921535 |
14101041005 | 14101 | 167 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4543 | 0.0273543 | 14101 | 1287918429 | 1095985503 |
14101042005 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 60 | 0.0003613 | 14101 | 17009709 | 48356560 |
14101042058 | 14101 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 40 | 0.0002408 | 14101 | 11339806 | 33319254 |
14101051001 | 14101 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3908 | 0.0235308 | 14101 | 1107899014 | 459812686 |
14101051002 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2924 | 0.0176060 | 14101 | 828939795 | 421128665 |
14101051003 | 14101 | 36 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3046 | 0.0183406 | 14101 | 863526202 | 258546983 |
14101051004 | 14101 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1117 | 0.0067257 | 14101 | 316664073 | 271664295 |
14101051005 | 14101 | 182 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3677 | 0.0221399 | 14101 | 1042411636 | 1190604455 |
14101061001 | 14101 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4741 | 0.0285465 | 14101 | 1344050467 | 459812686 |
14101061002 | 14101 | 30 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2213 | 0.0133249 | 14101 | 627374749 | 219028081 |
14101061003 | 14101 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3643 | 0.0219352 | 14101 | 1032772802 | 524085010 |
14101061004 | 14101 | 60 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4455 | 0.0268244 | 14101 | 1262970857 | 414671344 |
14101061005 | 14101 | 58 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2502 | 0.0150650 | 14101 | 709304845 | 401747502 |
14101061006 | 14101 | 10 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1422 | 0.0085621 | 14101 | 403130092 | 84062453 |
14101061007 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 33 | 0.0001987 | 14101 | 9355340 | 16992727 |
14101062011 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 101 | 0.0006081 | 14101 | 28633009 | 25428429 |
14101062013 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 88 | 0.0005299 | 14101 | 24947572 | 25428429 |
14101062021 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 296 | 0.0017823 | 14101 | 83914562 | 55657057 |
14101062047 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 16 | 0.0000963 | 14101 | 4535922 | 16992727 |
14101071001 | 14101 | 85 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4214 | 0.0253733 | 14101 | 1194648528 | 575349604 |
14101071002 | 14101 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3859 | 0.0232358 | 14101 | 1094007752 | 446928977 |
14101071003 | 14101 | 131 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4649 | 0.0279925 | 14101 | 1317968914 | 868253300 |
14101071004 | 14101 | 47 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1808 | 0.0108863 | 14101 | 512559216 | 330417306 |
14101071005 | 14101 | 337 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 6057 | 0.0364704 | 14101 | 1717130074 | 2162672237 |
14101071006 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4766 | 0.0286970 | 14101 | 1351137846 | 421128665 |
14101072002 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 294 | 0.0017702 | 14101 | 83347572 | 55657057 |
14101072045 | 14101 | 15 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 287 | 0.0017281 | 14101 | 81363106 | 118549964 |
14101081001 | 14101 | 352 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5118 | 0.0308165 | 14101 | 1450928136 | 2256365200 |
14101081002 | 14101 | 198 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3425 | 0.0206226 | 14101 | 970970861 | 1291388644 |
14101081003 | 14101 | 471 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4434 | 0.0266980 | 14101 | 1257017459 | 2998164409 |
14101081004 | 14101 | 99 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4941 | 0.0297507 | 14101 | 1400749496 | 664793048 |
14101081005 | 14101 | 314 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3782 | 0.0227722 | 14101 | 1072178626 | 2018908553 |
14101081006 | 14101 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5317 | 0.0320147 | 14101 | 1507343669 | 271664295 |
14101081007 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3719 | 0.0223928 | 14101 | 1054318432 | 192514291 |
14101081008 | 14101 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5423 | 0.0326529 | 14101 | 1537394154 | 446928977 |
14101081009 | 14101 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3389 | 0.0204058 | 14101 | 960765036 | 375860713 |
14101081010 | 14101 | 136 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5849 | 0.0352180 | 14101 | 1658163084 | 899946074 |
14101081011 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2888 | 0.0173892 | 14101 | 818733970 | 192514291 |
14101082002 | 14101 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 429 | 0.0025831 | 14101 | 121619416 | 375860713 |
14101091001 | 14101 | 169 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3024 | 0.0182081 | 14101 | 857289309 | 1108609467 |
