1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).

1.1 Lectura y filtrado de la tabla censal de viviendas

Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 1:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 14) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 14101011001 1 14101 94 2017
2 14101021001 1 14101 577 2017
3 14101031001 1 14101 106 2017
4 14101041001 1 14101 77 2017
5 14101041002 1 14101 11 2017
6 14101041003 1 14101 202 2017
7 14101041004 1 14101 18 2017
8 14101041005 1 14101 167 2017
9 14101042005 1 14101 5 2017
10 14101042058 1 14101 3 2017
11 14101051001 1 14101 67 2017
12 14101051002 1 14101 61 2017
13 14101051003 1 14101 36 2017
14 14101051004 1 14101 38 2017
15 14101051005 1 14101 182 2017
16 14101061001 1 14101 67 2017
17 14101061002 1 14101 30 2017
18 14101061003 1 14101 77 2017
19 14101061004 1 14101 60 2017
20 14101061005 1 14101 58 2017
21 14101061006 1 14101 10 2017
22 14101061007 1 14101 1 2017
23 14101062011 1 14101 2 2017
24 14101062013 1 14101 2 2017
25 14101062021 1 14101 6 2017
26 14101062047 1 14101 1 2017
27 14101071001 1 14101 85 2017
28 14101071002 1 14101 65 2017
29 14101071003 1 14101 131 2017
30 14101071004 1 14101 47 2017
31 14101071005 1 14101 337 2017
32 14101071006 1 14101 61 2017
33 14101072002 1 14101 6 2017
34 14101072045 1 14101 15 2017
35 14101081001 1 14101 352 2017
36 14101081002 1 14101 198 2017
37 14101081003 1 14101 471 2017
38 14101081004 1 14101 99 2017
39 14101081005 1 14101 314 2017
40 14101081006 1 14101 38 2017
41 14101081007 1 14101 26 2017
42 14101081008 1 14101 65 2017
43 14101081009 1 14101 54 2017
44 14101081010 1 14101 136 2017
45 14101081011 1 14101 26 2017
46 14101082002 1 14101 54 2017
47 14101091001 1 14101 169 2017
48 14101091002 1 14101 152 2017
49 14101101001 1 14101 61 2017
50 14101101002 1 14101 104 2017
51 14101101003 1 14101 80 2017
52 14101112005 1 14101 24 2017
53 14101112010 1 14101 8 2017
54 14101112017 1 14101 35 2017
55 14101112037 1 14101 14 2017
56 14101112046 1 14101 6 2017
57 14101112058 1 14101 2 2017
58 14101122007 1 14101 26 2017
59 14101122009 1 14101 2 2017
60 14101122042 1 14101 5 2017
61 14101122058 1 14101 31 2017
62 14101132003 1 14101 9 2017
63 14101132050 1 14101 2 2017
64 14101132901 1 14101 5 2017
65 14101142014 1 14101 5 2017
66 14101142039 1 14101 1 2017
67 14101142059 1 14101 1 2017
68 14101152059 1 14101 1 2017
69 14101161001 1 14101 380 2017
70 14101162018 1 14101 2 2017
71 14101162019 1 14101 8 2017
72 14101162034 1 14101 1 2017
73 14101162053 1 14101 5 2017
74 14101162061 1 14101 6 2017
75 14101171001 1 14101 73 2017
76 14101172001 1 14101 42 2017
77 14101172016 1 14101 7 2017
78 14101172027 1 14101 3 2017
79 14101172036 1 14101 1 2017
80 14101172055 1 14101 1 2017
81 14101182004 1 14101 2 2017
82 14101182006 1 14101 2 2017
83 14101182015 1 14101 16 2017
84 14101182040 1 14101 4 2017
85 14101991999 1 14101 18 2017
612 14102011001 1 14102 51 2017
613 14102012011 1 14102 1 2017
614 14102012018 1 14102 2 2017
615 14102022008 1 14102 5 2017
616 14102022010 1 14102 6 2017
617 14102032001 1 14102 2 2017
618 14102032005 1 14102 1 2017
619 14102032019 1 14102 1 2017
620 14102032901 1 14102 1 2017
621 14102042006 1 14102 1 2017
622 14102042007 1 14102 1 2017
623 14102042015 1 14102 1 2017
624 14102042018 1 14102 4 2017
625 14102991999 1 14102 1 2017
1152 14103011001 1 14103 38 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 14101011001 94 2017 14101
2 14101021001 577 2017 14101
3 14101031001 106 2017 14101
4 14101041001 77 2017 14101
5 14101041002 11 2017 14101
6 14101041003 202 2017 14101
7 14101041004 18 2017 14101
8 14101041005 167 2017 14101
9 14101042005 5 2017 14101
10 14101042058 3 2017 14101
11 14101051001 67 2017 14101
12 14101051002 61 2017 14101
13 14101051003 36 2017 14101
14 14101051004 38 2017 14101
15 14101051005 182 2017 14101
16 14101061001 67 2017 14101
17 14101061002 30 2017 14101
18 14101061003 77 2017 14101
19 14101061004 60 2017 14101
20 14101061005 58 2017 14101
21 14101061006 10 2017 14101
22 14101061007 1 2017 14101
23 14101062011 2 2017 14101
24 14101062013 2 2017 14101
25 14101062021 6 2017 14101
26 14101062047 1 2017 14101
27 14101071001 85 2017 14101
28 14101071002 65 2017 14101
29 14101071003 131 2017 14101
30 14101071004 47 2017 14101
31 14101071005 337 2017 14101
32 14101071006 61 2017 14101
33 14101072002 6 2017 14101
34 14101072045 15 2017 14101
35 14101081001 352 2017 14101
36 14101081002 198 2017 14101
37 14101081003 471 2017 14101
38 14101081004 99 2017 14101
39 14101081005 314 2017 14101
40 14101081006 38 2017 14101
41 14101081007 26 2017 14101
42 14101081008 65 2017 14101
43 14101081009 54 2017 14101
44 14101081010 136 2017 14101
45 14101081011 26 2017 14101
46 14101082002 54 2017 14101
47 14101091001 169 2017 14101
48 14101091002 152 2017 14101
49 14101101001 61 2017 14101
50 14101101002 104 2017 14101
51 14101101003 80 2017 14101
52 14101112005 24 2017 14101
53 14101112010 8 2017 14101
54 14101112017 35 2017 14101
55 14101112037 14 2017 14101
56 14101112046 6 2017 14101
57 14101112058 2 2017 14101
58 14101122007 26 2017 14101
59 14101122009 2 2017 14101
60 14101122042 5 2017 14101
61 14101122058 31 2017 14101
62 14101132003 9 2017 14101
63 14101132050 2 2017 14101
64 14101132901 5 2017 14101
65 14101142014 5 2017 14101
66 14101142039 1 2017 14101
67 14101142059 1 2017 14101
68 14101152059 1 2017 14101
69 14101161001 380 2017 14101
70 14101162018 2 2017 14101
71 14101162019 8 2017 14101
72 14101162034 1 2017 14101
73 14101162053 5 2017 14101
74 14101162061 6 2017 14101
75 14101171001 73 2017 14101
76 14101172001 42 2017 14101
77 14101172016 7 2017 14101
78 14101172027 3 2017 14101
79 14101172036 1 2017 14101
80 14101172055 1 2017 14101
81 14101182004 2 2017 14101
82 14101182006 2 2017 14101
83 14101182015 16 2017 14101
84 14101182040 4 2017 14101
85 14101991999 18 2017 14101
612 14102011001 51 2017 14102
613 14102012011 1 2017 14102
614 14102012018 2 2017 14102
615 14102022008 5 2017 14102
616 14102022010 6 2017 14102
617 14102032001 2 2017 14102
618 14102032005 1 2017 14102
619 14102032019 1 2017 14102
620 14102032901 1 2017 14102
621 14102042006 1 2017 14102
622 14102042007 1 2017 14102
623 14102042015 1 2017 14102
624 14102042018 4 2017 14102
625 14102991999 1 2017 14102
1152 14103011001 38 2017 14103


