1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).

1.1 Lectura y filtrado de la tabla censal de viviendas

Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 1:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 13) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
13101011001 1 13101 211 2017
13101011002 1 13101 241 2017
13101011003 1 13101 141 2017
13101011004 1 13101 114 2017
13101011005 1 13101 96 2017
13101021001 1 13101 80 2017
13101021002 1 13101 29 2017
13101021003 1 13101 190 2017
13101021004 1 13101 391 2017
13101021005 1 13101 139 2017
13101021006 1 13101 326 2017
13101021007 1 13101 99 2017
13101021008 1 13101 71 2017
13101031001 1 13101 122 2017
13101031002 1 13101 265 2017
13101031003 1 13101 348 2017
13101031004 1 13101 359 2017
13101031005 1 13101 139 2017
13101031006 1 13101 174 2017
13101031007 1 13101 307 2017
13101041001 1 13101 300 2017
13101041002 1 13101 219 2017
13101041003 1 13101 266 2017
13101041004 1 13101 153 2017
13101041005 1 13101 219 2017
13101051001 1 13101 253 2017
13101051002 1 13101 370 2017
13101051003 1 13101 165 2017
13101061001 1 13101 417 2017
13101061002 1 13101 418 2017
13101061003 1 13101 227 2017
13101071001 1 13101 390 2017
13101071002 1 13101 230 2017
13101071003 1 13101 218 2017
13101081001 1 13101 234 2017
13101081002 1 13101 433 2017
13101081003 1 13101 125 2017
13101081004 1 13101 216 2017
13101091001 1 13101 186 2017
13101091002 1 13101 394 2017
13101091003 1 13101 373 2017
13101091004 1 13101 267 2017
13101101001 1 13101 44 2017
13101101002 1 13101 68 2017
13101101003 1 13101 156 2017
13101101004 1 13101 101 2017
13101101005 1 13101 52 2017
13101101006 1 13101 42 2017
13101101007 1 13101 105 2017
13101101008 1 13101 114 2017
13101101009 1 13101 33 2017
13101101010 1 13101 149 2017
13101111001 1 13101 56 2017
13101111002 1 13101 409 2017
13101111003 1 13101 84 2017
13101111004 1 13101 93 2017
13101111005 1 13101 85 2017
13101111006 1 13101 60 2017
13101111007 1 13101 105 2017
13101111008 1 13101 94 2017
13101111009 1 13101 140 2017
13101111010 1 13101 59 2017
13101111011 1 13101 68 2017
13101111012 1 13101 147 2017
13101111013 1 13101 85 2017
13101111014 1 13101 69 2017
13101111015 1 13101 187 2017
13101111016 1 13101 74 2017
13101111017 1 13101 113 2017
13101111018 1 13101 71 2017
13101111019 1 13101 152 2017
13101121001 1 13101 123 2017
13101121002 1 13101 152 2017
13101121003 1 13101 63 2017
13101121004 1 13101 375 2017
13101121005 1 13101 165 2017
13101121006 1 13101 213 2017
13101121007 1 13101 164 2017
13101121008 1 13101 276 2017
13101121009 1 13101 320 2017
13101131001 1 13101 114 2017
13101131002 1 13101 79 2017
13101131003 1 13101 143 2017
13101131004 1 13101 158 2017
13101131005 1 13101 102 2017
13101131006 1 13101 40 2017
13101131007 1 13101 202 2017
13101131008 1 13101 205 2017
13101131009 1 13101 173 2017
13101141001 1 13101 228 2017
13101141002 1 13101 101 2017
13101141003 1 13101 196 2017
13101151001 1 13101 497 2017
13101151002 1 13101 316 2017
13101151003 1 13101 210 2017
13101151004 1 13101 175 2017
13101161001 1 13101 190 2017
13101161002 1 13101 350 2017
13101161003 1 13101 292 2017
13101171001 1 13101 365 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
13101011001 211 2017 13101
13101011002 241 2017 13101
13101011003 141 2017 13101
13101011004 114 2017 13101
13101011005 96 2017 13101
13101021001 80 2017 13101
13101021002 29 2017 13101
13101021003 190 2017 13101
13101021004 391 2017 13101
13101021005 139 2017 13101
13101021006 326 2017 13101
13101021007 99 2017 13101
13101021008 71 2017 13101
13101031001 122 2017 13101
13101031002 265 2017 13101
13101031003 348 2017 13101
13101031004 359 2017 13101
13101031005 139 2017 13101
13101031006 174 2017 13101
13101031007 307 2017 13101
13101041001 300 2017 13101
13101041002 219 2017 13101
13101041003 266 2017 13101
13101041004 153 2017 13101
13101041005 219 2017 13101
13101051001 253 2017 13101
13101051002 370 2017 13101
13101051003 165 2017 13101
13101061001 417 2017 13101
13101061002 418 2017 13101
13101061003 227 2017 13101
13101071001 390 2017 13101
13101071002 230 2017 13101
13101071003 218 2017 13101
13101081001 234 2017 13101
13101081002 433 2017 13101
13101081003 125 2017 13101
13101081004 216 2017 13101
13101091001 186 2017 13101
13101091002 394 2017 13101
13101091003 373 2017 13101
13101091004 267 2017 13101
13101101001 44 2017 13101
13101101002 68 2017 13101
13101101003 156 2017 13101
13101101004 101 2017 13101
13101101005 52 2017 13101
13101101006 42 2017 13101
13101101007 105 2017 13101
13101101008 114 2017 13101
13101101009 33 2017 13101
13101101010 149 2017 13101
13101111001 56 2017 13101
13101111002 409 2017 13101
13101111003 84 2017 13101
13101111004 93 2017 13101
13101111005 85 2017 13101
13101111006 60 2017 13101
13101111007 105 2017 13101
13101111008 94 2017 13101
13101111009 140 2017 13101
13101111010 59 2017 13101
13101111011 68 2017 13101
13101111012 147 2017 13101
13101111013 85 2017 13101
13101111014 69 2017 13101
13101111015 187 2017 13101
13101111016 74 2017 13101
13101111017 113 2017 13101
13101111018 71 2017 13101
13101111019 152 2017 13101
13101121001 123 2017 13101
13101121002 152 2017 13101
13101121003 63 2017 13101
13101121004 375 2017 13101
13101121005 165 2017 13101
13101121006 213 2017 13101
13101121007 164 2017 13101
13101121008 276 2017 13101
13101121009 320 2017 13101
13101131001 114 2017 13101
13101131002 79 2017 13101
13101131003 143 2017 13101
13101131004 158 2017 13101
13101131005 102 2017 13101
13101131006 40 2017 13101
13101131007 202 2017 13101
13101131008 205 2017 13101
13101131009 173 2017 13101
13101141001 228 2017 13101
13101141002 101 2017 13101
13101141003 196 2017 13101
13101151001 497 2017 13101
13101151002 316 2017 13101
13101151003 210 2017 13101
13101151004 175 2017 13101
13101161001 190 2017 13101
13101161002 350 2017 13101
13101161003 292 2017 13101
13101171001 365 2017 13101


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 Iquique 354820.7 2017 1101 191468 67936815240
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397
01401 Pozo Almonte 285981.8 2017 1401 15711 4493059532
01402 Camiña 262850.3 2017 1402 1250 328562901
01404 Huara 253968.5 2017 1404 2730 693334131
01405 Pica 313007.5 2017 1405 9296 2909717399
02101 Antofagasta 347580.2 2017 2101 361873 125779893517
02102 Mejillones 369770.7 2017 2102 13467 4979702302
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188
02104 Taltal 364539.1 2017 2104 13317 4854566842
02201 Calama 409671.3 2017 2201 165731 67895226712
02203 San Pedro de Atacama 426592.0 2017 2203 10996 4690805471
02301 Tocopilla 246615.3 2017 2301 25186 6211253937
02302 María Elena 466266.9 2017 2302 6457 3010685220
03101 Copiapó 330075.2 2017 3101 153937 50810778473
03102 Caldera 299314.8 2017 3102 17662 5286498241
03103 Tierra Amarilla 314643.9 2017 3103 14019 4410992711
03201 Chañaral 286389.3 2017 3201 12219 3499391196
03202 Diego de Almagro 336256.8 2017 3202 13925 4682376047
03301 Vallenar 304336.7 2017 3301 51917 15800246795
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833
03303 Freirina 253086.7 2017 3303 7041 1781983257
03304 Huasco 287406.6 2017 3304 10149 2916889629
04101 La Serena 270221.9 2017 4101 221054 59733627577
04102 Coquimbo 261852.6 2017 4102 227730 59631700074
04103 Andacollo 248209.3 2017 4103 11044 2741223967
04104 La Higuera 228356.8 2017 4104 4241 968461330
04105 Paiguano 205942.1 2017 4105 4497 926121774
04106 Vicuña 211431.9 2017 4106 27771 5871675449
04201 Illapel 238674.4 2017 4201 30848 7362627007
04202 Canela 207933.6 2017 4202 9093 1890740321
04203 Los Vilos 255200.4 2017 4203 21382 5456695139
04204 Salamanca 242879.5 2017 4204 29347 7127783272
04301 Ovalle 266522.9 2017 4301 111272 29656533187
04302 Combarbalá 210409.7 2017 4302 13322 2803077721
04303 Monte Patria 211907.9 2017 4303 30751 6516380780
04304 Punitaqui 194997.8 2017 4304 10956 2136395349
04305 Río Hurtado 182027.2 2017 4305 4278 778712384
05101 Valparaíso 298720.7 2017 5101 296655 88616992249
05102 Casablanca 312802.7 2017 5102 26867 8404070481
05103 Concón 318496.3 2017 5103 42152 13425257057
05105 Puchuncaví 288737.2 2017 5105 18546 5354920887
05107 Quintero 316659.1 2017 5107 31923 10108709691
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611
05301 Los Andes 338182.5 2017 5301 66708 22559476922
05302 Calle Larga 245165.4 2017 5302 14832 3636293159
05303 Rinconada 281633.2 2017 5303 10207 2874630315
05304 San Esteban 220958.4 2017 5304 18855 4166170587
05401 La Ligua 229623.7 2017 5401 35390 8126381563
05402 Cabildo 249717.7 2017 5402 19388 4841527150

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