14101091002 | 14101 | 152 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4672 | 0.0281310 | 14101 | 1324489302 | 1001218819 |
14101101001 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1538 | 0.0092606 | 14101 | 436015528 | 421128665 |
14101101002 | 14101 | 104 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2989 | 0.0179974 | 14101 | 847366979 | 696665518 |
14101101003 | 14101 | 80 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2463 | 0.0148302 | 14101 | 698248534 | 543323876 |
14101112005 | 14101 | 24 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 380 | 0.0022881 | 14101 | 107728154 | 179195562 |
14101112010 | 14101 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 176 | 0.0010597 | 14101 | 49895145 | 69987208 |
14101112017 | 14101 | 35 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1083 | 0.0065210 | 14101 | 307025239 | 251978641 |
14101112037 | 14101 | 14 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 535 | 0.0032213 | 14101 | 151669901 | 111713607 |
14101112046 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 103 | 0.0006202 | 14101 | 29200000 | 55657057 |
14101112058 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 59 | 0.0003553 | 14101 | 16726213 | 25428429 |
14101122007 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 297 | 0.0017883 | 14101 | 84198057 | 192514291 |
14101122009 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 266 | 0.0016016 | 14101 | 75409708 | 25428429 |
14101122042 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 233 | 0.0014029 | 14101 | 66054368 | 48356560 |
14101122058 | 14101 | 31 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 509 | 0.0030648 | 14101 | 144299027 | 225633842 |
14101132003 | 14101 | 9 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 290 | 0.0017461 | 14101 | 82213591 | 77051106 |
14101132050 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 66 | 0.0003974 | 14101 | 18710679 | 25428429 |
14101132901 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 250 | 0.0015053 | 14101 | 70873785 | 48356560 |
14101142014 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 325 | 0.0019569 | 14101 | 92135921 | 48356560 |
14101142039 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 58 | 0.0003492 | 14101 | 16442718 | 16992727 |
14101142059 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 96 | 0.0005780 | 14101 | 27215534 | 16992727 |
14101152059 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 82 | 0.0004937 | 14101 | 23246602 | 16992727 |
14101161001 | 14101 | 380 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1801 | 0.0108442 | 14101 | 510574750 | 2431132087 |
14101162018 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 97 | 0.0005841 | 14101 | 27499029 | 25428429 |
14101162019 | 14101 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 64 | 0.0003854 | 14101 | 18143689 | 69987208 |
14101162034 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 42 | 0.0002529 | 14101 | 11906796 | 16992727 |
14101162053 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 217 | 0.0013066 | 14101 | 61518446 | 48356560 |
14101162061 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 94 | 0.0005660 | 14101 | 26648543 | 55657057 |
14101171001 | 14101 | 73 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3989 | 0.0240185 | 14101 | 1130862121 | 498403693 |
14101172001 | 14101 | 42 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1348 | 0.0081166 | 14101 | 382151451 | 297828241 |
14101172016 | 14101 | 7 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 148 | 0.0008911 | 14101 | 41957281 | 62860537 |
14101172027 | 14101 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 103 | 0.0006202 | 14101 | 29200000 | 33319254 |
14101172036 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 110 | 0.0006623 | 14101 | 31184466 | 16992727 |
14101172055 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 88 | 0.0005299 | 14101 | 24947572 | 16992727 |
14101182004 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 188 | 0.0011320 | 14101 | 53297087 | 25428429 |
14101182006 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 67 | 0.0004034 | 14101 | 18994175 | 25428429 |
14101182015 | 14101 | 16 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 455 | 0.0027396 | 14101 | 128990290 | 125361957 |
14101182040 | 14101 | 4 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 323 | 0.0019448 | 14101 | 91568931 | 40928029 |
14101991999 | 14101 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 679 | 0.0040884 | 14101 | 192493201 | 138921535 |
14102011001 | 14102 | 51 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 3469 | 0.6542814 | 14102 | 719678397 | 356408517 |
14102012011 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 22 | 0.0041494 | 14102 | 4564118 | 16992727 |
14102012018 | 14102 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 80 | 0.0150886 | 14102 | 16596792 | 25428429 |
14102022008 | 14102 | 5 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 507 | 0.0956243 | 14102 | 105182170 | 48356560 |