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 Iquique 354820.7 2017 1101 191468 67936815240
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397
01401 Pozo Almonte 285981.8 2017 1401 15711 4493059532
01402 Camiña 262850.3 2017 1402 1250 328562901
01404 Huara 253968.5 2017 1404 2730 693334131
01405 Pica 313007.5 2017 1405 9296 2909717399
02101 Antofagasta 347580.2 2017 2101 361873 125779893517
02102 Mejillones 369770.7 2017 2102 13467 4979702302
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188
02104 Taltal 364539.1 2017 2104 13317 4854566842
02201 Calama 409671.3 2017 2201 165731 67895226712
02203 San Pedro de Atacama 426592.0 2017 2203 10996 4690805471
02301 Tocopilla 246615.3 2017 2301 25186 6211253937
02302 María Elena 466266.9 2017 2302 6457 3010685220
03101 Copiapó 330075.2 2017 3101 153937 50810778473
03102 Caldera 299314.8 2017 3102 17662 5286498241
03103 Tierra Amarilla 314643.9 2017 3103 14019 4410992711
03201 Chañaral 286389.3 2017 3201 12219 3499391196
03202 Diego de Almagro 336256.8 2017 3202 13925 4682376047
03301 Vallenar 304336.7 2017 3301 51917 15800246795
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833
03303 Freirina 253086.7 2017 3303 7041 1781983257
03304 Huasco 287406.6 2017 3304 10149 2916889629
04101 La Serena 270221.9 2017 4101 221054 59733627577
04102 Coquimbo 261852.6 2017 4102 227730 59631700074
04103 Andacollo 248209.3 2017 4103 11044 2741223967
04104 La Higuera 228356.8 2017 4104 4241 968461330
04105 Paiguano 205942.1 2017 4105 4497 926121774
04106 Vicuña 211431.9 2017 4106 27771 5871675449
04201 Illapel 238674.4 2017 4201 30848 7362627007
04202 Canela 207933.6 2017 4202 9093 1890740321
04203 Los Vilos 255200.4 2017 4203 21382 5456695139
04204 Salamanca 242879.5 2017 4204 29347 7127783272
04301 Ovalle 266522.9 2017 4301 111272 29656533187
04302 Combarbalá 210409.7 2017 4302 13322 2803077721
04303 Monte Patria 211907.9 2017 4303 30751 6516380780
04304 Punitaqui 194997.8 2017 4304 10956 2136395349
04305 Río Hurtado 182027.2 2017 4305 4278 778712384
05101 Valparaíso 298720.7 2017 5101 296655 88616992249
05102 Casablanca 312802.7 2017 5102 26867 8404070481
05103 Concón 318496.3 2017 5103 42152 13425257057
05105 Puchuncaví 288737.2 2017 5105 18546 5354920887
05107 Quintero 316659.1 2017 5107 31923 10108709691
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611
05301 Los Andes 338182.5 2017 5301 66708 22559476922
05302 Calle Larga 245165.4 2017 5302 14832 3636293159
05303 Rinconada 281633.2 2017 5303 10207 2874630315
05304 San Esteban 220958.4 2017 5304 18855 4166170587
05401 La Ligua 229623.7 2017 5401 35390 8126381563
05402 Cabildo 249717.7 2017 5402 19388 4841527150

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
14101 14101011001 94 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101021001 577 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101031001 106 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041001 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041002 11 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041003 202 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041004 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041005 167 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101042005 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101042058 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051001 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051002 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051003 36 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051004 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051005 182 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061001 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061002 30 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061003 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061004 60 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061005 58 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061006 10 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061007 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101062011 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101062013 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101062021 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101062047 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071001 85 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071002 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071003 131 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071004 47 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071005 337 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071006 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101072002 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101072045 15 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081001 352 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081002 198 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081003 471 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081004 99 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081005 314 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081006 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081007 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081008 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081009 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081010 136 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081011 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101082002 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101091001 169 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101091002 152 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101101001 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101101002 104 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101101003 80 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112005 24 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112010 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112017 35 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112037 14 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112046 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112058 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101122007 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101122009 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101122042 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101122058 31 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101132003 9 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101132050 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101132901 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101142014 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101142039 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101142059 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101152059 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101161001 380 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162018 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162019 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162034 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162053 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162061 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101171001 73 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172001 42 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172016 7 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172027 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172036 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172055 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101182004 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101182006 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101182015 16 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101182040 4 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101991999 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14102 14102011001 51 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102012011 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102012018 2 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102022008 5 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102022010 6 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102032001 2 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102032005 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102032019 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102032901 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102042006 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102042007 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102042015 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102042018 4 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102991999 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14103 14103011001 38 2017 Lanco 217605.0 2017 14103 16752 3645318217