13101 13101011001 211 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101011002 241 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101011003 141 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101011004 114 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101011005 96 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021001 80 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021002 29 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021003 190 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021004 391 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021005 139 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021006 326 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021007 99 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021008 71 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031001 122 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031002 265 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031003 348 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031004 359 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031005 139 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031006 174 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031007 307 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041001 300 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041002 219 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041003 266 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041004 153 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041005 219 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101051001 253 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101051002 370 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101051003 165 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101061001 417 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101061002 418 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101061003 227 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101071001 390 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101071002 230 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101071003 218 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101081001 234 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101081002 433 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101081003 125 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101081004 216 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101091001 186 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101091002 394 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101091003 373 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101091004 267 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101001 44 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101002 68 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101003 156 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101004 101 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101005 52 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101006 42 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101007 105 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101008 114 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101009 33 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101010 149 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111001 56 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111002 409 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111003 84 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111004 93 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111005 85 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111006 60 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111007 105 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111008 94 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111009 140 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111010 59 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111011 68 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111012 147 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111013 85 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111014 69 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111015 187 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111016 74 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111017 113 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111018 71 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111019 152 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121001 123 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121002 152 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121003 63 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121004 375 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121005 165 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121006 213 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121007 164 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121008 276 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121009 320 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131001 114 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131002 79 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131003 143 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131004 158 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131005 102 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131006 40 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131007 202 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131008 205 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131009 173 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101141001 228 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101141002 101 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101141003 196 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101151001 497 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101151002 316 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101151003 210 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101151004 175 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101161001 190 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101161002 350 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101161003 292 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101171001 365 2017 Santiago 425637.2 2017 13101 404495 172168109577


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
13101 13101011001 211 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101011002 241 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101011003 141 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101011004 114 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101011005 96 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021001 80 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021002 29 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021003 190 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021004 391 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021005 139 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021006 326 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021007 99 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101021008 71 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031001 122 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031002 265 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031003 348 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031004 359 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031005 139 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031006 174 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101031007 307 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041001 300 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041002 219 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041003 266 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041004 153 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101041005 219 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101051001 253 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101051002 370 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101051003 165 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101061001 417 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101061002 418 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101061003 227 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101071001 390 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101071002 230 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101071003 218 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101081001 234 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101081002 433 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101081003 125 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101081004 216 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101091001 186 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101091002 394 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101091003 373 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101091004 267 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101001 44 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101002 68 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101003 156 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101004 101 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101005 52 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101006 42 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101007 105 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101008 114 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101009 33 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101101010 149 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111001 56 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111002 409 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111003 84 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111004 93 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111005 85 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111006 60 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111007 105 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111008 94 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111009 140 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111010 59 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111011 68 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111012 147 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111013 85 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111014 69 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111015 187 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111016 74 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111017 113 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111018 71 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101111019 152 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121001 123 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121002 152 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121003 63 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121004 375 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121005 165 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121006 213 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121007 164 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121008 276 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101121009 320 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131001 114 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131002 79 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131003 143 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131004 158 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131005 102 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131006 40 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131007 202 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131008 205 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101131009 173 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101141001 228 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101141002 101 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101141003 196 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101151001 497 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101151002 316 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101151003 210 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101151004 175 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101161001 190 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101161002 350 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101161003 292 2017 Santiago 425637.2 2017 13101 404495 172168109577
13101 13101171001 365 2017 Santiago 425637.2 2017 13101 404495 172168109577


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y
13101011001 13101 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 2174 0.0053746 13101
13101011002 13101 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 2282 0.0056416 13101
13101011003 13101 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 2209 0.0054611 13101
13101011004 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1821 0.0045019 13101
13101011005 13101 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 1741 0.0043041 13101
13101021001 13101 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 3448 0.0085242 13101
13101021002 13101 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 2856 0.0070607 13101
13101021003 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 2768 0.0068431 13101
13101021004 13101 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 3279 0.0081064 13101
13101021005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 2258 0.0055823 13101
13101021006 13101 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 2478 0.0061262 13101
13101021007 13101 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 2326 0.0057504 13101
13101021008 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 1541 0.0038097 13101
13101031001 13101 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 2313 0.0057182 13101
13101031002 13101 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 5950 0.0147097 13101
13101031003 13101 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 4955 0.0122498 13101
13101031004 13101 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 3903 0.0096491 13101
13101031005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 1791 0.0044277 13101
13101031006 13101 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 1697 0.0041954 13101
13101031007 13101 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 2973 0.0073499 13101
13101041001 13101 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 2790 0.0068975 13101
13101041002 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 2668 0.0065959 13101
13101041003 13101 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 2729 0.0067467 13101
13101041004 13101 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 2828 0.0069914 13101
13101041005 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 2550 0.0063042 13101
13101051001 13101 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 3135 0.0077504 13101
13101051002 13101 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 4424 0.0109371 13101
13101051003 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 2355 0.0058221 13101
13101061001 13101 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 3968 0.0098098 13101
13101061002 13101 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 4747 0.0117356 13101
13101061003 13101 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 2864 0.0070804 13101
13101071001 13101 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 5009 0.0123833 13101
13101071002 13101 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 3511 0.0086800 13101
13101071003 13101 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 3368 0.0083264 13101
13101081001 13101 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 3716 0.0091868 13101
13101081002 13101 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 5244 0.0129643 13101
13101081003 13101 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 3326 0.0082226 13101
13101081004 13101 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 2794 0.0069074 13101
13101091001 13101 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 3393 0.0083882 13101
13101091002 13101 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 3321 0.0082102 13101
13101091003 13101 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 3210 0.0079358 13101
13101091004 13101 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 2956 0.0073079 13101
13101101001 13101 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 2491 0.0061583 13101
13101101002 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 1820 0.0044994 13101
13101101003 13101 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 2768 0.0068431 13101
13101101004 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 2423 0.0059902 13101
13101101005 13101 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 1805 0.0044624 13101
13101101006 13101 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 1296 0.0032040 13101
13101101007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 2965 0.0073301 13101
13101101008 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1624 0.0040149 13101
13101101009 13101 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 1345 0.0033251 13101
13101101010 13101 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 2930 0.0072436 13101
13101111001 13101 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 2555 0.0063165 13101
13101111002 13101 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 2594 0.0064129 13101
13101111003 13101 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 2269 0.0056095 13101
13101111004 13101 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 1996 0.0049345 13101
13101111005 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 1960 0.0048455 13101
13101111006 13101 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 1677 0.0041459 13101
13101111007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 1859 0.0045959 13101
13101111008 13101 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 2552 0.0063091 13101
13101111009 13101 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 3455 0.0085415 13101
13101111010 13101 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 2560 0.0063289 13101
13101111011 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 1550 0.0038319 13101
13101111012 13101 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 4104 0.0101460 13101
13101111013 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 3191 0.0078888 13101
13101111014 13101 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 1894 0.0046824 13101
13101111015 13101 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 2747 0.0067912 13101
13101111016 13101 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 2452 0.0060619 13101
13101111017 13101 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 1798 0.0044450 13101
13101111018 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 2724 0.0067343 13101
13101111019 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 2430 0.0060075 13101
13101121001 13101 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 2320 0.0057355 13101
13101121002 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 1774 0.0043857 13101
13101121003 13101 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 2011 0.0049716 13101
13101121004 13101 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 4425 0.0109396 13101
13101121005 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 2095 0.0051793 13101
13101121006 13101 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 3272 0.0080891 13101
13101121007 13101 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 3067 0.0075823 13101
13101121008 13101 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 4682 0.0115749 13101
13101121009 13101 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 4441 0.0109791 13101
13101131001 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1811 0.0044772 13101
13101131002 13101 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 1759 0.0043486 13101
13101131003 13101 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 3953 0.0097727 13101
13101131004 13101 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 2442 0.0060372 13101
13101131005 13101 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 3683 0.0091052 13101
13101131006 13101 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 2197 0.0054315 13101
13101131007 13101 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 2952 0.0072980 13101
13101131008 13101 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 3025 0.0074785 13101
13101131009 13101 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 3631 0.0089766 13101
13101141001 13101 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 4373 0.0108110 13101
13101141002 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 3048 0.0075353 13101
13101141003 13101 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 4067 0.0100545 13101
13101151001 13101 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 4797 0.0118592 13101
13101151002 13101 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 3915 0.0096787 13101
13101151003 13101 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 3644 0.0090088 13101
13101151004 13101 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 2038 0.0050384 13101
13101161001 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 2637 0.0065192 13101
13101161002 13101 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 5341 0.0132041 13101
13101161003 13101 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 5331 0.0131794 13101
13101171001 13101 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 5638 0.0139384 13101


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
13101011001 13101 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 2174 0.0053746 13101 925335221
13101011002 13101 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 2282 0.0056416 13101 971304036
13101011003 13101 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 2209 0.0054611 13101 940232522
13101011004 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1821 0.0045019 13101 775085298
13101011005 13101 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 1741 0.0043041 13101 741034324
13101021001 13101 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 3448 0.0085242 13101 1467596983
13101021002 13101 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 2856 0.0070607 13101 1215619775
13101021003 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 2768 0.0068431 13101 1178163704
13101021004 13101 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 3279 0.0081064 13101 1395664301
13101021005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 2258 0.0055823 13101 961088744
13101021006 13101 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 2478 0.0061262 13101 1054728923
13101021007 13101 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 2326 0.0057504 13101 990032072
13101021008 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 1541 0.0038097 13101 655906888
13101031001 13101 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 2313 0.0057182 13101 984498788
13101031002 13101 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 5950 0.0147097 13101 2532541198
13101031003 13101 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 4955 0.0122498 13101 2109032208
13101031004 13101 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 3903 0.0096491 13101 1661261899
13101031005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 1791 0.0044277 13101 762316183
13101031006 13101 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 1697 0.0041954 13101 722306288
13101031007 13101 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 2973 0.0073499 13101 1265419325
13101041001 13101 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 2790 0.0068975 13101 1187527722
13101041002 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 2668 0.0065959 13101 1135599986
13101041003 13101 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 2729 0.0067467 13101 1161563854
13101041004 13101 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 2828 0.0069914 13101 1203701934
13101041005 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 2550 0.0063042 13101 1085374799
13101051001 13101 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 3135 0.0077504 13101 1334372547
13101051002 13101 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 4424 0.0109371 13101 1883018867
13101051003 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 2355 0.0058221 13101 1002375550
13101061001 13101 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 3968 0.0098098 13101 1688928315
13101061002 13101 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 4747 0.0117356 13101 2020499675
13101061003 13101 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 2864 0.0070804 13101 1219024873
13101071001 13101 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 5009 0.0123833 13101 2132016615
13101071002 13101 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 3511 0.0086800 13101 1494412126
13101071003 13101 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 3368 0.0083264 13101 1433546009
13101081001 13101 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 3716 0.0091868 13101 1581667747
13101081002 13101 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 5244 0.0129643 13101 2232041352
13101081003 13101 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 3326 0.0082226 13101 1415669248
13101081004 13101 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 2794 0.0069074 13101 1189230270
13101091001 13101 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 3393 0.0083882 13101 1444186939
13101091002 13101 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 3321 0.0082102 13101 1413541062
13101091003 13101 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 3210 0.0079358 13101 1366295336
13101091004 13101 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 2956 0.0073079 13101 1258183493
13101101001 13101 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 2491 0.0061583 13101 1060262206
13101101002 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 1820 0.0044994 13101 774659661
13101101003 13101 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 2768 0.0068431 13101 1178163704
13101101004 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 2423 0.0059902 13101 1031318878
13101101005 13101 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 1805 0.0044624 13101 768275103
13101101006 13101 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 1296 0.0032040 13101 551625780
13101101007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 2965 0.0073301 13101 1262014227
13101101008 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1624 0.0040149 13101 691234774
13101101009 13101 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 1345 0.0033251 13101 572482002
13101101010 13101 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 2930 0.0072436 13101 1247116926
13101111001 13101 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 2555 0.0063165 13101 1087502985
13101111002 13101 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 2594 0.0064129 13101 1104102835
13101111003 13101 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 2269 0.0056095 13101 965770753
13101111004 13101 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 1996 0.0049345 13101 849571804
13101111005 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 1960 0.0048455 13101 834248865
13101111006 13101 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 1677 0.0041459 13101 713793544
13101111007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 1859 0.0045959 13101 791259511
13101111008 13101 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 2552 0.0063091 13101 1086226074
13101111009 13101 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 3455 0.0085415 13101 1470576444
13101111010 13101 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 2560 0.0063289 13101 1089631171
13101111011 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 1550 0.0038319 13101 659737623
13101111012 13101 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 4104 0.0101460 13101 1746814971
13101111013 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 3191 0.0078888 13101 1358208229
13101111014 13101 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 1894 0.0046824 13101 806156812
13101111015 13101 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 2747 0.0067912 13101 1169225323
13101111016 13101 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 2452 0.0060619 13101 1043662356
13101111017 13101 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 1798 0.0044450 13101 765295643
13101111018 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 2724 0.0067343 13101 1159435668
13101111019 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 2430 0.0060075 13101 1034298338
13101121001 13101 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 2320 0.0057355 13101 987478249
13101121002 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 1774 0.0043857 13101 755080351
13101121003 13101 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 2011 0.0049716 13101 855956361
13101121004 13101 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 4425 0.0109396 13101 1883444505
13101121005 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 2095 0.0051793 13101 891709884
13101121006 13101 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 3272 0.0080891 13101 1392684840
13101121007 13101 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 3067 0.0075823 13101 1305429219
13101121008 13101 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 4682 0.0115749 13101 1992833259
13101121009 13101 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 4441 0.0109791 13101 1890254699
13101131001 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1811 0.0044772 13101 770828926
13101131002 13101 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 1759 0.0043486 13101 748695793
13101131003 13101 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 3953 0.0097727 13101 1682543757
13101131004 13101 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 2442 0.0060372 13101 1039405984
13101131005 13101 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 3683 0.0091052 13101 1567621720
13101131006 13101 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 2197 0.0054315 13101 935124876
13101131007 13101 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 2952 0.0072980 13101 1256480944
13101131008 13101 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 3025 0.0074785 13101 1287552458
13101131009 13101 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 3631 0.0089766 13101 1545488587
13101141001 13101 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 4373 0.0108110 13101 1861311371
13101141002 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 3048 0.0075353 13101 1297342113
13101141003 13101 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 4067 0.0100545 13101 1731066396
13101151001 13101 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 4797 0.0118592 13101 2041781534
13101151002 13101 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 3915 0.0096787 13101 1666369545
13101151003 13101 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 3644 0.0090088 13101 1551021870
13101151004 13101 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 2038 0.0050384 13101 867448565
13101161001 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 2637 0.0065192 13101 1122405234
13101161002 13101 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 5341 0.0132041 13101 2273328158
13101161003 13101 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 5331 0.0131794 13101 2269071786
13101171001 13101 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 5638 0.0139384 13101 2399742399

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.023e+09 -4.734e+08  3.601e+07  3.496e+08  3.887e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 695788136   13318991   52.24   <2e-16 ***
## Freq.x        1219470      35857   34.01   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 496700000 on 2377 degrees of freedom
## Multiple R-squared:  0.3273, Adjusted R-squared:  0.327 
## F-statistic:  1157 on 1 and 2377 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.023e+09 -4.734e+08  3.601e+07  3.496e+08  3.887e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 695788136   13318991   52.24   <2e-16 ***
## Freq.x        1219470      35857   34.01   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 496700000 on 2377 degrees of freedom
## Multiple R-squared:  0.3273, Adjusted R-squared:  0.327 
## F-statistic:  1157 on 1 and 2377 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.023e+09 -4.734e+08  3.601e+07  3.496e+08  3.887e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 695788136   13318991   52.24   <2e-16 ***
## Freq.x        1219470      35857   34.01   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 496700000 on 2377 degrees of freedom
## Multiple R-squared:  0.3273, Adjusted R-squared:  0.327 
## F-statistic:  1157 on 1 and 2377 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -989556130 -252675066  -18045205  240326295 3779622656 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -518001233   26687817  -19.41   <2e-16 ***
## log(Freq.x)  317038765    5367227   59.07   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 385500000 on 2377 degrees of freedom
## Multiple R-squared:  0.5948, Adjusted R-squared:  0.5946 
## F-statistic:  3489 on 1 and 2377 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.076e+09 -3.356e+08 -2.209e+07  2.928e+08  3.912e+09 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  257199757   17150451   15.00   <2e-16 ***
## sqrt(Freq.x)  54825105    1108496   49.46   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 425200000 on 2377 degrees of freedom
## Multiple R-squared:  0.5072, Adjusted R-squared:  0.507 
## F-statistic:  2446 on 1 and 2377 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -18269  -7351   1503   6406  43503 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  14594.01     335.93   43.44   <2e-16 ***
## sqrt(Freq.x)  1086.82      21.71   50.05   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8328 on 2377 degrees of freedom
## Multiple R-squared:  0.5132, Adjusted R-squared:  0.513 
## F-statistic:  2506 on 1 and 2377 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3054 -0.5761  0.3389  0.7307  2.4432 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  18.748721   0.040166  466.78   <2e-16 ***
## sqrt(Freq.x)  0.112380   0.002596   43.29   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9958 on 2377 degrees of freedom
## Multiple R-squared:  0.4408, Adjusted R-squared:  0.4406 
## F-statistic:  1874 on 1 and 2377 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -18435  -4267    463   4663  41000 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3355.58     444.58  -7.548 6.27e-14 ***
## log(Freq.x)  6828.54      89.41  76.373  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6422 on 2377 degrees of freedom
## Multiple R-squared:  0.7105, Adjusted R-squared:  0.7103 
## F-statistic:  5833 on 1 and 2377 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4783 -0.4360  0.1116  0.4717  2.7674 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.511254   0.045436  363.39   <2e-16 ***
## log(Freq.x)  0.786405   0.009138   86.06   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6564 on 2377 degrees of freedom
## Multiple R-squared:  0.757,  Adjusted R-squared:  0.7569 
## F-statistic:  7407 on 1 and 2377 DF,  p-value: < 2.2e-16

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7569).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4783 -0.4360  0.1116  0.4717  2.7674 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.511254   0.045436  363.39   <2e-16 ***
## log(Freq.x)  0.786405   0.009138   86.06   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6564 on 2377 degrees of freedom
## Multiple R-squared:  0.757,  Adjusted R-squared:  0.7569 
## F-statistic:  7407 on 1 and 2377 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{16.511254+0.786405 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(16.511254+0.786405 * log(h_y_m_comuna_corr_01$Freq.x))

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
13101011001 13101 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 2174 0.0053746 13101 925335221 996721544
13101011002 13101 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 2282 0.0056416 13101 971304036 1106564195
13101011003 13101 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 2209 0.0054611 13101 940232522 725944063
13101011004 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1821 0.0045019 13101 775085298 614195685
13101011005 13101 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 1741 0.0043041 13101 741034324 536555326
13101021001 13101 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 3448 0.0085242 13101 1467596983 464885481
13101021002 13101 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 2856 0.0070607 13101 1215619775 209306926
13101021003 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 2768 0.0068431 13101 1178163704 917845804
13101021004 13101 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 3279 0.0081064 13101 1395664301 1619001549
13101021005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 2258 0.0055823 13101 961088744 717834051
13101021006 13101 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 2478 0.0061262 13101 1054728923 1403309251
13101021007 13101 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 2326 0.0057504 13101 990032072 549697797
13101021008 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 1541 0.0038097 13101 655906888 423238653
13101031001 13101 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 2313 0.0057182 13101 984498788 647843796
13101031002 13101 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 5950 0.0147097 13101 2532541198 1192337417
13101031003 13101 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 4955 0.0122498 13101 2109032208 1477260641
13101031004 13101 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 3903 0.0096491 13101 1661261899 1513859433
13101031005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 1791 0.0044277 13101 762316183 717834051
13101031006 13101 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 1697 0.0041954 13101 722306288 856496580
13101031007 13101 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 2973 0.0073499 13101 1265419325 1338580690
13101041001 13101 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 2790 0.0068975 13101 1187527722 1314519527
13101041002 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 2668 0.0065959 13101 1135599986 1026321568
13101041003 13101 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 2729 0.0067467 13101 1161563854 1195874334
13101041004 13101 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 2828 0.0069914 13101 1203701934 774103028
13101041005 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 2550 0.0063042 13101 1085374799 1026321568
13101051001 13101 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 3135 0.0077504 13101 1334372547 1149668137
13101051002 13101 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 4424 0.0109371 13101 1883018867 1550219439
13101051003 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 2355 0.0058221 13101 1002375550 821461025
13101061001 13101 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 3968 0.0098098 13101 1688928315 1703078223
13101061002 13101 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 4747 0.0117356 13101 2020499675 1706289174
13101061003 13101 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 2864 0.0070804 13101 1219024873 1055691478
13101071001 13101 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 5009 0.0123833 13101 2132016615 1615744416
13101071002 13101 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 3511 0.0086800 13101 1494412126 1066647894
13101071003 13101 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 3368 0.0083264 13101 1433546009 1022634359
13101081001 13101 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 3716 0.0091868 13101 1581667747 1081209114
13101081002 13101 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 5244 0.0129643 13101 2232041352 1754259211
13101081003 13101 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 3326 0.0082226 13101 1415669248 660339110
13101081004 13101 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 2794 0.0069074 13101 1189230270 1015249078
13101091001 13101 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 3393 0.0083882 13101 1444186939 902615586
13101091002 13101 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 3321 0.0082102 13101 1413541062 1628762298
13101091003 13101 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 3210 0.0079358 13101 1366295336 1560095504
13101091004 13101 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 2956 0.0073079 13101 1258183493 1199408411
13101101001 13101 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 2491 0.0061583 13101 1060262206 290513222
13101101002 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 1820 0.0044994 13101 774659661 409110544
13101101003 13101 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 2768 0.0068431 13101 1178163704 786014669
13101101004 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 2423 0.0059902 13101 1031318878 558412140
13101101005 13101 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 1805 0.0044624 13101 768275103 331298989
13101101006 13101 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 1296 0.0032040 13101 551625780 280077267
13101101007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 2965 0.0073301 13101 1262014227 575731342
13101101008 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1624 0.0040149 13101 691234774 614195685
13101101009 13101 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 1345 0.0033251 13101 572482002 231693290
13101101010 13101 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 2930 0.0072436 13101 1247116926 758142859
13101111001 13101 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 2555 0.0063165 13101 1087502985 351180430
13101111002 13101 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 2594 0.0064129 13101 1104102835 1677330984
13101111003 13101 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 2269 0.0056095 13101 965770753 483069206
13101111004 13101 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 1996 0.0049345 13101 849571804 523324822
13101111005 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 1960 0.0048455 13101 834248865 487585960
13101111006 13101 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 1677 0.0041459 13101 713793544 370760565
13101111007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 1859 0.0045959 13101 791259511 575731342
13101111008 13101 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 2552 0.0063091 13101 1086226074 527744980
13101111009 13101 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 3455 0.0085415 13101 1470576444 721892150
13101111010 13101 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 2560 0.0063289 13101 1089631171 365892391
13101111011 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 1550 0.0038319 13101 659737623 409110544
13101111012 13101 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 4104 0.0101460 13101 1746814971 750128541
13101111013 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 3191 0.0078888 13101 1358208229 487585960
13101111014 13101 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 1894 0.0046824 13101 806156812 413834431
13101111015 13101 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 2747 0.0067912 13101 1169225323 906429644
13101111016 13101 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 2452 0.0060619 13101 1043662356 437239785
13101111017 13101 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 1798 0.0044450 13101 765295643 609954802
13101111018 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 2724 0.0067343 13101 1159435668 423238653
13101111019 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 2430 0.0060075 13101 1034298338 770121429
13101121001 13101 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 2320 0.0057355 13101 987478249 652016116
13101121002 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 1774 0.0043857 13101 755080351 770121429
13101121003 13101 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 2011 0.0049716 13101 855956361 385262649
13101121004 13101 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 4425 0.0109396 13101 1883444505 1566670120
13101121005 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 2095 0.0051793 13101 891709884 821461025
13101121006 13101 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 3272 0.0080891 13101 1392684840 1004143690
13101121007 13101 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 3067 0.0075823 13101 1305429219 817543327
13101121008 13101 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 4682 0.0115749 13101 1992833259 1231089446
13101121009 13101 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 4441 0.0109791 13101 1890254699 1382957934
13101131001 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1811 0.0044772 13101 770828926 614195685
13101131002 13101 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 1759 0.0043486 13101 748695793 460309496
13101131003 13101 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 3953 0.0097727 13101 1682543757 734029540
13101131004 13101 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 2442 0.0060372 13101 1039405984 793928565
13101131005 13101 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 3683 0.0091052 13101 1567621720 562755463
13101131006 13101 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 2197 0.0054315 13101 935124876 269534579
13101131007 13101 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 2952 0.0072980 13101 1256480944 963133181
13101131008 13101 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 3025 0.0074785 13101 1287552458 974364150
13101131009 13101 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 3631 0.0089766 13101 1545488587 852623203
13101141001 13101 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 4373 0.0108110 13101 1861311371 1059347034
13101141002 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 3048 0.0075353 13101 1297342113 558412140
13101141003 13101 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 4067 0.0100545 13101 1731066396 940563535
13101151001 13101 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 4797 0.0118592 13101 2041781534 1955125533
13101151002 13101 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 3915 0.0096787 13101 1666369545 1369345130
13101151003 13101 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 3644 0.0090088 13101 1551021870 993004842
13101151004 13101 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 2038 0.0050384 13101 867448565 860365205
13101161001 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 2637 0.0065192 13101 1122405234 917845804
13101161002 13101 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 5341 0.0132041 13101 2273328158 1483933133
13101161003 13101 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 5331 0.0131794 13101 2269071786 1286873634
13101171001 13101 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 5638 0.0139384 13101 2399742399 1533721203


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
13101011001 13101 211 2017 Santiago 425637.2 2017 13101 404495 172168109577 2174 0.0053746 13101 925335221 996721544 458473.57
13101011002 13101 241 2017 Santiago 425637.2 2017 13101 404495 172168109577 2282 0.0056416 13101 971304036 1106564195 484909.81
13101011003 13101 141 2017 Santiago 425637.2 2017 13101 404495 172168109577 2209 0.0054611 13101 940232522 725944063 328630.18
13101011004 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1821 0.0045019 13101 775085298 614195685 337284.84
13101011005 13101 96 2017 Santiago 425637.2 2017 13101 404495 172168109577 1741 0.0043041 13101 741034324 536555326 308188.01
13101021001 13101 80 2017 Santiago 425637.2 2017 13101 404495 172168109577 3448 0.0085242 13101 1467596983 464885481 134827.58
13101021002 13101 29 2017 Santiago 425637.2 2017 13101 404495 172168109577 2856 0.0070607 13101 1215619775 209306926 73286.74
13101021003 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 2768 0.0068431 13101 1178163704 917845804 331591.69
13101021004 13101 391 2017 Santiago 425637.2 2017 13101 404495 172168109577 3279 0.0081064 13101 1395664301 1619001549 493748.57
13101021005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 2258 0.0055823 13101 961088744 717834051 317907.02
13101021006 13101 326 2017 Santiago 425637.2 2017 13101 404495 172168109577 2478 0.0061262 13101 1054728923 1403309251 566307.20
13101021007 13101 99 2017 Santiago 425637.2 2017 13101 404495 172168109577 2326 0.0057504 13101 990032072 549697797 236327.51
13101021008 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 1541 0.0038097 13101 655906888 423238653 274651.95
13101031001 13101 122 2017 Santiago 425637.2 2017 13101 404495 172168109577 2313 0.0057182 13101 984498788 647843796 280088.11
13101031002 13101 265 2017 Santiago 425637.2 2017 13101 404495 172168109577 5950 0.0147097 13101 2532541198 1192337417 200392.84
13101031003 13101 348 2017 Santiago 425637.2 2017 13101 404495 172168109577 4955 0.0122498 13101 2109032208 1477260641 298135.35
13101031004 13101 359 2017 Santiago 425637.2 2017 13101 404495 172168109577 3903 0.0096491 13101 1661261899 1513859433 387870.72
13101031005 13101 139 2017 Santiago 425637.2 2017 13101 404495 172168109577 1791 0.0044277 13101 762316183 717834051 400800.70
13101031006 13101 174 2017 Santiago 425637.2 2017 13101 404495 172168109577 1697 0.0041954 13101 722306288 856496580 504712.19
13101031007 13101 307 2017 Santiago 425637.2 2017 13101 404495 172168109577 2973 0.0073499 13101 1265419325 1338580690 450245.78
13101041001 13101 300 2017 Santiago 425637.2 2017 13101 404495 172168109577 2790 0.0068975 13101 1187527722 1314519527 471153.95
13101041002 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 2668 0.0065959 13101 1135599986 1026321568 384678.25
13101041003 13101 266 2017 Santiago 425637.2 2017 13101 404495 172168109577 2729 0.0067467 13101 1161563854 1195874334 438209.72
13101041004 13101 153 2017 Santiago 425637.2 2017 13101 404495 172168109577 2828 0.0069914 13101 1203701934 774103028 273728.09
13101041005 13101 219 2017 Santiago 425637.2 2017 13101 404495 172168109577 2550 0.0063042 13101 1085374799 1026321568 402479.05
13101051001 13101 253 2017 Santiago 425637.2 2017 13101 404495 172168109577 3135 0.0077504 13101 1334372547 1149668137 366720.30
13101051002 13101 370 2017 Santiago 425637.2 2017 13101 404495 172168109577 4424 0.0109371 13101 1883018867 1550219439 350411.27
13101051003 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 2355 0.0058221 13101 1002375550 821461025 348815.72
13101061001 13101 417 2017 Santiago 425637.2 2017 13101 404495 172168109577 3968 0.0098098 13101 1688928315 1703078223 429203.18
13101061002 13101 418 2017 Santiago 425637.2 2017 13101 404495 172168109577 4747 0.0117356 13101 2020499675 1706289174 359445.79
13101061003 13101 227 2017 Santiago 425637.2 2017 13101 404495 172168109577 2864 0.0070804 13101 1219024873 1055691478 368607.36
13101071001 13101 390 2017 Santiago 425637.2 2017 13101 404495 172168109577 5009 0.0123833 13101 2132016615 1615744416 322568.26