14102022010 | 14102 | 6 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 41 | 0.0077329 | 14102 | 8505856 | 55657057 |
14102032001 | 14102 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 68 | 0.0128253 | 14102 | 14107273 | 25428429 |
14102032005 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 64 | 0.0120709 | 14102 | 13277434 | 16992727 |
14102032019 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 62 | 0.0116937 | 14102 | 12862514 | 16992727 |
14102032901 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 31 | 0.0058469 | 14102 | 6431257 | 16992727 |
14102042006 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 257 | 0.0484723 | 14102 | 53317195 | 16992727 |
14102042007 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 115 | 0.0216899 | 14102 | 23857889 | 16992727 |
14102042015 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 9 | 0.0016975 | 14102 | 1867139 | 16992727 |
14102042018 | 14102 | 4 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 33 | 0.0062241 | 14102 | 6846177 | 40928029 |
14102991999 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 12 | 0.0022633 | 14102 | 2489519 | 16992727 |
14103011001 | 14103 | 38 | 2017 | Lanco | 217605.0 | 2017 | 14103 | 16752 | 3645318217 | 2488 | 0.1485196 | 14103 | 541401130 | 271664295 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14101011001 | 14101 | 94 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3316 | 0.0199663 | 14101 | 940069890 | 632884677 | 190857.86 |
14101021001 | 14101 | 577 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5505 | 0.0331467 | 14101 | 1560640756 | 3657223232 | 664345.73 |
14101031001 | 14101 | 106 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1916 | 0.0115366 | 14101 | 543176692 | 709405037 | 370253.15 |
14101041001 | 14101 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3347 | 0.0201529 | 14101 | 948858240 | 524085010 | 156583.51 |
14101041002 | 14101 | 11 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1217 | 0.0073278 | 14101 | 345013588 | 91028963 | 74797.83 |
14101041003 | 14101 | 202 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3319 | 0.0199843 | 14101 | 940920376 | 1316563748 | 396674.83 |
14101041004 | 14101 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3079 | 0.0185393 | 14101 | 872881542 | 138921535 | 45119.04 |
14101041005 | 14101 | 167 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4543 | 0.0273543 | 14101 | 1287918429 | 1095985503 | 241247.08 |
14101042005 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 60 | 0.0003613 | 14101 | 17009709 | 48356560 | 805942.67 |
14101042058 | 14101 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 40 | 0.0002408 | 14101 | 11339806 | 33319254 | 832981.34 |
14101051001 | 14101 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3908 | 0.0235308 | 14101 | 1107899014 | 459812686 | 117659.34 |
14101051002 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2924 | 0.0176060 | 14101 | 828939795 | 421128665 | 144024.85 |
14101051003 | 14101 | 36 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3046 | 0.0183406 | 14101 | 863526202 | 258546983 | 84880.82 |
14101051004 | 14101 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1117 | 0.0067257 | 14101 | 316664073 | 271664295 | 243208.86 |
14101051005 | 14101 | 182 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3677 | 0.0221399 | 14101 | 1042411636 | 1190604455 | 323797.78 |
14101061001 | 14101 | 67 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4741 | 0.0285465 | 14101 | 1344050467 | 459812686 | 96986.43 |
14101061002 | 14101 | 30 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2213 | 0.0133249 | 14101 | 627374749 | 219028081 | 98973.38 |
14101061003 | 14101 | 77 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3643 | 0.0219352 | 14101 | 1032772802 | 524085010 | 143860.83 |
14101061004 | 14101 | 60 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4455 | 0.0268244 | 14101 | 1262970857 | 414671344 | 93079.99 |
14101061005 | 14101 | 58 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2502 | 0.0150650 | 14101 | 709304845 | 401747502 | 160570.54 |
14101061006 | 14101 | 10 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1422 | 0.0085621 | 14101 | 403130092 | 84062453 | 59115.65 |
14101061007 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 33 | 0.0001987 | 14101 | 9355340 | 16992727 | 514931.13 |
14101062011 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 101 | 0.0006081 | 14101 | 28633009 | 25428429 | 251766.62 |
14101062013 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 88 | 0.0005299 | 14101 | 24947572 | 25428429 | 288959.42 |
14101062021 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 296 | 0.0017823 | 14101 | 83914562 | 55657057 | 188030.60 |
14101062047 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 16 | 0.0000963 | 14101 | 4535922 | 16992727 | 1062045.45 |
14101071001 | 14101 | 85 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4214 | 0.0253733 | 14101 | 1194648528 | 575349604 | 136532.89 |