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
14101 14101011001 94 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101021001 577 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101031001 106 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041001 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041002 11 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041003 202 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041004 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101041005 167 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101042005 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101042058 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051001 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051002 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051003 36 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051004 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101051005 182 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061001 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061002 30 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061003 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061004 60 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061005 58 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061006 10 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101061007 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101062011 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101062013 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101062021 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101062047 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071001 85 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071002 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071003 131 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071004 47 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071005 337 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101071006 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101072002 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101072045 15 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081001 352 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081002 198 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081003 471 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081004 99 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081005 314 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081006 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081007 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081008 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081009 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081010 136 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101081011 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101082002 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101091001 169 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101091002 152 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101101001 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101101002 104 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101101003 80 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112005 24 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112010 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112017 35 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112037 14 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112046 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101112058 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101122007 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101122009 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101122042 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101122058 31 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101132003 9 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101132050 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101132901 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101142014 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101142039 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101142059 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101152059 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101161001 380 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162018 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162019 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162034 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162053 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101162061 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101171001 73 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172001 42 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172016 7 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172027 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172036 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101172055 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101182004 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101182006 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101182015 16 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101182040 4 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14101 14101991999 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150
14102 14102011001 51 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102012011 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102012018 2 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102022008 5 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102022010 6 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102032001 2 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102032005 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102032019 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102032901 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102042006 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102042007 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102042015 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102042018 4 2017 Corral 207459.9 2017 14102 5302 1099952396
14102 14102991999 1 2017 Corral 207459.9 2017 14102 5302 1099952396
14103 14103011001 38 2017 Lanco 217605.0 2017 14103 16752 3645318217


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y
14101011001 14101 94 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3316 0.0199663 14101
14101021001 14101 577 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5505 0.0331467 14101
14101031001 14101 106 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1916 0.0115366 14101
14101041001 14101 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3347 0.0201529 14101
14101041002 14101 11 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1217 0.0073278 14101
14101041003 14101 202 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3319 0.0199843 14101
14101041004 14101 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3079 0.0185393 14101
14101041005 14101 167 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4543 0.0273543 14101
14101042005 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 60 0.0003613 14101
14101042058 14101 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150 40 0.0002408 14101
14101051001 14101 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3908 0.0235308 14101
14101051002 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2924 0.0176060 14101
14101051003 14101 36 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3046 0.0183406 14101
14101051004 14101 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1117 0.0067257 14101
14101051005 14101 182 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3677 0.0221399 14101
14101061001 14101 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4741 0.0285465 14101
14101061002 14101 30 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2213 0.0133249 14101
14101061003 14101 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3643 0.0219352 14101
14101061004 14101 60 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4455 0.0268244 14101
14101061005 14101 58 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2502 0.0150650 14101
14101061006 14101 10 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1422 0.0085621 14101
14101061007 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 33 0.0001987 14101
14101062011 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 101 0.0006081 14101
14101062013 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 88 0.0005299 14101
14101062021 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 296 0.0017823 14101
14101062047 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 16 0.0000963 14101
14101071001 14101 85 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4214 0.0253733 14101
14101071002 14101 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3859 0.0232358 14101
14101071003 14101 131 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4649 0.0279925 14101
14101071004 14101 47 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1808 0.0108863 14101
14101071005 14101 337 2017 Valdivia 283495.1 2017 14101 166080 47082873150 6057 0.0364704 14101
14101071006 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4766 0.0286970 14101
14101072002 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 294 0.0017702 14101
14101072045 14101 15 2017 Valdivia 283495.1 2017 14101 166080 47082873150 287 0.0017281 14101
14101081001 14101 352 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5118 0.0308165 14101
14101081002 14101 198 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3425 0.0206226 14101
14101081003 14101 471 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4434 0.0266980 14101
14101081004 14101 99 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4941 0.0297507 14101
14101081005 14101 314 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3782 0.0227722 14101
14101081006 14101 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5317 0.0320147 14101
14101081007 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3719 0.0223928 14101
14101081008 14101 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5423 0.0326529 14101
14101081009 14101 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3389 0.0204058 14101
14101081010 14101 136 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5849 0.0352180 14101
14101081011 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2888 0.0173892 14101
14101082002 14101 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150 429 0.0025831 14101
14101091001 14101 169 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3024 0.0182081 14101
14101091002 14101 152 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4672 0.0281310 14101
14101101001 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1538 0.0092606 14101
14101101002 14101 104 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2989 0.0179974 14101
14101101003 14101 80 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2463 0.0148302 14101
14101112005 14101 24 2017 Valdivia 283495.1 2017 14101 166080 47082873150 380 0.0022881 14101
14101112010 14101 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150 176 0.0010597 14101
14101112017 14101 35 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1083 0.0065210 14101
14101112037 14101 14 2017 Valdivia 283495.1 2017 14101 166080 47082873150 535 0.0032213 14101
14101112046 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 103 0.0006202 14101
14101112058 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 59 0.0003553 14101
14101122007 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 297 0.0017883 14101
14101122009 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 266 0.0016016 14101
14101122042 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 233 0.0014029 14101
14101122058 14101 31 2017 Valdivia 283495.1 2017 14101 166080 47082873150 509 0.0030648 14101
14101132003 14101 9 2017 Valdivia 283495.1 2017 14101 166080 47082873150 290 0.0017461 14101
14101132050 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 66 0.0003974 14101
14101132901 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 250 0.0015053 14101
14101142014 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 325 0.0019569 14101
14101142039 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 58 0.0003492 14101
14101142059 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 96 0.0005780 14101
14101152059 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 82 0.0004937 14101
14101161001 14101 380 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1801 0.0108442 14101
14101162018 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 97 0.0005841 14101
14101162019 14101 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150 64 0.0003854 14101
14101162034 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 42 0.0002529 14101
14101162053 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 217 0.0013066 14101
14101162061 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 94 0.0005660 14101
14101171001 14101 73 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3989 0.0240185 14101
14101172001 14101 42 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1348 0.0081166 14101
14101172016 14101 7 2017 Valdivia 283495.1 2017 14101 166080 47082873150 148 0.0008911 14101
14101172027 14101 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150 103 0.0006202 14101
14101172036 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 110 0.0006623 14101
14101172055 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 88 0.0005299 14101
14101182004 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 188 0.0011320 14101
14101182006 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 67 0.0004034 14101
14101182015 14101 16 2017 Valdivia 283495.1 2017 14101 166080 47082873150 455 0.0027396 14101
14101182040 14101 4 2017 Valdivia 283495.1 2017 14101 166080 47082873150 323 0.0019448 14101
14101991999 14101 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150 679 0.0040884 14101
14102011001 14102 51 2017 Corral 207459.9 2017 14102 5302 1099952396 3469 0.6542814 14102
14102012011 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 22 0.0041494 14102
14102012018 14102 2 2017 Corral 207459.9 2017 14102 5302 1099952396 80 0.0150886 14102
14102022008 14102 5 2017 Corral 207459.9 2017 14102 5302 1099952396 507 0.0956243 14102
14102022010 14102 6 2017 Corral 207459.9 2017 14102 5302 1099952396 41 0.0077329 14102
14102032001 14102 2 2017 Corral 207459.9 2017 14102 5302 1099952396 68 0.0128253 14102
14102032005 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 64 0.0120709 14102
14102032019 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 62 0.0116937 14102
14102032901 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 31 0.0058469 14102
14102042006 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 257 0.0484723 14102
14102042007 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 115 0.0216899 14102
14102042015 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 9 0.0016975 14102
14102042018 14102 4 2017 Corral 207459.9 2017 14102 5302 1099952396 33 0.0062241 14102
14102991999 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 12 0.0022633 14102
14103011001 14103 38 2017 Lanco 217605.0 2017 14103 16752 3645318217 2488 0.1485196 14103