13101071002 13101 230 2017 Santiago 425637.2 2017 13101 404495 172168109577 3511 0.0086800 13101 1494412126 1066647894 303801.74
13101071003 13101 218 2017 Santiago 425637.2 2017 13101 404495 172168109577 3368 0.0083264 13101 1433546009 1022634359 303632.53
13101081001 13101 234 2017 Santiago 425637.2 2017 13101 404495 172168109577 3716 0.0091868 13101 1581667747 1081209114 290960.47
13101081002 13101 433 2017 Santiago 425637.2 2017 13101 404495 172168109577 5244 0.0129643 13101 2232041352 1754259211 334526.93
13101081003 13101 125 2017 Santiago 425637.2 2017 13101 404495 172168109577 3326 0.0082226 13101 1415669248 660339110 198538.52
13101081004 13101 216 2017 Santiago 425637.2 2017 13101 404495 172168109577 2794 0.0069074 13101 1189230270 1015249078 363367.60
13101091001 13101 186 2017 Santiago 425637.2 2017 13101 404495 172168109577 3393 0.0083882 13101 1444186939 902615586 266022.87
13101091002 13101 394 2017 Santiago 425637.2 2017 13101 404495 172168109577 3321 0.0082102 13101 1413541062 1628762298 490443.33
13101091003 13101 373 2017 Santiago 425637.2 2017 13101 404495 172168109577 3210 0.0079358 13101 1366295336 1560095504 486011.06
13101091004 13101 267 2017 Santiago 425637.2 2017 13101 404495 172168109577 2956 0.0073079 13101 1258183493 1199408411 405753.86
13101101001 13101 44 2017 Santiago 425637.2 2017 13101 404495 172168109577 2491 0.0061583 13101 1060262206 290513222 116625.14
13101101002 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 1820 0.0044994 13101 774659661 409110544 224786.01
13101101003 13101 156 2017 Santiago 425637.2 2017 13101 404495 172168109577 2768 0.0068431 13101 1178163704 786014669 283964.84
13101101004 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 2423 0.0059902 13101 1031318878 558412140 230463.12
13101101005 13101 52 2017 Santiago 425637.2 2017 13101 404495 172168109577 1805 0.0044624 13101 768275103 331298989 183545.15
13101101006 13101 42 2017 Santiago 425637.2 2017 13101 404495 172168109577 1296 0.0032040 13101 551625780 280077267 216109.00
13101101007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 2965 0.0073301 13101 1262014227 575731342 194175.83
13101101008 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1624 0.0040149 13101 691234774 614195685 378199.31
13101101009 13101 33 2017 Santiago 425637.2 2017 13101 404495 172168109577 1345 0.0033251 13101 572482002 231693290 172262.67
13101101010 13101 149 2017 Santiago 425637.2 2017 13101 404495 172168109577 2930 0.0072436 13101 1247116926 758142859 258751.83
13101111001 13101 56 2017 Santiago 425637.2 2017 13101 404495 172168109577 2555 0.0063165 13101 1087502985 351180430 137448.31
13101111002 13101 409 2017 Santiago 425637.2 2017 13101 404495 172168109577 2594 0.0064129 13101 1104102835 1677330984 646619.50
13101111003 13101 84 2017 Santiago 425637.2 2017 13101 404495 172168109577 2269 0.0056095 13101 965770753 483069206 212899.61
13101111004 13101 93 2017 Santiago 425637.2 2017 13101 404495 172168109577 1996 0.0049345 13101 849571804 523324822 262186.78
13101111005 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 1960 0.0048455 13101 834248865 487585960 248768.35
13101111006 13101 60 2017 Santiago 425637.2 2017 13101 404495 172168109577 1677 0.0041459 13101 713793544 370760565 221085.61
13101111007 13101 105 2017 Santiago 425637.2 2017 13101 404495 172168109577 1859 0.0045959 13101 791259511 575731342 309699.48
13101111008 13101 94 2017 Santiago 425637.2 2017 13101 404495 172168109577 2552 0.0063091 13101 1086226074 527744980 206796.62
13101111009 13101 140 2017 Santiago 425637.2 2017 13101 404495 172168109577 3455 0.0085415 13101 1470576444 721892150 208941.29
13101111010 13101 59 2017 Santiago 425637.2 2017 13101 404495 172168109577 2560 0.0063289 13101 1089631171 365892391 142926.72
13101111011 13101 68 2017 Santiago 425637.2 2017 13101 404495 172168109577 1550 0.0038319 13101 659737623 409110544 263942.29
13101111012 13101 147 2017 Santiago 425637.2 2017 13101 404495 172168109577 4104 0.0101460 13101 1746814971 750128541 182779.86
13101111013 13101 85 2017 Santiago 425637.2 2017 13101 404495 172168109577 3191 0.0078888 13101 1358208229 487585960 152800.36
13101111014 13101 69 2017 Santiago 425637.2 2017 13101 404495 172168109577 1894 0.0046824 13101 806156812 413834431 218497.59
13101111015 13101 187 2017 Santiago 425637.2 2017 13101 404495 172168109577 2747 0.0067912 13101 1169225323 906429644 329970.75
13101111016 13101 74 2017 Santiago 425637.2 2017 13101 404495 172168109577 2452 0.0060619 13101 1043662356 437239785 178319.65
13101111017 13101 113 2017 Santiago 425637.2 2017 13101 404495 172168109577 1798 0.0044450 13101 765295643 609954802 339240.71
13101111018 13101 71 2017 Santiago 425637.2 2017 13101 404495 172168109577 2724 0.0067343 13101 1159435668 423238653 155373.95
13101111019 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 2430 0.0060075 13101 1034298338 770121429 316922.40
13101121001 13101 123 2017 Santiago 425637.2 2017 13101 404495 172168109577 2320 0.0057355 13101 987478249 652016116 281041.43
13101121002 13101 152 2017 Santiago 425637.2 2017 13101 404495 172168109577 1774 0.0043857 13101 755080351 770121429 434115.80
13101121003 13101 63 2017 Santiago 425637.2 2017 13101 404495 172168109577 2011 0.0049716 13101 855956361 385262649 191577.65
13101121004 13101 375 2017 Santiago 425637.2 2017 13101 404495 172168109577 4425 0.0109396 13101 1883444505 1566670120 354049.74
13101121005 13101 165 2017 Santiago 425637.2 2017 13101 404495 172168109577 2095 0.0051793 13101 891709884 821461025 392105.50
13101121006 13101 213 2017 Santiago 425637.2 2017 13101 404495 172168109577 3272 0.0080891 13101 1392684840 1004143690 306889.88
13101121007 13101 164 2017 Santiago 425637.2 2017 13101 404495 172168109577 3067 0.0075823 13101 1305429219 817543327 266561.24
13101121008 13101 276 2017 Santiago 425637.2 2017 13101 404495 172168109577 4682 0.0115749 13101 1992833259 1231089446 262940.93
13101121009 13101 320 2017 Santiago 425637.2 2017 13101 404495 172168109577 4441 0.0109791 13101 1890254699 1382957934 311406.88
13101131001 13101 114 2017 Santiago 425637.2 2017 13101 404495 172168109577 1811 0.0044772 13101 770828926 614195685 339147.26
13101131002 13101 79 2017 Santiago 425637.2 2017 13101 404495 172168109577 1759 0.0043486 13101 748695793 460309496 261688.17
13101131003 13101 143 2017 Santiago 425637.2 2017 13101 404495 172168109577 3953 0.0097727 13101 1682543757 734029540 185689.23
13101131004 13101 158 2017 Santiago 425637.2 2017 13101 404495 172168109577 2442 0.0060372 13101 1039405984 793928565 325114.07
13101131005 13101 102 2017 Santiago 425637.2 2017 13101 404495 172168109577 3683 0.0091052 13101 1567621720 562755463 152798.12
13101131006 13101 40 2017 Santiago 425637.2 2017 13101 404495 172168109577 2197 0.0054315 13101 935124876 269534579 122683.01
13101131007 13101 202 2017 Santiago 425637.2 2017 13101 404495 172168109577 2952 0.0072980 13101 1256480944 963133181 326264.63
13101131008 13101 205 2017 Santiago 425637.2 2017 13101 404495 172168109577 3025 0.0074785 13101 1287552458 974364150 322103.85
13101131009 13101 173 2017 Santiago 425637.2 2017 13101 404495 172168109577 3631 0.0089766 13101 1545488587 852623203 234817.74
13101141001 13101 228 2017 Santiago 425637.2 2017 13101 404495 172168109577 4373 0.0108110 13101 1861311371 1059347034 242247.21
13101141002 13101 101 2017 Santiago 425637.2 2017 13101 404495 172168109577 3048 0.0075353 13101 1297342113 558412140 183206.08
13101141003 13101 196 2017 Santiago 425637.2 2017 13101 404495 172168109577 4067 0.0100545 13101 1731066396 940563535 231267.16
13101151001 13101 497 2017 Santiago 425637.2 2017 13101 404495 172168109577 4797 0.0118592 13101 2041781534 1955125533 407572.55
13101151002 13101 316 2017 Santiago 425637.2 2017 13101 404495 172168109577 3915 0.0096787 13101 1666369545 1369345130 349768.87
13101151003 13101 210 2017 Santiago 425637.2 2017 13101 404495 172168109577 3644 0.0090088 13101 1551021870 993004842 272504.07
13101151004 13101 175 2017 Santiago 425637.2 2017 13101 404495 172168109577 2038 0.0050384 13101 867448565 860365205 422161.53
13101161001 13101 190 2017 Santiago 425637.2 2017 13101 404495 172168109577 2637 0.0065192 13101 1122405234 917845804 348064.39
13101161002 13101 350 2017 Santiago 425637.2 2017 13101 404495 172168109577 5341 0.0132041 13101 2273328158 1483933133 277838.07
13101161003 13101 292 2017 Santiago 425637.2 2017 13101 404495 172168109577 5331 0.0131794 13101 2269071786 1286873634 241394.42
13101171001 13101 365 2017 Santiago 425637.2 2017 13101 404495 172168109577 5638 0.0139384 13101 2399742399 1533721203 272032.85


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_13.rds")