14101071002 | 14101 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3859 | 0.0232358 | 14101 | 1094007752 | 446928977 | 115814.71 |
14101071003 | 14101 | 131 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4649 | 0.0279925 | 14101 | 1317968914 | 868253300 | 186761.30 |
14101071004 | 14101 | 47 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1808 | 0.0108863 | 14101 | 512559216 | 330417306 | 182752.93 |
14101071005 | 14101 | 337 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 6057 | 0.0364704 | 14101 | 1717130074 | 2162672237 | 357053.37 |
14101071006 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4766 | 0.0286970 | 14101 | 1351137846 | 421128665 | 88361.03 |
14101072002 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 294 | 0.0017702 | 14101 | 83347572 | 55657057 | 189309.72 |
14101072045 | 14101 | 15 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 287 | 0.0017281 | 14101 | 81363106 | 118549964 | 413066.08 |
14101081001 | 14101 | 352 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5118 | 0.0308165 | 14101 | 1450928136 | 2256365200 | 440868.54 |
14101081002 | 14101 | 198 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3425 | 0.0206226 | 14101 | 970970861 | 1291388644 | 377047.78 |
14101081003 | 14101 | 471 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4434 | 0.0266980 | 14101 | 1257017459 | 2998164409 | 676176.01 |
14101081004 | 14101 | 99 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4941 | 0.0297507 | 14101 | 1400749496 | 664793048 | 134546.26 |
14101081005 | 14101 | 314 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3782 | 0.0227722 | 14101 | 1072178626 | 2018908553 | 533820.35 |
14101081006 | 14101 | 38 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5317 | 0.0320147 | 14101 | 1507343669 | 271664295 | 51093.53 |
14101081007 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3719 | 0.0223928 | 14101 | 1054318432 | 192514291 | 51765.07 |
14101081008 | 14101 | 65 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5423 | 0.0326529 | 14101 | 1537394154 | 446928977 | 82413.60 |
14101081009 | 14101 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3389 | 0.0204058 | 14101 | 960765036 | 375860713 | 110906.08 |
14101081010 | 14101 | 136 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 5849 | 0.0352180 | 14101 | 1658163084 | 899946074 | 153863.24 |
14101081011 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2888 | 0.0173892 | 14101 | 818733970 | 192514291 | 66660.07 |
14101082002 | 14101 | 54 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 429 | 0.0025831 | 14101 | 121619416 | 375860713 | 876132.20 |
14101091001 | 14101 | 169 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3024 | 0.0182081 | 14101 | 857289309 | 1108609467 | 366603.66 |
14101091002 | 14101 | 152 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 4672 | 0.0281310 | 14101 | 1324489302 | 1001218819 | 214301.97 |
14101101001 | 14101 | 61 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1538 | 0.0092606 | 14101 | 436015528 | 421128665 | 273815.78 |
14101101002 | 14101 | 104 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2989 | 0.0179974 | 14101 | 847366979 | 696665518 | 233076.45 |
14101101003 | 14101 | 80 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 2463 | 0.0148302 | 14101 | 698248534 | 543323876 | 220594.35 |
14101112005 | 14101 | 24 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 380 | 0.0022881 | 14101 | 107728154 | 179195562 | 471567.27 |
14101112010 | 14101 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 176 | 0.0010597 | 14101 | 49895145 | 69987208 | 397654.59 |
14101112017 | 14101 | 35 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1083 | 0.0065210 | 14101 | 307025239 | 251978641 | 232667.26 |
14101112037 | 14101 | 14 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 535 | 0.0032213 | 14101 | 151669901 | 111713607 | 208810.48 |
14101112046 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 103 | 0.0006202 | 14101 | 29200000 | 55657057 | 540359.78 |
14101112058 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 59 | 0.0003553 | 14101 | 16726213 | 25428429 | 430990.32 |
14101122007 | 14101 | 26 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 297 | 0.0017883 | 14101 | 84198057 | 192514291 | 648196.27 |
14101122009 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 266 | 0.0016016 | 14101 | 75409708 | 25428429 | 95595.60 |
14101122042 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 233 | 0.0014029 | 14101 | 66054368 | 48356560 | 207538.88 |
14101122058 | 14101 | 31 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 509 | 0.0030648 | 14101 | 144299027 | 225633842 | 443288.49 |
14101132003 | 14101 | 9 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 290 | 0.0017461 | 14101 | 82213591 | 77051106 | 265693.47 |
14101132050 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 66 | 0.0003974 | 14101 | 18710679 | 25428429 | 385279.23 |