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
14101011001 14101 94 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3316 0.0199663 14101 940069890
14101021001 14101 577 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5505 0.0331467 14101 1560640756
14101031001 14101 106 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1916 0.0115366 14101 543176692
14101041001 14101 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3347 0.0201529 14101 948858240
14101041002 14101 11 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1217 0.0073278 14101 345013588
14101041003 14101 202 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3319 0.0199843 14101 940920376
14101041004 14101 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3079 0.0185393 14101 872881542
14101041005 14101 167 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4543 0.0273543 14101 1287918429
14101042005 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 60 0.0003613 14101 17009709
14101042058 14101 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150 40 0.0002408 14101 11339806
14101051001 14101 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3908 0.0235308 14101 1107899014
14101051002 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2924 0.0176060 14101 828939795
14101051003 14101 36 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3046 0.0183406 14101 863526202
14101051004 14101 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1117 0.0067257 14101 316664073
14101051005 14101 182 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3677 0.0221399 14101 1042411636
14101061001 14101 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4741 0.0285465 14101 1344050467
14101061002 14101 30 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2213 0.0133249 14101 627374749
14101061003 14101 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3643 0.0219352 14101 1032772802
14101061004 14101 60 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4455 0.0268244 14101 1262970857
14101061005 14101 58 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2502 0.0150650 14101 709304845
14101061006 14101 10 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1422 0.0085621 14101 403130092
14101061007 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 33 0.0001987 14101 9355340
14101062011 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 101 0.0006081 14101 28633009
14101062013 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 88 0.0005299 14101 24947572
14101062021 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 296 0.0017823 14101 83914562
14101062047 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 16 0.0000963 14101 4535922
14101071001 14101 85 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4214 0.0253733 14101 1194648528
14101071002 14101 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3859 0.0232358 14101 1094007752
14101071003 14101 131 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4649 0.0279925 14101 1317968914
14101071004 14101 47 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1808 0.0108863 14101 512559216
14101071005 14101 337 2017 Valdivia 283495.1 2017 14101 166080 47082873150 6057 0.0364704 14101 1717130074
14101071006 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4766 0.0286970 14101 1351137846
14101072002 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 294 0.0017702 14101 83347572
14101072045 14101 15 2017 Valdivia 283495.1 2017 14101 166080 47082873150 287 0.0017281 14101 81363106
14101081001 14101 352 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5118 0.0308165 14101 1450928136
14101081002 14101 198 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3425 0.0206226 14101 970970861
14101081003 14101 471 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4434 0.0266980 14101 1257017459
14101081004 14101 99 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4941 0.0297507 14101 1400749496
14101081005 14101 314 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3782 0.0227722 14101 1072178626
14101081006 14101 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5317 0.0320147 14101 1507343669
14101081007 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3719 0.0223928 14101 1054318432
14101081008 14101 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5423 0.0326529 14101 1537394154
14101081009 14101 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3389 0.0204058 14101 960765036
14101081010 14101 136 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5849 0.0352180 14101 1658163084
14101081011 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2888 0.0173892 14101 818733970
14101082002 14101 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150 429 0.0025831 14101 121619416
14101091001 14101 169 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3024 0.0182081 14101 857289309
14101091002 14101 152 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4672 0.0281310 14101 1324489302
14101101001 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1538 0.0092606 14101 436015528
14101101002 14101 104 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2989 0.0179974 14101 847366979
14101101003 14101 80 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2463 0.0148302 14101 698248534
14101112005 14101 24 2017 Valdivia 283495.1 2017 14101 166080 47082873150 380 0.0022881 14101 107728154
14101112010 14101 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150 176 0.0010597 14101 49895145
14101112017 14101 35 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1083 0.0065210 14101 307025239
14101112037 14101 14 2017 Valdivia 283495.1 2017 14101 166080 47082873150 535 0.0032213 14101 151669901
14101112046 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 103 0.0006202 14101 29200000
14101112058 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 59 0.0003553 14101 16726213
14101122007 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 297 0.0017883 14101 84198057
14101122009 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 266 0.0016016 14101 75409708
14101122042 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 233 0.0014029 14101 66054368
14101122058 14101 31 2017 Valdivia 283495.1 2017 14101 166080 47082873150 509 0.0030648 14101 144299027
14101132003 14101 9 2017 Valdivia 283495.1 2017 14101 166080 47082873150 290 0.0017461 14101 82213591
14101132050 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 66 0.0003974 14101 18710679
14101132901 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 250 0.0015053 14101 70873785
14101142014 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 325 0.0019569 14101 92135921
14101142039 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 58 0.0003492 14101 16442718
14101142059 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 96 0.0005780 14101 27215534
14101152059 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 82 0.0004937 14101 23246602
14101161001 14101 380 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1801 0.0108442 14101 510574750
14101162018 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 97 0.0005841 14101 27499029
14101162019 14101 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150 64 0.0003854 14101 18143689
14101162034 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 42 0.0002529 14101 11906796
14101162053 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 217 0.0013066 14101 61518446
14101162061 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 94 0.0005660 14101 26648543
14101171001 14101 73 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3989 0.0240185 14101 1130862121
14101172001 14101 42 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1348 0.0081166 14101 382151451
14101172016 14101 7 2017 Valdivia 283495.1 2017 14101 166080 47082873150 148 0.0008911 14101 41957281
14101172027 14101 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150 103 0.0006202 14101 29200000
14101172036 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 110 0.0006623 14101 31184466
14101172055 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 88 0.0005299 14101 24947572
14101182004 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 188 0.0011320 14101 53297087
14101182006 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 67 0.0004034 14101 18994175
14101182015 14101 16 2017 Valdivia 283495.1 2017 14101 166080 47082873150 455 0.0027396 14101 128990290
14101182040 14101 4 2017 Valdivia 283495.1 2017 14101 166080 47082873150 323 0.0019448 14101 91568931
14101991999 14101 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150 679 0.0040884 14101 192493201
14102011001 14102 51 2017 Corral 207459.9 2017 14102 5302 1099952396 3469 0.6542814 14102 719678397
14102012011 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 22 0.0041494 14102 4564118
14102012018 14102 2 2017 Corral 207459.9 2017 14102 5302 1099952396 80 0.0150886 14102 16596792
14102022008 14102 5 2017 Corral 207459.9 2017 14102 5302 1099952396 507 0.0956243 14102 105182170
14102022010 14102 6 2017 Corral 207459.9 2017 14102 5302 1099952396 41 0.0077329 14102 8505856
14102032001 14102 2 2017 Corral 207459.9 2017 14102 5302 1099952396 68 0.0128253 14102 14107273
14102032005 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 64 0.0120709 14102 13277434
14102032019 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 62 0.0116937 14102 12862514
14102032901 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 31 0.0058469 14102 6431257
14102042006 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 257 0.0484723 14102 53317195
14102042007 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 115 0.0216899 14102 23857889
14102042015 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 9 0.0016975 14102 1867139
14102042018 14102 4 2017 Corral 207459.9 2017 14102 5302 1099952396 33 0.0062241 14102 6846177
14102991999 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 12 0.0022633 14102 2489519
14103011001 14103 38 2017 Lanco 217605.0 2017 14103 16752 3645318217 2488 0.1485196 14103 541401130

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.330e+09 -8.326e+07 -6.729e+07 -2.597e+07  1.244e+09 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 88535556   10532176   8.406 4.02e-16 ***
## Freq.x       4610622     192241  23.984  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 226700000 on 524 degrees of freedom
## Multiple R-squared:  0.5233, Adjusted R-squared:  0.5224 
## F-statistic: 575.2 on 1 and 524 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.330e+09 -8.326e+07 -6.729e+07 -2.597e+07  1.244e+09 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 88535556   10532176   8.406 4.02e-16 ***
## Freq.x       4610622     192241  23.984  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 226700000 on 524 degrees of freedom
## Multiple R-squared:  0.5233, Adjusted R-squared:  0.5224 
## F-statistic: 575.2 on 1 and 524 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.330e+09 -8.326e+07 -6.729e+07 -2.597e+07  1.244e+09 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 88535556   10532176   8.406 4.02e-16 ***
## Freq.x       4610622     192241  23.984  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 226700000 on 524 degrees of freedom
## Multiple R-squared:  0.5233, Adjusted R-squared:  0.5224 
## F-statistic: 575.2 on 1 and 524 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -478462706 -146140175   -3700162  118698814  969532506 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -106802780   13119383  -8.141 2.88e-15 ***
## log(Freq.x)  177209258    6078300  29.154  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 202700000 on 524 degrees of freedom
## Multiple R-squared:  0.6186, Adjusted R-squared:  0.6179 
## F-statistic:   850 on 1 and 524 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.149e+09 -6.744e+07 -8.353e+06  2.860e+07  1.050e+09 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -98817629   10355548  -9.542   <2e-16 ***
## sqrt(Freq.x)  90227545    2380136  37.909   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 169700000 on 524 degrees of freedom
## Multiple R-squared:  0.7328, Adjusted R-squared:  0.7323 
## F-statistic:  1437 on 1 and 524 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -27816  -2211   -662   1473  21317 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2290.24     278.80   8.215 1.67e-15 ***
## sqrt(Freq.x)  2468.58      64.08  38.524  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4569 on 524 degrees of freedom
## Multiple R-squared:  0.7391, Adjusted R-squared:  0.7386 
## F-statistic:  1484 on 1 and 524 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3572 -0.5430  0.1022  0.6764  2.3903 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   16.6250     0.0609  272.99   <2e-16 ***
## sqrt(Freq.x)   0.3705     0.0140   26.47   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.998 on 524 degrees of freedom
## Multiple R-squared:  0.5722, Adjusted R-squared:  0.5713 
## F-statistic: 700.7 on 1 and 524 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12624.8  -3210.2    -15.7   2832.6  18396.9 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1510.0      307.4   4.912 1.21e-06 ***
## log(Freq.x)   5200.6      142.4  36.513  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4751 on 524 degrees of freedom
## Multiple R-squared:  0.7179, Adjusted R-squared:  0.7173 
## F-statistic:  1333 on 1 and 524 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6070 -0.5026  0.0535  0.6295  2.2808 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.38046    0.05626  291.17   <2e-16 ***
## log(Freq.x)  0.86052    0.02606   33.02   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8694 on 524 degrees of freedom
## Multiple R-squared:  0.6753, Adjusted R-squared:  0.6747 
## F-statistic:  1090 on 1 and 524 DF,  p-value: < 2.2e-16

9 Modelo raíz-raíz (r-r)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7386).

9.1 Diagrama de dispersión sobre r-r

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo r-r

Observemos nuevamente el resultado sobre r-r.

linearMod <- lm(sqrt( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -27816  -2211   -662   1473  21317 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2290.24     278.80   8.215 1.67e-15 ***
## sqrt(Freq.x)  2468.58      64.08  38.524  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4569 on 524 degrees of freedom
## Multiple R-squared:  0.7391, Adjusted R-squared:  0.7386 
## F-statistic:  1484 on 1 and 524 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = 2290.24^2 + 2 \cdot 2290.24 \cdot 2468.58 \sqrt{X} + 2468.58 ^2 \cdot X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- 2290.24^2 + 2290.24* 2468.58* sqrt(h_y_m_comuna_corr_01$Freq.x)+2468.58 ^2*h_y_m_comuna_corr_01$Freq.x

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
14101011001 14101 94 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3316 0.0199663 14101 940069890 632884677
14101021001 14101 577 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5505 0.0331467 14101 1560640756 3657223232
14101031001 14101 106 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1916 0.0115366 14101 543176692 709405037
14101041001 14101 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3347 0.0201529 14101 948858240 524085010
14101041002 14101 11 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1217 0.0073278 14101 345013588 91028963
14101041003 14101 202 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3319 0.0199843 14101 940920376 1316563748
14101041004 14101 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3079 0.0185393 14101 872881542 138921535
14101041005 14101 167 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4543 0.0273543 14101 1287918429 1095985503
14101042005 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 60 0.0003613 14101 17009709 48356560
14101042058 14101 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150 40 0.0002408 14101 11339806 33319254
14101051001 14101 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3908 0.0235308 14101 1107899014 459812686
14101051002 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2924 0.0176060 14101 828939795 421128665
14101051003 14101 36 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3046 0.0183406 14101 863526202 258546983
14101051004 14101 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1117 0.0067257 14101 316664073 271664295
14101051005 14101 182 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3677 0.0221399 14101 1042411636 1190604455
14101061001 14101 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4741 0.0285465 14101 1344050467 459812686
14101061002 14101 30 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2213 0.0133249 14101 627374749 219028081
14101061003 14101 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3643 0.0219352 14101 1032772802 524085010
14101061004 14101 60 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4455 0.0268244 14101 1262970857 414671344
14101061005 14101 58 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2502 0.0150650 14101 709304845 401747502
14101061006 14101 10 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1422 0.0085621 14101 403130092 84062453
14101061007 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 33 0.0001987 14101 9355340 16992727
14101062011 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 101 0.0006081 14101 28633009 25428429
14101062013 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 88 0.0005299 14101 24947572 25428429
14101062021 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 296 0.0017823 14101 83914562 55657057
14101062047 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 16 0.0000963 14101 4535922 16992727
14101071001 14101 85 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4214 0.0253733 14101 1194648528 575349604
14101071002 14101 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3859 0.0232358 14101 1094007752 446928977
14101071003 14101 131 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4649 0.0279925 14101 1317968914 868253300
14101071004 14101 47 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1808 0.0108863 14101 512559216 330417306
14101071005 14101 337 2017 Valdivia 283495.1 2017 14101 166080 47082873150 6057 0.0364704 14101 1717130074 2162672237
14101071006 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4766 0.0286970 14101 1351137846 421128665
14101072002 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 294 0.0017702 14101 83347572 55657057
14101072045 14101 15 2017 Valdivia 283495.1 2017 14101 166080 47082873150 287 0.0017281 14101 81363106 118549964
14101081001 14101 352 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5118 0.0308165 14101 1450928136 2256365200
14101081002 14101 198 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3425 0.0206226 14101 970970861 1291388644
14101081003 14101 471 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4434 0.0266980 14101 1257017459 2998164409
14101081004 14101 99 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4941 0.0297507 14101 1400749496 664793048
14101081005 14101 314 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3782 0.0227722 14101 1072178626 2018908553
14101081006 14101 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5317 0.0320147 14101 1507343669 271664295
14101081007 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3719 0.0223928 14101 1054318432 192514291
14101081008 14101 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5423 0.0326529 14101 1537394154 446928977
14101081009 14101 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3389 0.0204058 14101 960765036 375860713
14101081010 14101 136 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5849 0.0352180 14101 1658163084 899946074
14101081011 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2888 0.0173892 14101 818733970 192514291
14101082002 14101 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150 429 0.0025831 14101 121619416 375860713
14101091001 14101 169 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3024 0.0182081 14101 857289309 1108609467
14101091002 14101 152 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4672 0.0281310 14101 1324489302 1001218819
14101101001 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1538 0.0092606 14101 436015528 421128665
14101101002 14101 104 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2989 0.0179974 14101 847366979 696665518
14101101003 14101 80 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2463 0.0148302 14101 698248534 543323876
14101112005 14101 24 2017 Valdivia 283495.1 2017 14101 166080 47082873150 380 0.0022881 14101 107728154 179195562
14101112010 14101 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150 176 0.0010597 14101 49895145 69987208
14101112017 14101 35 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1083 0.0065210 14101 307025239 251978641
14101112037 14101 14 2017 Valdivia 283495.1 2017 14101 166080 47082873150 535 0.0032213 14101 151669901 111713607
14101112046 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 103 0.0006202 14101 29200000 55657057
14101112058 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 59 0.0003553 14101 16726213 25428429
14101122007 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 297 0.0017883 14101 84198057 192514291
14101122009 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 266 0.0016016 14101 75409708 25428429
14101122042 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 233 0.0014029 14101 66054368 48356560
14101122058 14101 31 2017 Valdivia 283495.1 2017 14101 166080 47082873150 509 0.0030648 14101 144299027 225633842
14101132003 14101 9 2017 Valdivia 283495.1 2017 14101 166080 47082873150 290 0.0017461 14101 82213591 77051106
14101132050 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 66 0.0003974 14101 18710679 25428429
14101132901 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 250 0.0015053 14101 70873785 48356560
14101142014 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 325 0.0019569 14101 92135921 48356560
14101142039 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 58 0.0003492 14101 16442718 16992727
14101142059 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 96 0.0005780 14101 27215534 16992727
14101152059 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 82 0.0004937 14101 23246602 16992727
14101161001 14101 380 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1801 0.0108442 14101 510574750 2431132087
14101162018 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 97 0.0005841 14101 27499029 25428429
14101162019 14101 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150 64 0.0003854 14101 18143689 69987208
14101162034 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 42 0.0002529 14101 11906796 16992727
14101162053 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 217 0.0013066 14101 61518446 48356560
14101162061 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 94 0.0005660 14101 26648543 55657057
14101171001 14101 73 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3989 0.0240185 14101 1130862121 498403693
14101172001 14101 42 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1348 0.0081166 14101 382151451 297828241
14101172016 14101 7 2017 Valdivia 283495.1 2017 14101 166080 47082873150 148 0.0008911 14101 41957281 62860537
14101172027 14101 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150 103 0.0006202 14101 29200000 33319254
14101172036 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 110 0.0006623 14101 31184466 16992727
14101172055 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 88 0.0005299 14101 24947572 16992727
14101182004 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 188 0.0011320 14101 53297087 25428429
14101182006 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 67 0.0004034 14101 18994175 25428429
14101182015 14101 16 2017 Valdivia 283495.1 2017 14101 166080 47082873150 455 0.0027396 14101 128990290 125361957
14101182040 14101 4 2017 Valdivia 283495.1 2017 14101 166080 47082873150 323 0.0019448 14101 91568931 40928029
14101991999 14101 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150 679 0.0040884 14101 192493201 138921535
14102011001 14102 51 2017 Corral 207459.9 2017 14102 5302 1099952396 3469 0.6542814 14102 719678397 356408517
14102012011 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 22 0.0041494 14102 4564118 16992727
14102012018 14102 2 2017 Corral 207459.9 2017 14102 5302 1099952396 80 0.0150886 14102 16596792 25428429
14102022008 14102 5 2017 Corral 207459.9 2017 14102 5302 1099952396 507 0.0956243 14102 105182170 48356560
14102022010 14102 6 2017 Corral 207459.9 2017 14102 5302 1099952396 41 0.0077329 14102 8505856 55657057
14102032001 14102 2 2017 Corral 207459.9 2017 14102 5302 1099952396 68 0.0128253 14102 14107273 25428429
14102032005 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 64 0.0120709 14102 13277434 16992727
14102032019 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 62 0.0116937 14102 12862514 16992727
14102032901 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 31 0.0058469 14102 6431257 16992727
14102042006 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 257 0.0484723 14102 53317195 16992727
14102042007 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 115 0.0216899 14102 23857889 16992727
14102042015 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 9 0.0016975 14102 1867139 16992727
14102042018 14102 4 2017 Corral 207459.9 2017 14102 5302 1099952396 33 0.0062241 14102 6846177 40928029
14102991999 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 12 0.0022633 14102 2489519 16992727
14103011001 14103 38 2017 Lanco 217605.0 2017 14103 16752 3645318217 2488 0.1485196 14103 541401130 271664295


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
14101011001 14101 94 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3316 0.0199663 14101 940069890 632884677 190857.86
14101021001 14101 577 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5505 0.0331467 14101 1560640756 3657223232 664345.73
14101031001 14101 106 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1916 0.0115366 14101 543176692 709405037 370253.15
14101041001 14101 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3347 0.0201529 14101 948858240 524085010 156583.51
14101041002 14101 11 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1217 0.0073278 14101 345013588 91028963 74797.83
14101041003 14101 202 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3319 0.0199843 14101 940920376 1316563748 396674.83
14101041004 14101 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3079 0.0185393 14101 872881542 138921535 45119.04
14101041005 14101 167 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4543 0.0273543 14101 1287918429 1095985503 241247.08
14101042005 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 60 0.0003613 14101 17009709 48356560 805942.67
14101042058 14101 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150 40 0.0002408 14101 11339806 33319254 832981.34
14101051001 14101 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3908 0.0235308 14101 1107899014 459812686 117659.34
14101051002 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2924 0.0176060 14101 828939795 421128665 144024.85
14101051003 14101 36 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3046 0.0183406 14101 863526202 258546983 84880.82
14101051004 14101 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1117 0.0067257 14101 316664073 271664295 243208.86
14101051005 14101 182 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3677 0.0221399 14101 1042411636 1190604455 323797.78
14101061001 14101 67 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4741 0.0285465 14101 1344050467 459812686 96986.43
14101061002 14101 30 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2213 0.0133249 14101 627374749 219028081 98973.38
14101061003 14101 77 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3643 0.0219352 14101 1032772802 524085010 143860.83
14101061004 14101 60 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4455 0.0268244 14101 1262970857 414671344 93079.99
14101061005 14101 58 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2502 0.0150650 14101 709304845 401747502 160570.54
14101061006 14101 10 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1422 0.0085621 14101 403130092 84062453 59115.65
14101061007 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 33 0.0001987 14101 9355340 16992727 514931.13
14101062011 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 101 0.0006081 14101 28633009 25428429 251766.62
14101062013 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 88 0.0005299 14101 24947572 25428429 288959.42
14101062021 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 296 0.0017823 14101 83914562 55657057 188030.60
14101062047 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 16 0.0000963 14101 4535922 16992727 1062045.45
14101071001 14101 85 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4214 0.0253733 14101 1194648528 575349604 136532.89
14101071002 14101 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3859 0.0232358 14101 1094007752 446928977 115814.71
14101071003 14101 131 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4649 0.0279925 14101 1317968914 868253300 186761.30
14101071004 14101 47 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1808 0.0108863 14101 512559216 330417306 182752.93
14101071005 14101 337 2017 Valdivia 283495.1 2017 14101 166080 47082873150 6057 0.0364704 14101 1717130074 2162672237 357053.37
14101071006 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4766 0.0286970 14101 1351137846 421128665 88361.03
14101072002 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 294 0.0017702 14101 83347572 55657057 189309.72
14101072045 14101 15 2017 Valdivia 283495.1 2017 14101 166080 47082873150 287 0.0017281 14101 81363106 118549964 413066.08
14101081001 14101 352 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5118 0.0308165 14101 1450928136 2256365200 440868.54
14101081002 14101 198 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3425 0.0206226 14101 970970861 1291388644 377047.78
14101081003 14101 471 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4434 0.0266980 14101 1257017459 2998164409 676176.01
14101081004 14101 99 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4941 0.0297507 14101 1400749496 664793048 134546.26
14101081005 14101 314 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3782 0.0227722 14101 1072178626 2018908553 533820.35
14101081006 14101 38 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5317 0.0320147 14101 1507343669 271664295 51093.53
14101081007 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3719 0.0223928 14101 1054318432 192514291 51765.07
14101081008 14101 65 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5423 0.0326529 14101 1537394154 446928977 82413.60
14101081009 14101 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3389 0.0204058 14101 960765036 375860713 110906.08
14101081010 14101 136 2017 Valdivia 283495.1 2017 14101 166080 47082873150 5849 0.0352180 14101 1658163084 899946074 153863.24
14101081011 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2888 0.0173892 14101 818733970 192514291 66660.07
14101082002 14101 54 2017 Valdivia 283495.1 2017 14101 166080 47082873150 429 0.0025831 14101 121619416 375860713 876132.20
14101091001 14101 169 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3024 0.0182081 14101 857289309 1108609467 366603.66
14101091002 14101 152 2017 Valdivia 283495.1 2017 14101 166080 47082873150 4672 0.0281310 14101 1324489302 1001218819 214301.97
14101101001 14101 61 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1538 0.0092606 14101 436015528 421128665 273815.78
14101101002 14101 104 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2989 0.0179974 14101 847366979 696665518 233076.45
14101101003 14101 80 2017 Valdivia 283495.1 2017 14101 166080 47082873150 2463 0.0148302 14101 698248534 543323876 220594.35
14101112005 14101 24 2017 Valdivia 283495.1 2017 14101 166080 47082873150 380 0.0022881 14101 107728154 179195562 471567.27
14101112010 14101 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150 176 0.0010597 14101 49895145 69987208 397654.59
14101112017 14101 35 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1083 0.0065210 14101 307025239 251978641 232667.26
14101112037 14101 14 2017 Valdivia 283495.1 2017 14101 166080 47082873150 535 0.0032213 14101 151669901 111713607 208810.48
14101112046 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 103 0.0006202 14101 29200000 55657057 540359.78
14101112058 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 59 0.0003553 14101 16726213 25428429 430990.32
14101122007 14101 26 2017 Valdivia 283495.1 2017 14101 166080 47082873150 297 0.0017883 14101 84198057 192514291 648196.27
14101122009 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 266 0.0016016 14101 75409708 25428429 95595.60
14101122042 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 233 0.0014029 14101 66054368 48356560 207538.88
14101122058 14101 31 2017 Valdivia 283495.1 2017 14101 166080 47082873150 509 0.0030648 14101 144299027 225633842 443288.49
14101132003 14101 9 2017 Valdivia 283495.1 2017 14101 166080 47082873150 290 0.0017461 14101 82213591 77051106 265693.47
14101132050 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 66 0.0003974 14101 18710679 25428429 385279.23
14101132901 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 250 0.0015053 14101 70873785 48356560 193426.24
14101142014 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 325 0.0019569 14101 92135921 48356560 148789.42
14101142039 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 58 0.0003492 14101 16442718 16992727 292978.05
14101142059 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 96 0.0005780 14101 27215534 16992727 177007.57
14101152059 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 82 0.0004937 14101 23246602 16992727 207228.38
14101161001 14101 380 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1801 0.0108442 14101 510574750 2431132087 1349879.00
14101162018 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 97 0.0005841 14101 27499029 25428429 262148.75
14101162019 14101 8 2017 Valdivia 283495.1 2017 14101 166080 47082873150 64 0.0003854 14101 18143689 69987208 1093550.12
14101162034 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 42 0.0002529 14101 11906796 16992727 404588.74
14101162053 14101 5 2017 Valdivia 283495.1 2017 14101 166080 47082873150 217 0.0013066 14101 61518446 48356560 222841.29
14101162061 14101 6 2017 Valdivia 283495.1 2017 14101 166080 47082873150 94 0.0005660 14101 26648543 55657057 592096.35
14101171001 14101 73 2017 Valdivia 283495.1 2017 14101 166080 47082873150 3989 0.0240185 14101 1130862121 498403693 124944.52
14101172001 14101 42 2017 Valdivia 283495.1 2017 14101 166080 47082873150 1348 0.0081166 14101 382151451 297828241 220940.83
14101172016 14101 7 2017 Valdivia 283495.1 2017 14101 166080 47082873150 148 0.0008911 14101 41957281 62860537 424733.36
14101172027 14101 3 2017 Valdivia 283495.1 2017 14101 166080 47082873150 103 0.0006202 14101 29200000 33319254 323487.90
14101172036 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 110 0.0006623 14101 31184466 16992727 154479.34
14101172055 14101 1 2017 Valdivia 283495.1 2017 14101 166080 47082873150 88 0.0005299 14101 24947572 16992727 193099.17
14101182004 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 188 0.0011320 14101 53297087 25428429 135257.60
14101182006 14101 2 2017 Valdivia 283495.1 2017 14101 166080 47082873150 67 0.0004034 14101 18994175 25428429 379528.79
14101182015 14101 16 2017 Valdivia 283495.1 2017 14101 166080 47082873150 455 0.0027396 14101 128990290 125361957 275520.79
14101182040 14101 4 2017 Valdivia 283495.1 2017 14101 166080 47082873150 323 0.0019448 14101 91568931 40928029 126712.17
14101991999 14101 18 2017 Valdivia 283495.1 2017 14101 166080 47082873150 679 0.0040884 14101 192493201 138921535 204597.25
14102011001 14102 51 2017 Corral 207459.9 2017 14102 5302 1099952396 3469 0.6542814 14102 719678397 356408517 102741.00
14102012011 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 22 0.0041494 14102 4564118 16992727 772396.69
14102012018 14102 2 2017 Corral 207459.9 2017 14102 5302 1099952396 80 0.0150886 14102 16596792 25428429 317855.36
14102022008 14102 5 2017 Corral 207459.9 2017 14102 5302 1099952396 507 0.0956243 14102 105182170 48356560 95377.83
14102022010 14102 6 2017 Corral 207459.9 2017 14102 5302 1099952396 41 0.0077329 14102 8505856 55657057 1357489.20
14102032001 14102 2 2017 Corral 207459.9 2017 14102 5302 1099952396 68 0.0128253 14102 14107273 25428429 373947.49
14102032005 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 64 0.0120709 14102 13277434 16992727 265511.36
14102032019 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 62 0.0116937 14102 12862514 16992727 274076.24
14102032901 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 31 0.0058469 14102 6431257 16992727 548152.49
14102042006 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 257 0.0484723 14102 53317195 16992727 66119.56
14102042007 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 115 0.0216899 14102 23857889 16992727 147762.84
14102042015 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 9 0.0016975 14102 1867139 16992727 1888080.79
14102042018 14102 4 2017 Corral 207459.9 2017 14102 5302 1099952396 33 0.0062241 14102 6846177 40928029 1240243.32
14102991999 14102 1 2017 Corral 207459.9 2017 14102 5302 1099952396 12 0.0022633 14102 2489519 16992727 1416060.59
14103011001 14103 38 2017 Lanco 217605.0 2017 14103 16752 3645318217 2488 0.1485196 14103 541401130 271664295 109189.83


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_14.rds")