14101132901 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 250 | 0.0015053 | 14101 | 70873785 | 48356560 | 193426.24 |
14101142014 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 325 | 0.0019569 | 14101 | 92135921 | 48356560 | 148789.42 |
14101142039 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 58 | 0.0003492 | 14101 | 16442718 | 16992727 | 292978.05 |
14101142059 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 96 | 0.0005780 | 14101 | 27215534 | 16992727 | 177007.57 |
14101152059 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 82 | 0.0004937 | 14101 | 23246602 | 16992727 | 207228.38 |
14101161001 | 14101 | 380 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1801 | 0.0108442 | 14101 | 510574750 | 2431132087 | 1349879.00 |
14101162018 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 97 | 0.0005841 | 14101 | 27499029 | 25428429 | 262148.75 |
14101162019 | 14101 | 8 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 64 | 0.0003854 | 14101 | 18143689 | 69987208 | 1093550.12 |
14101162034 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 42 | 0.0002529 | 14101 | 11906796 | 16992727 | 404588.74 |
14101162053 | 14101 | 5 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 217 | 0.0013066 | 14101 | 61518446 | 48356560 | 222841.29 |
14101162061 | 14101 | 6 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 94 | 0.0005660 | 14101 | 26648543 | 55657057 | 592096.35 |
14101171001 | 14101 | 73 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 3989 | 0.0240185 | 14101 | 1130862121 | 498403693 | 124944.52 |
14101172001 | 14101 | 42 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 1348 | 0.0081166 | 14101 | 382151451 | 297828241 | 220940.83 |
14101172016 | 14101 | 7 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 148 | 0.0008911 | 14101 | 41957281 | 62860537 | 424733.36 |
14101172027 | 14101 | 3 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 103 | 0.0006202 | 14101 | 29200000 | 33319254 | 323487.90 |
14101172036 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 110 | 0.0006623 | 14101 | 31184466 | 16992727 | 154479.34 |
14101172055 | 14101 | 1 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 88 | 0.0005299 | 14101 | 24947572 | 16992727 | 193099.17 |
14101182004 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 188 | 0.0011320 | 14101 | 53297087 | 25428429 | 135257.60 |
14101182006 | 14101 | 2 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 67 | 0.0004034 | 14101 | 18994175 | 25428429 | 379528.79 |
14101182015 | 14101 | 16 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 455 | 0.0027396 | 14101 | 128990290 | 125361957 | 275520.79 |
14101182040 | 14101 | 4 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 323 | 0.0019448 | 14101 | 91568931 | 40928029 | 126712.17 |
14101991999 | 14101 | 18 | 2017 | Valdivia | 283495.1 | 2017 | 14101 | 166080 | 47082873150 | 679 | 0.0040884 | 14101 | 192493201 | 138921535 | 204597.25 |
14102011001 | 14102 | 51 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 3469 | 0.6542814 | 14102 | 719678397 | 356408517 | 102741.00 |
14102012011 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 22 | 0.0041494 | 14102 | 4564118 | 16992727 | 772396.69 |
14102012018 | 14102 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 80 | 0.0150886 | 14102 | 16596792 | 25428429 | 317855.36 |
14102022008 | 14102 | 5 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 507 | 0.0956243 | 14102 | 105182170 | 48356560 | 95377.83 |
14102022010 | 14102 | 6 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 41 | 0.0077329 | 14102 | 8505856 | 55657057 | 1357489.20 |
14102032001 | 14102 | 2 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 68 | 0.0128253 | 14102 | 14107273 | 25428429 | 373947.49 |
14102032005 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 64 | 0.0120709 | 14102 | 13277434 | 16992727 | 265511.36 |
14102032019 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 62 | 0.0116937 | 14102 | 12862514 | 16992727 | 274076.24 |
14102032901 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 31 | 0.0058469 | 14102 | 6431257 | 16992727 | 548152.49 |
14102042006 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 257 | 0.0484723 | 14102 | 53317195 | 16992727 | 66119.56 |
14102042007 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 115 | 0.0216899 | 14102 | 23857889 | 16992727 | 147762.84 |
14102042015 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 9 | 0.0016975 | 14102 | 1867139 | 16992727 | 1888080.79 |
14102042018 | 14102 | 4 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 33 | 0.0062241 | 14102 | 6846177 | 40928029 | 1240243.32 |
14102991999 | 14102 | 1 | 2017 | Corral | 207459.9 | 2017 | 14102 | 5302 | 1099952396 | 12 | 0.0022633 | 14102 | 2489519 | 16992727 | 1416060.59 |
14103011001 | 14103 | 38 | 2017 | Lanco | 217605.0 | 2017 | 14103 | 16752 | 3645318217 | 2488 | 0.1485196 | 14103 | 541401130 | 271664295 | 109189.83 |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_14.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda