De ingresos sobre una categoría de respuesta
Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 11.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 11)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[2] <- "Tipo de techo"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 11101011001 | 1 | 11101 | 30 | 2017 |
2 | 11101011002 | 1 | 11101 | 80 | 2017 |
3 | 11101011003 | 1 | 11101 | 20 | 2017 |
4 | 11101011004 | 1 | 11101 | 22 | 2017 |
5 | 11101011005 | 1 | 11101 | 32 | 2017 |
6 | 11101011006 | 1 | 11101 | 93 | 2017 |
7 | 11101011007 | 1 | 11101 | 75 | 2017 |
8 | 11101022003 | 1 | 11101 | 2 | 2017 |
9 | 11101022010 | 1 | 11101 | 2 | 2017 |
10 | 11101022031 | 1 | 11101 | 1 | 2017 |
11 | 11101022038 | 1 | 11101 | 3 | 2017 |
12 | 11101032005 | 1 | 11101 | 1 | 2017 |
13 | 11101032032 | 1 | 11101 | 5 | 2017 |
14 | 11101032034 | 1 | 11101 | 1 | 2017 |
15 | 11101032901 | 1 | 11101 | 2 | 2017 |
16 | 11101042022 | 1 | 11101 | 3 | 2017 |
17 | 11101042024 | 1 | 11101 | 3 | 2017 |
18 | 11101042027 | 1 | 11101 | 6 | 2017 |
19 | 11101052004 | 1 | 11101 | 6 | 2017 |
20 | 11101052008 | 1 | 11101 | 5 | 2017 |
21 | 11101052014 | 1 | 11101 | 6 | 2017 |
22 | 11101052901 | 1 | 11101 | 3 | 2017 |
23 | 11101062023 | 1 | 11101 | 1 | 2017 |
24 | 11101062025 | 1 | 11101 | 2 | 2017 |
25 | 11101072014 | 1 | 11101 | 4 | 2017 |
26 | 11101072018 | 1 | 11101 | 57 | 2017 |
27 | 11101072019 | 1 | 11101 | 7 | 2017 |
28 | 11101072020 | 1 | 11101 | 4 | 2017 |
29 | 11101072035 | 1 | 11101 | 3 | 2017 |
30 | 11101072036 | 1 | 11101 | 8 | 2017 |
31 | 11101072037 | 1 | 11101 | 7 | 2017 |
32 | 11101082021 | 1 | 11101 | 1 | 2017 |
33 | 11101092007 | 1 | 11101 | 1 | 2017 |
34 | 11101102011 | 1 | 11101 | 10 | 2017 |
35 | 11101102020 | 1 | 11101 | 20 | 2017 |
36 | 11101102033 | 1 | 11101 | 69 | 2017 |
37 | 11101112001 | 1 | 11101 | 3 | 2017 |
38 | 11101112009 | 1 | 11101 | 23 | 2017 |
39 | 11101112011 | 1 | 11101 | 78 | 2017 |
40 | 11101112012 | 1 | 11101 | 5 | 2017 |
41 | 11101112013 | 1 | 11101 | 61 | 2017 |
42 | 11101121001 | 1 | 11101 | 26 | 2017 |
43 | 11101121002 | 1 | 11101 | 41 | 2017 |
44 | 11101121003 | 1 | 11101 | 161 | 2017 |
45 | 11101121004 | 1 | 11101 | 81 | 2017 |
46 | 11101121005 | 1 | 11101 | 115 | 2017 |
47 | 11101121006 | 1 | 11101 | 110 | 2017 |
48 | 11101121007 | 1 | 11101 | 36 | 2017 |
49 | 11101121008 | 1 | 11101 | 31 | 2017 |
50 | 11101122011 | 1 | 11101 | 36 | 2017 |
51 | 11101131001 | 1 | 11101 | 67 | 2017 |
52 | 11101131002 | 1 | 11101 | 67 | 2017 |
53 | 11101131003 | 1 | 11101 | 93 | 2017 |
54 | 11101131004 | 1 | 11101 | 72 | 2017 |
55 | 11101131005 | 1 | 11101 | 42 | 2017 |
56 | 11101131006 | 1 | 11101 | 3 | 2017 |
57 | 11101131007 | 1 | 11101 | 41 | 2017 |
58 | 11101132011 | 1 | 11101 | 1 | 2017 |
59 | 11101991999 | 1 | 11101 | 20 | 2017 |
194 | 11102012004 | 1 | 11102 | 1 | 2017 |
195 | 11102042003 | 1 | 11102 | 4 | 2017 |
196 | 11102052002 | 1 | 11102 | 3 | 2017 |
331 | 11201011001 | 1 | 11201 | 47 | 2017 |
332 | 11201011002 | 1 | 11201 | 62 | 2017 |
333 | 11201011003 | 1 | 11201 | 83 | 2017 |
334 | 11201012009 | 1 | 11201 | 3 | 2017 |
335 | 11201012013 | 1 | 11201 | 2 | 2017 |
336 | 11201012055 | 1 | 11201 | 1 | 2017 |
337 | 11201012067 | 1 | 11201 | 1 | 2017 |
338 | 11201012901 | 1 | 11201 | 2 | 2017 |
339 | 11201021001 | 1 | 11201 | 8 | 2017 |
340 | 11201022011 | 1 | 11201 | 2 | 2017 |
341 | 11201022057 | 1 | 11201 | 1 | 2017 |
342 | 11201032068 | 1 | 11201 | 4 | 2017 |
343 | 11201041001 | 1 | 11201 | 12 | 2017 |
344 | 11201041002 | 1 | 11201 | 68 | 2017 |
345 | 11201041003 | 1 | 11201 | 36 | 2017 |
346 | 11201042006 | 1 | 11201 | 13 | 2017 |
347 | 11201042007 | 1 | 11201 | 3 | 2017 |
348 | 11201052901 | 1 | 11201 | 2 | 2017 |
349 | 11201062044 | 1 | 11201 | 35 | 2017 |
350 | 11201071001 | 1 | 11201 | 9 | 2017 |
351 | 11201072901 | 1 | 11201 | 3 | 2017 |
486 | 11202011001 | 1 | 11202 | 51 | 2017 |
487 | 11202021001 | 1 | 11202 | 15 | 2017 |
488 | 11202022016 | 1 | 11202 | 10 | 2017 |
489 | 11202022020 | 1 | 11202 | 14 | 2017 |
490 | 11202032022 | 1 | 11202 | 1 | 2017 |
491 | 11202052021 | 1 | 11202 | 2 | 2017 |
492 | 11202052023 | 1 | 11202 | 16 | 2017 |
493 | 11202052901 | 1 | 11202 | 1 | 2017 |
494 | 11202991999 | 1 | 11202 | 1 | 2017 |
629 | 11203011001 | 1 | 11203 | 13 | 2017 |
630 | 11203012004 | 1 | 11203 | 3 | 2017 |
631 | 11203012005 | 1 | 11203 | 1 | 2017 |
632 | 11203012901 | 1 | 11203 | 3 | 2017 |
767 | 11301011001 | 1 | 11301 | 87 | 2017 |
768 | 11301012002 | 1 | 11301 | 1 | 2017 |
769 | 11301012003 | 1 | 11301 | 1 | 2017 |
770 | 11301012004 | 1 | 11301 | 2 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 11101011001 | 30 | 2017 | 11101 |
2 | 11101011002 | 80 | 2017 | 11101 |
3 | 11101011003 | 20 | 2017 | 11101 |
4 | 11101011004 | 22 | 2017 | 11101 |
5 | 11101011005 | 32 | 2017 | 11101 |
6 | 11101011006 | 93 | 2017 | 11101 |
7 | 11101011007 | 75 | 2017 | 11101 |
8 | 11101022003 | 2 | 2017 | 11101 |
9 | 11101022010 | 2 | 2017 | 11101 |
10 | 11101022031 | 1 | 2017 | 11101 |
11 | 11101022038 | 3 | 2017 | 11101 |
12 | 11101032005 | 1 | 2017 | 11101 |
13 | 11101032032 | 5 | 2017 | 11101 |
14 | 11101032034 | 1 | 2017 | 11101 |
15 | 11101032901 | 2 | 2017 | 11101 |
16 | 11101042022 | 3 | 2017 | 11101 |
17 | 11101042024 | 3 | 2017 | 11101 |
18 | 11101042027 | 6 | 2017 | 11101 |
19 | 11101052004 | 6 | 2017 | 11101 |
20 | 11101052008 | 5 | 2017 | 11101 |
21 | 11101052014 | 6 | 2017 | 11101 |
22 | 11101052901 | 3 | 2017 | 11101 |
23 | 11101062023 | 1 | 2017 | 11101 |
24 | 11101062025 | 2 | 2017 | 11101 |
25 | 11101072014 | 4 | 2017 | 11101 |
26 | 11101072018 | 57 | 2017 | 11101 |
27 | 11101072019 | 7 | 2017 | 11101 |
28 | 11101072020 | 4 | 2017 | 11101 |
29 | 11101072035 | 3 | 2017 | 11101 |
30 | 11101072036 | 8 | 2017 | 11101 |
31 | 11101072037 | 7 | 2017 | 11101 |
32 | 11101082021 | 1 | 2017 | 11101 |
33 | 11101092007 | 1 | 2017 | 11101 |
34 | 11101102011 | 10 | 2017 | 11101 |
35 | 11101102020 | 20 | 2017 | 11101 |
36 | 11101102033 | 69 | 2017 | 11101 |
37 | 11101112001 | 3 | 2017 | 11101 |
38 | 11101112009 | 23 | 2017 | 11101 |
39 | 11101112011 | 78 | 2017 | 11101 |
40 | 11101112012 | 5 | 2017 | 11101 |
41 | 11101112013 | 61 | 2017 | 11101 |
42 | 11101121001 | 26 | 2017 | 11101 |
43 | 11101121002 | 41 | 2017 | 11101 |
44 | 11101121003 | 161 | 2017 | 11101 |
45 | 11101121004 | 81 | 2017 | 11101 |
46 | 11101121005 | 115 | 2017 | 11101 |
47 | 11101121006 | 110 | 2017 | 11101 |
48 | 11101121007 | 36 | 2017 | 11101 |
49 | 11101121008 | 31 | 2017 | 11101 |
50 | 11101122011 | 36 | 2017 | 11101 |
51 | 11101131001 | 67 | 2017 | 11101 |
52 | 11101131002 | 67 | 2017 | 11101 |
53 | 11101131003 | 93 | 2017 | 11101 |
54 | 11101131004 | 72 | 2017 | 11101 |
55 | 11101131005 | 42 | 2017 | 11101 |
56 | 11101131006 | 3 | 2017 | 11101 |
57 | 11101131007 | 41 | 2017 | 11101 |
58 | 11101132011 | 1 | 2017 | 11101 |
59 | 11101991999 | 20 | 2017 | 11101 |
194 | 11102012004 | 1 | 2017 | 11102 |
195 | 11102042003 | 4 | 2017 | 11102 |
196 | 11102052002 | 3 | 2017 | 11102 |
331 | 11201011001 | 47 | 2017 | 11201 |
332 | 11201011002 | 62 | 2017 | 11201 |
333 | 11201011003 | 83 | 2017 | 11201 |
334 | 11201012009 | 3 | 2017 | 11201 |
335 | 11201012013 | 2 | 2017 | 11201 |
336 | 11201012055 | 1 | 2017 | 11201 |
337 | 11201012067 | 1 | 2017 | 11201 |
338 | 11201012901 | 2 | 2017 | 11201 |
339 | 11201021001 | 8 | 2017 | 11201 |
340 | 11201022011 | 2 | 2017 | 11201 |
341 | 11201022057 | 1 | 2017 | 11201 |
342 | 11201032068 | 4 | 2017 | 11201 |
343 | 11201041001 | 12 | 2017 | 11201 |
344 | 11201041002 | 68 | 2017 | 11201 |
345 | 11201041003 | 36 | 2017 | 11201 |
346 | 11201042006 | 13 | 2017 | 11201 |
347 | 11201042007 | 3 | 2017 | 11201 |
348 | 11201052901 | 2 | 2017 | 11201 |
349 | 11201062044 | 35 | 2017 | 11201 |
350 | 11201071001 | 9 | 2017 | 11201 |
351 | 11201072901 | 3 | 2017 | 11201 |
486 | 11202011001 | 51 | 2017 | 11202 |
487 | 11202021001 | 15 | 2017 | 11202 |
488 | 11202022016 | 10 | 2017 | 11202 |
489 | 11202022020 | 14 | 2017 | 11202 |
490 | 11202032022 | 1 | 2017 | 11202 |
491 | 11202052021 | 2 | 2017 | 11202 |
492 | 11202052023 | 16 | 2017 | 11202 |
493 | 11202052901 | 1 | 2017 | 11202 |
494 | 11202991999 | 1 | 2017 | 11202 |
629 | 11203011001 | 13 | 2017 | 11203 |
630 | 11203012004 | 3 | 2017 | 11203 |
631 | 11203012005 | 1 | 2017 | 11203 |
632 | 11203012901 | 3 | 2017 | 11203 |
767 | 11301011001 | 87 | 2017 | 11301 |
768 | 11301012002 | 1 | 2017 | 11301 |
769 | 11301012003 | 1 | 2017 | 11301 |
770 | 11301012004 | 2 | 2017 | 11301 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01107 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01401 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
01402 | Camiña | 262850.3 | 2017 | 1402 | 1250 | 328562901 |
01404 | Huara | 253968.5 | 2017 | 1404 | 2730 | 693334131 |
01405 | Pica | 313007.5 | 2017 | 1405 | 9296 | 2909717399 |
02101 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02103 | Sierra Gorda | 403458.5 | 2017 | 2103 | 10186 | 4109628188 |
02104 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 |
02201 | Calama | 409671.3 | 2017 | 2201 | 165731 | 67895226712 |
02203 | San Pedro de Atacama | 426592.0 | 2017 | 2203 | 10996 | 4690805471 |
02301 | Tocopilla | 246615.3 | 2017 | 2301 | 25186 | 6211253937 |
02302 | María Elena | 466266.9 | 2017 | 2302 | 6457 | 3010685220 |
03101 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03102 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03103 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03301 | Vallenar | 304336.7 | 2017 | 3301 | 51917 | 15800246795 |
03302 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 |
03303 | Freirina | 253086.7 | 2017 | 3303 | 7041 | 1781983257 |
03304 | Huasco | 287406.6 | 2017 | 3304 | 10149 | 2916889629 |
04101 | La Serena | 270221.9 | 2017 | 4101 | 221054 | 59733627577 |
04102 | Coquimbo | 261852.6 | 2017 | 4102 | 227730 | 59631700074 |
04103 | Andacollo | 248209.3 | 2017 | 4103 | 11044 | 2741223967 |
04104 | La Higuera | 228356.8 | 2017 | 4104 | 4241 | 968461330 |
04105 | Paiguano | 205942.1 | 2017 | 4105 | 4497 | 926121774 |
04106 | Vicuña | 211431.9 | 2017 | 4106 | 27771 | 5871675449 |
04201 | Illapel | 238674.4 | 2017 | 4201 | 30848 | 7362627007 |
04202 | Canela | 207933.6 | 2017 | 4202 | 9093 | 1890740321 |
04203 | Los Vilos | 255200.4 | 2017 | 4203 | 21382 | 5456695139 |
04204 | Salamanca | 242879.5 | 2017 | 4204 | 29347 | 7127783272 |
04301 | Ovalle | 266522.9 | 2017 | 4301 | 111272 | 29656533187 |
04302 | Combarbalá | 210409.7 | 2017 | 4302 | 13322 | 2803077721 |
04303 | Monte Patria | 211907.9 | 2017 | 4303 | 30751 | 6516380780 |
04304 | Punitaqui | 194997.8 | 2017 | 4304 | 10956 | 2136395349 |
04305 | Río Hurtado | 182027.2 | 2017 | 4305 | 4278 | 778712384 |
05101 | Valparaíso | 298720.7 | 2017 | 5101 | 296655 | 88616992249 |
05102 | Casablanca | 312802.7 | 2017 | 5102 | 26867 | 8404070481 |
05103 | Concón | 318496.3 | 2017 | 5103 | 42152 | 13425257057 |
05105 | Puchuncaví | 288737.2 | 2017 | 5105 | 18546 | 5354920887 |
05107 | Quintero | 316659.1 | 2017 | 5107 | 31923 | 10108709691 |
05109 | Viña del Mar | 337006.1 | 2017 | 5109 | 334248 | 112643604611 |
05301 | Los Andes | 338182.5 | 2017 | 5301 | 66708 | 22559476922 |
05302 | Calle Larga | 245165.4 | 2017 | 5302 | 14832 | 3636293159 |
05303 | Rinconada | 281633.2 | 2017 | 5303 | 10207 | 2874630315 |
05304 | San Esteban | 220958.4 | 2017 | 5304 | 18855 | 4166170587 |
05401 | La Ligua | 229623.7 | 2017 | 5401 | 35390 | 8126381563 |
05402 | Cabildo | 249717.7 | 2017 | 5402 | 19388 | 4841527150 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
11101 | 11101022031 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101022038 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011001 | 30 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011002 | 80 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011004 | 22 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011005 | 32 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011006 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101032005 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101022003 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101022010 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101062023 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101062025 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072014 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072018 | 57 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072019 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072020 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011003 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101042024 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101042027 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101052004 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011007 | 75 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101102011 | 10 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101102020 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101102033 | 69 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112001 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112009 | 23 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112011 | 78 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112012 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112013 | 61 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121001 | 26 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121002 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121003 | 161 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121004 | 81 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121005 | 115 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121006 | 110 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121007 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121008 | 31 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101122011 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131001 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131002 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101032032 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101032034 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101032901 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101042022 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131007 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101132011 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101991999 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101052008 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101052014 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101052901 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131003 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131004 | 72 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072035 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072036 | 8 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072037 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101082021 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101092007 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131005 | 42 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131006 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11102 | 11102012004 | 1 | 2017 | NA | NA | NA | NA | NA | NA |
11102 | 11102042003 | 4 | 2017 | NA | NA | NA | NA | NA | NA |
11102 | 11102052002 | 3 | 2017 | NA | NA | NA | NA | NA | NA |
11201 | 11201011002 | 62 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201011003 | 83 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012009 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201011001 | 47 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201041002 | 68 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201041003 | 36 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201032068 | 4 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201041001 | 12 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012013 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012055 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201042006 | 13 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201042007 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012901 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201021001 | 8 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201022011 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201022057 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201072901 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201052901 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201062044 | 35 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201071001 | 9 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012067 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11202 | 11202032022 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202052023 | 16 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202052901 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202991999 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202052021 | 2 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202021001 | 15 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202022016 | 10 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202022020 | 14 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202011001 | 51 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11203 | 11203012004 | 3 | 2017 | NA | NA | NA | NA | NA | NA |
11203 | 11203012005 | 1 | 2017 | NA | NA | NA | NA | NA | NA |
11203 | 11203012901 | 3 | 2017 | NA | NA | NA | NA | NA | NA |
11203 | 11203011001 | 13 | 2017 | NA | NA | NA | NA | NA | NA |
11301 | 11301022009 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 |
11301 | 11301022016 | 2 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 |
11301 | 11301032005 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 |
11301 | 11301012901 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
11101 | 11101022031 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101022038 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011001 | 30 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011002 | 80 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011004 | 22 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011005 | 32 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011006 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101032005 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101022003 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101022010 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101062023 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101062025 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072014 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072018 | 57 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072019 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072020 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011003 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101042024 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101042027 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101052004 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101011007 | 75 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101102011 | 10 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101102020 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101102033 | 69 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112001 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112009 | 23 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112011 | 78 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112012 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101112013 | 61 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121001 | 26 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121002 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121003 | 161 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121004 | 81 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121005 | 115 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121006 | 110 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121007 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101121008 | 31 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101122011 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131001 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131002 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101032032 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101032034 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101032901 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101042022 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131007 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101132011 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101991999 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101052008 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101052014 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101052901 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131003 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131004 | 72 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072035 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072036 | 8 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101072037 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101082021 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101092007 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131005 | 42 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11101 | 11101131006 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 |
11102 | 11102012004 | 1 | 2017 | NA | NA | NA | NA | NA | NA |
11102 | 11102042003 | 4 | 2017 | NA | NA | NA | NA | NA | NA |
11102 | 11102052002 | 3 | 2017 | NA | NA | NA | NA | NA | NA |
11201 | 11201011002 | 62 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201011003 | 83 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012009 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201011001 | 47 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201041002 | 68 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201041003 | 36 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201032068 | 4 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201041001 | 12 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012013 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012055 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201042006 | 13 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201042007 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012901 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201021001 | 8 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201022011 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201022057 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201072901 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201052901 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201062044 | 35 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201071001 | 9 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11201 | 11201012067 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 |
11202 | 11202032022 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202052023 | 16 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202052901 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202991999 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202052021 | 2 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202021001 | 15 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202022016 | 10 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202022020 | 14 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11202 | 11202011001 | 51 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 |
11203 | 11203012004 | 3 | 2017 | NA | NA | NA | NA | NA | NA |
11203 | 11203012005 | 1 | 2017 | NA | NA | NA | NA | NA | NA |
11203 | 11203012901 | 3 | 2017 | NA | NA | NA | NA | NA | NA |
11203 | 11203011001 | 13 | 2017 | NA | NA | NA | NA | NA | NA |
11301 | 11301022009 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 |
11301 | 11301022016 | 2 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 |
11301 | 11301032005 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 |
11301 | 11301012901 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
11101011001 | 11101 | 30 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 324 | 0.0056038 | 11101 |
11101011002 | 11101 | 80 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1672 | 0.0289183 | 11101 |
11101011003 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 499 | 0.0086305 | 11101 |
11101011004 | 11101 | 22 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 667 | 0.0115362 | 11101 |
11101011005 | 11101 | 32 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 977 | 0.0168979 | 11101 |
11101011006 | 11101 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1595 | 0.0275866 | 11101 |
11101011007 | 11101 | 75 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2251 | 0.0389325 | 11101 |
11101022003 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 11 | 0.0001903 | 11101 |
11101022010 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 53 | 0.0009167 | 11101 |
11101022031 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 55 | 0.0009513 | 11101 |
11101022038 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 339 | 0.0058632 | 11101 |
11101032005 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 53 | 0.0009167 | 11101 |
11101032032 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 257 | 0.0044450 | 11101 |
11101032034 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 31 | 0.0005362 | 11101 |
11101032901 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 43 | 0.0007437 | 11101 |
11101042022 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 27 | 0.0004670 | 11101 |
11101042024 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 47 | 0.0008129 | 11101 |
11101042027 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 77 | 0.0013318 | 11101 |
11101052004 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 474 | 0.0081981 | 11101 |
11101052008 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 76 | 0.0013145 | 11101 |
11101052014 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 250 | 0.0043239 | 11101 |
11101052901 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 50 | 0.0008648 | 11101 |
11101062023 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 54 | 0.0009340 | 11101 |
11101062025 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 24 | 0.0004151 | 11101 |
11101072014 | 11101 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 107 | 0.0018506 | 11101 |
11101072018 | 11101 | 57 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 806 | 0.0139403 | 11101 |
11101072019 | 11101 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 102 | 0.0017642 | 11101 |
11101072020 | 11101 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 190 | 0.0032862 | 11101 |
11101072035 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 109 | 0.0018852 | 11101 |
11101072036 | 11101 | 8 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 539 | 0.0093224 | 11101 |
11101072037 | 11101 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 265 | 0.0045833 | 11101 |
11101082021 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 8 | 0.0001384 | 11101 |
11101092007 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 29 | 0.0005016 | 11101 |
11101102011 | 11101 | 10 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 143 | 0.0024733 | 11101 |
11101102020 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 250 | 0.0043239 | 11101 |
11101102033 | 11101 | 69 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 763 | 0.0131966 | 11101 |
11101112001 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 186 | 0.0032170 | 11101 |
11101112009 | 11101 | 23 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 198 | 0.0034245 | 11101 |
11101112011 | 11101 | 78 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 579 | 0.0100142 | 11101 |
11101112012 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 54 | 0.0009340 | 11101 |
11101112013 | 11101 | 61 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 615 | 0.0106368 | 11101 |
11101121001 | 11101 | 26 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 903 | 0.0156180 | 11101 |
11101121002 | 11101 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3281 | 0.0567470 | 11101 |
11101121003 | 11101 | 161 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2413 | 0.0417344 | 11101 |
11101121004 | 11101 | 81 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3717 | 0.0642879 | 11101 |
11101121005 | 11101 | 115 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2462 | 0.0425819 | 11101 |
11101121006 | 11101 | 110 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2381 | 0.0411809 | 11101 |
11101121007 | 11101 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3498 | 0.0605002 | 11101 |
11101121008 | 11101 | 31 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3334 | 0.0576637 | 11101 |
11101122011 | 11101 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 206 | 0.0035629 | 11101 |
11101131001 | 11101 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1906 | 0.0329655 | 11101 |
11101131002 | 11101 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3237 | 0.0559860 | 11101 |
11101131003 | 11101 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3439 | 0.0594797 | 11101 |
11101131004 | 11101 | 72 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3238 | 0.0560033 | 11101 |
11101131005 | 11101 | 42 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2580 | 0.0446228 | 11101 |
11101131006 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1524 | 0.0263586 | 11101 |
11101131007 | 11101 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3756 | 0.0649625 | 11101 |
11101132011 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 44 | 0.0007610 | 11101 |
11101991999 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 301 | 0.0052060 | 11101 |
11102012004 | 11102 | 1 | 2017 | NA | NA | NA | NA | NA | NA | 308 | 0.3615023 | 11102 |
11102042003 | 11102 | 4 | 2017 | NA | NA | NA | NA | NA | NA | 244 | 0.2863850 | 11102 |
11102052002 | 11102 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 203 | 0.2382629 | 11102 |
11201011001 | 11201 | 47 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2035 | 0.0849368 | 11201 |
11201011002 | 11201 | 62 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3187 | 0.1330189 | 11201 |
11201011003 | 11201 | 83 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3870 | 0.1615259 | 11201 |
11201012009 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 52 | 0.0021704 | 11201 |
11201012013 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 35 | 0.0014608 | 11201 |
11201012055 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 148 | 0.0061772 | 11201 |
11201012067 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 98 | 0.0040903 | 11201 |
11201012901 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 172 | 0.0071789 | 11201 |
11201021001 | 11201 | 8 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 1561 | 0.0651530 | 11201 |
11201022011 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 32 | 0.0013356 | 11201 |
11201022057 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 58 | 0.0024208 | 11201 |
11201032068 | 11201 | 4 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 149 | 0.0062190 | 11201 |
11201041001 | 11201 | 12 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2623 | 0.1094787 | 11201 |
11201041002 | 11201 | 68 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2692 | 0.1123586 | 11201 |
11201041003 | 11201 | 36 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3034 | 0.1266330 | 11201 |
11201042006 | 11201 | 13 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 244 | 0.0101841 | 11201 |
11201042007 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 54 | 0.0022539 | 11201 |
11201052901 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 14 | 0.0005843 | 11201 |
11201062044 | 11201 | 35 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 541 | 0.0225802 | 11201 |
11201071001 | 11201 | 9 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 1239 | 0.0517133 | 11201 |
11201072901 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 208 | 0.0086815 | 11201 |
11202011001 | 11202 | 51 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 2558 | 0.3925119 | 11202 |
11202021001 | 11202 | 15 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 1431 | 0.2195796 | 11202 |
11202022016 | 11202 | 10 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 280 | 0.0429646 | 11202 |
11202022020 | 11202 | 14 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 1037 | 0.1591223 | 11202 |
11202032022 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 6 | 0.0009207 | 11202 |
11202052021 | 11202 | 2 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 239 | 0.0366733 | 11202 |
11202052023 | 11202 | 16 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 170 | 0.0260856 | 11202 |
11202052901 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 40 | 0.0061378 | 11202 |
11202991999 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 125 | 0.0191806 | 11202 |
11203011001 | 11203 | 13 | 2017 | NA | NA | NA | NA | NA | NA | 1329 | 0.7211069 | 11203 |
11203012004 | 11203 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 32 | 0.0173630 | 11203 |
11203012005 | 11203 | 1 | 2017 | NA | NA | NA | NA | NA | NA | 31 | 0.0168204 | 11203 |
11203012901 | 11203 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 75 | 0.0406945 | 11203 |
11301011001 | 11301 | 87 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 2789 | 0.7991404 | 11301 |
11301012002 | 11301 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 26 | 0.0074499 | 11301 |
11301012003 | 11301 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 78 | 0.0223496 | 11301 |
11301012004 | 11301 | 2 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 76 | 0.0217765 | 11301 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11101011001 | 11101 | 30 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 324 | 0.0056038 | 11101 | 97924642 |
11101011002 | 11101 | 80 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1672 | 0.0289183 | 11101 | 505339508 |
11101011003 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 499 | 0.0086305 | 11101 | 150816037 |
11101011004 | 11101 | 22 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 667 | 0.0115362 | 11101 | 201591778 |
11101011005 | 11101 | 32 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 977 | 0.0168979 | 11101 | 295285107 |
11101011006 | 11101 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1595 | 0.0275866 | 11101 | 482067294 |
11101011007 | 11101 | 75 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2251 | 0.0389325 | 11101 | 680334470 |
11101022003 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 11 | 0.0001903 | 11101 | 3324602 |
11101022010 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 53 | 0.0009167 | 11101 | 16018537 |
11101022031 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 55 | 0.0009513 | 11101 | 16623010 |
11101022038 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 339 | 0.0058632 | 11101 | 102458190 |
11101032005 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 53 | 0.0009167 | 11101 | 16018537 |
11101032032 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 257 | 0.0044450 | 11101 | 77674793 |
11101032034 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 31 | 0.0005362 | 11101 | 9369333 |
11101032901 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 43 | 0.0007437 | 11101 | 12996172 |
11101042022 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 27 | 0.0004670 | 11101 | 8160387 |
11101042024 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 47 | 0.0008129 | 11101 | 14205118 |
11101042027 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 77 | 0.0013318 | 11101 | 23272214 |
11101052004 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 474 | 0.0081981 | 11101 | 143260124 |
11101052008 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 76 | 0.0013145 | 11101 | 22969978 |
11101052014 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 250 | 0.0043239 | 11101 | 75559137 |
11101052901 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 50 | 0.0008648 | 11101 | 15111827 |
11101062023 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 54 | 0.0009340 | 11101 | 16320774 |
11101062025 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 24 | 0.0004151 | 11101 | 7253677 |
11101072014 | 11101 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 107 | 0.0018506 | 11101 | 32339311 |
11101072018 | 11101 | 57 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 806 | 0.0139403 | 11101 | 243602658 |
11101072019 | 11101 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 102 | 0.0017642 | 11101 | 30828128 |
11101072020 | 11101 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 190 | 0.0032862 | 11101 | 57424944 |
11101072035 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 109 | 0.0018852 | 11101 | 32943784 |
11101072036 | 11101 | 8 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 539 | 0.0093224 | 11101 | 162905499 |
11101072037 | 11101 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 265 | 0.0045833 | 11101 | 80092685 |
11101082021 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 8 | 0.0001384 | 11101 | 2417892 |
11101092007 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 29 | 0.0005016 | 11101 | 8764860 |
11101102011 | 11101 | 10 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 143 | 0.0024733 | 11101 | 43219826 |
11101102020 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 250 | 0.0043239 | 11101 | 75559137 |
11101102033 | 11101 | 69 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 763 | 0.0131966 | 11101 | 230606486 |
11101112001 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 186 | 0.0032170 | 11101 | 56215998 |
11101112009 | 11101 | 23 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 198 | 0.0034245 | 11101 | 59842837 |
11101112011 | 11101 | 78 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 579 | 0.0100142 | 11101 | 174994961 |
11101112012 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 54 | 0.0009340 | 11101 | 16320774 |
11101112013 | 11101 | 61 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 615 | 0.0106368 | 11101 | 185875477 |
11101121001 | 11101 | 26 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 903 | 0.0156180 | 11101 | 272919603 |
11101121002 | 11101 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3281 | 0.0567470 | 11101 | 991638114 |
11101121003 | 11101 | 161 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2413 | 0.0417344 | 11101 | 729296790 |
11101121004 | 11101 | 81 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3717 | 0.0642879 | 11101 | 1123413249 |
11101121005 | 11101 | 115 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2462 | 0.0425819 | 11101 | 744106381 |
11101121006 | 11101 | 110 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2381 | 0.0411809 | 11101 | 719625221 |
11101121007 | 11101 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3498 | 0.0605002 | 11101 | 1057223445 |
11101121008 | 11101 | 31 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3334 | 0.0576637 | 11101 | 1007656651 |
11101122011 | 11101 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 206 | 0.0035629 | 11101 | 62260729 |
11101131001 | 11101 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1906 | 0.0329655 | 11101 | 576062861 |
11101131002 | 11101 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3237 | 0.0559860 | 11101 | 978339706 |
11101131003 | 11101 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3439 | 0.0594797 | 11101 | 1039391489 |
11101131004 | 11101 | 72 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3238 | 0.0560033 | 11101 | 978641943 |
11101131005 | 11101 | 42 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2580 | 0.0446228 | 11101 | 779770294 |
11101131006 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1524 | 0.0263586 | 11101 | 460608499 |
11101131007 | 11101 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3756 | 0.0649625 | 11101 | 1135200474 |
11101132011 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 44 | 0.0007610 | 11101 | 13298408 |
11101991999 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 301 | 0.0052060 | 11101 | 90973201 |
11102012004 | 11102 | 1 | 2017 | NA | NA | NA | NA | NA | NA | 308 | 0.3615023 | 11102 | NA |
11102042003 | 11102 | 4 | 2017 | NA | NA | NA | NA | NA | NA | 244 | 0.2863850 | 11102 | NA |
11102052002 | 11102 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 203 | 0.2382629 | 11102 | NA |
11201011001 | 11201 | 47 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2035 | 0.0849368 | 11201 | 605740586 |
11201011002 | 11201 | 62 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3187 | 0.1330189 | 11201 | 948646313 |
11201011003 | 11201 | 83 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3870 | 0.1615259 | 11201 | 1151948927 |
11201012009 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 52 | 0.0021704 | 11201 | 15478384 |
11201012013 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 35 | 0.0014608 | 11201 | 10418143 |
11201012055 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 148 | 0.0061772 | 11201 | 44053861 |
11201012067 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 98 | 0.0040903 | 11201 | 29170800 |
11201012901 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 172 | 0.0071789 | 11201 | 51197730 |
11201021001 | 11201 | 8 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 1561 | 0.0651530 | 11201 | 464649167 |
11201022011 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 32 | 0.0013356 | 11201 | 9525159 |
11201022057 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 58 | 0.0024208 | 11201 | 17264351 |
11201032068 | 11201 | 4 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 149 | 0.0062190 | 11201 | 44351522 |
11201041001 | 11201 | 12 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2623 | 0.1094787 | 11201 | 780765384 |
11201041002 | 11201 | 68 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2692 | 0.1123586 | 11201 | 801304008 |
11201041003 | 11201 | 36 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3034 | 0.1266330 | 11201 | 903104146 |
11201042006 | 11201 | 13 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 244 | 0.0101841 | 11201 | 72629338 |
11201042007 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 54 | 0.0022539 | 11201 | 16073706 |
11201052901 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 14 | 0.0005843 | 11201 | 4167257 |
11201062044 | 11201 | 35 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 541 | 0.0225802 | 11201 | 161034721 |
11201071001 | 11201 | 9 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 1239 | 0.0517133 | 11201 | 368802253 |
11201072901 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 208 | 0.0086815 | 11201 | 61913534 |
11202011001 | 11202 | 51 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 2558 | 0.3925119 | 11202 | 652916090 |
11202021001 | 11202 | 15 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 1431 | 0.2195796 | 11202 | 365255248 |
11202022016 | 11202 | 10 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 280 | 0.0429646 | 11202 | 71468532 |
11202022020 | 11202 | 14 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 1037 | 0.1591223 | 11202 | 264688814 |
11202032022 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 6 | 0.0009207 | 11202 | 1531469 |
11202052021 | 11202 | 2 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 239 | 0.0366733 | 11202 | 61003497 |
11202052023 | 11202 | 16 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 170 | 0.0260856 | 11202 | 43391609 |
11202052901 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 40 | 0.0061378 | 11202 | 10209790 |
11202991999 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 125 | 0.0191806 | 11202 | 31905595 |
11203011001 | 11203 | 13 | 2017 | NA | NA | NA | NA | NA | NA | 1329 | 0.7211069 | 11203 | NA |
11203012004 | 11203 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 32 | 0.0173630 | 11203 | NA |
11203012005 | 11203 | 1 | 2017 | NA | NA | NA | NA | NA | NA | 31 | 0.0168204 | 11203 | NA |
11203012901 | 11203 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 75 | 0.0406945 | 11203 | NA |
11301011001 | 11301 | 87 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 2789 | 0.7991404 | 11301 | 875960355 |
11301012002 | 11301 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 26 | 0.0074499 | 11301 | 8165998 |
11301012003 | 11301 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 78 | 0.0223496 | 11301 | 24497995 |
11301012004 | 11301 | 2 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 76 | 0.0217765 | 11301 | 23869841 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -651509854 -69724042 -56531592 -5827010 739477894
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59152192 24815637 2.384 0.0187 *
## Freq.x 8209034 669460 12.262 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 226300000 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.5561, Adjusted R-squared: 0.5525
## F-statistic: 150.4 on 1 and 120 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -651509854 -69724042 -56531592 -5827010 739477894
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59152192 24815637 2.384 0.0187 *
## Freq.x 8209034 669460 12.262 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 226300000 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.5561, Adjusted R-squared: 0.5525
## F-statistic: 150.4 on 1 and 120 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -651509854 -69724042 -56531592 -5827010 739477894
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59152192 24815637 2.384 0.0187 *
## Freq.x 8209034 669460 12.262 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 226300000 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.5561, Adjusted R-squared: 0.5525
## F-statistic: 150.4 on 1 and 120 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -450947005 -117900754 -18067584 83416082 611725132
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -68182944 30929282 -2.204 0.0294 *
## log(Freq.x) 159323227 12535054 12.710 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 221700000 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.5738, Adjusted R-squared: 0.5702
## F-statistic: 161.5 on 1 and 120 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -541274423 -78148701 -3528161 18477712 641472905
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -93006102 29733374 -3.128 0.00221 **
## sqrt(Freq.x) 91632405 6501054 14.095 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 208400000 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.6234, Adjusted R-squared: 0.6203
## F-statistic: 198.7 on 1 and 120 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13584.8 -2608.9 -903.5 1827.3 16718.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1163.3 777.1 1.497 0.137
## sqrt(Freq.x) 2904.3 169.9 17.092 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5448 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.7088, Adjusted R-squared: 0.7064
## F-statistic: 292.2 on 1 and 120 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.31438 -0.64062 -0.05497 0.72751 3.00989
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.03421 0.15351 104.45 <2e-16 ***
## sqrt(Freq.x) 0.52190 0.03356 15.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.076 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.6683, Adjusted R-squared: 0.6655
## F-statistic: 241.8 on 1 and 120 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12511.6 -3299.4 167.5 2509.9 14126.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1558.3 761.7 2.046 0.043 *
## log(Freq.x) 5258.5 308.7 17.034 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5461 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.7074, Adjusted R-squared: 0.705
## F-statistic: 290.2 on 1 and 120 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.10835 -0.68027 0.02081 0.61873 2.85477
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.98455 0.12746 125.41 <2e-16 ***
## log(Freq.x) 1.00922 0.05166 19.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9138 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.7608, Adjusted R-squared: 0.7588
## F-statistic: 381.7 on 1 and 120 DF, p-value: < 2.2e-16
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7588).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.10835 -0.68027 0.02081 0.61873 2.85477
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.98455 0.12746 125.41 <2e-16 ***
## log(Freq.x) 1.00922 0.05166 19.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9138 on 120 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.7608, Adjusted R-squared: 0.7588
## F-statistic: 381.7 on 1 and 120 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) +
geom_point() +
stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^{15.98455+1.00922 \cdot ln{X}} \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <- exp(15.98455+1.00922 * log(h_y_m_comuna_corr_01$Freq.x))
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11101011001 | 11101 | 30 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 324 | 0.0056038 | 11101 | 97924642 | 270858316 |
11101011002 | 11101 | 80 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1672 | 0.0289183 | 11101 | 505339508 | 728850301 |
11101011003 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 499 | 0.0086305 | 11101 | 150816037 | 179898422 |
11101011004 | 11101 | 22 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 667 | 0.0115362 | 11101 | 201591778 | 198062236 |
11101011005 | 11101 | 32 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 977 | 0.0168979 | 11101 | 295285107 | 289087506 |
11101011006 | 11101 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1595 | 0.0275866 | 11101 | 482067294 | 848465567 |
11101011007 | 11101 | 75 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2251 | 0.0389325 | 11101 | 680334470 | 682890685 |
11101022003 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 11 | 0.0001903 | 11101 | 3324602 | 17611946 |
11101022010 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 53 | 0.0009167 | 11101 | 16018537 | 17611946 |
11101022031 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 55 | 0.0009513 | 11101 | 16623010 | 8749875 |
11101022038 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 339 | 0.0058632 | 11101 | 102458190 | 26516865 |
11101032005 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 53 | 0.0009167 | 11101 | 16018537 | 8749875 |
11101032032 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 257 | 0.0044450 | 11101 | 77674793 | 44403415 |
11101032034 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 31 | 0.0005362 | 11101 | 9369333 | 8749875 |
11101032901 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 43 | 0.0007437 | 11101 | 12996172 | 17611946 |
11101042022 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 27 | 0.0004670 | 11101 | 8160387 | 26516865 |
11101042024 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 47 | 0.0008129 | 11101 | 14205118 | 26516865 |
11101042027 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 77 | 0.0013318 | 11101 | 23272214 | 53373744 |
11101052004 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 474 | 0.0081981 | 11101 | 143260124 | 53373744 |
11101052008 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 76 | 0.0013145 | 11101 | 22969978 | 44403415 |
11101052014 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 250 | 0.0043239 | 11101 | 75559137 | 53373744 |
11101052901 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 50 | 0.0008648 | 11101 | 15111827 | 26516865 |
11101062023 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 54 | 0.0009340 | 11101 | 16320774 | 8749875 |
11101062025 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 24 | 0.0004151 | 11101 | 7253677 | 17611946 |
11101072014 | 11101 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 107 | 0.0018506 | 11101 | 32339311 | 35449723 |
11101072018 | 11101 | 57 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 806 | 0.0139403 | 11101 | 243602658 | 517685359 |
11101072019 | 11101 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 102 | 0.0017642 | 11101 | 30828128 | 62357932 |
11101072020 | 11101 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 190 | 0.0032862 | 11101 | 57424944 | 35449723 |
11101072035 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 109 | 0.0018852 | 11101 | 32943784 | 26516865 |
11101072036 | 11101 | 8 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 539 | 0.0093224 | 11101 | 162905499 | 71354002 |
11101072037 | 11101 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 265 | 0.0045833 | 11101 | 80092685 | 62357932 |
11101082021 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 8 | 0.0001384 | 11101 | 2417892 | 8749875 |
11101092007 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 29 | 0.0005016 | 11101 | 8764860 | 8749875 |
11101102011 | 11101 | 10 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 143 | 0.0024733 | 11101 | 43219826 | 89376195 |
11101102020 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 250 | 0.0043239 | 11101 | 75559137 | 179898422 |
11101102033 | 11101 | 69 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 763 | 0.0131966 | 11101 | 230606486 | 627776624 |
11101112001 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 186 | 0.0032170 | 11101 | 56215998 | 26516865 |
11101112009 | 11101 | 23 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 198 | 0.0034245 | 11101 | 59842837 | 207149947 |
11101112011 | 11101 | 78 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 579 | 0.0100142 | 11101 | 174994961 | 710463180 |
11101112012 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 54 | 0.0009340 | 11101 | 16320774 | 44403415 |
11101112013 | 11101 | 61 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 615 | 0.0106368 | 11101 | 185875477 | 554360703 |
11101121001 | 11101 | 26 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 903 | 0.0156180 | 11101 | 272919603 | 234434359 |
11101121002 | 11101 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3281 | 0.0567470 | 11101 | 991638114 | 371240701 |
11101121003 | 11101 | 161 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2413 | 0.0417344 | 11101 | 729296790 | 1476300175 |
11101121004 | 11101 | 81 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3717 | 0.0642879 | 11101 | 1123413249 | 738045457 |
11101121005 | 11101 | 115 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2462 | 0.0425819 | 11101 | 744106381 | 1051233846 |
11101121006 | 11101 | 110 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2381 | 0.0411809 | 11101 | 719625221 | 1005116000 |
11101121007 | 11101 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3498 | 0.0605002 | 11101 | 1057223445 | 325576815 |
11101121008 | 11101 | 31 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3334 | 0.0576637 | 11101 | 1007656651 | 279971555 |
11101122011 | 11101 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 206 | 0.0035629 | 11101 | 62260729 | 325576815 |
11101131001 | 11101 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1906 | 0.0329655 | 11101 | 576062861 | 609414907 |
11101131002 | 11101 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3237 | 0.0559860 | 11101 | 978339706 | 609414907 |
11101131003 | 11101 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3439 | 0.0594797 | 11101 | 1039391489 | 848465567 |
11101131004 | 11101 | 72 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3238 | 0.0560033 | 11101 | 978641943 | 655328360 |
11101131005 | 11101 | 42 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2580 | 0.0446228 | 11101 | 779770294 | 380379856 |
11101131006 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1524 | 0.0263586 | 11101 | 460608499 | 26516865 |
11101131007 | 11101 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3756 | 0.0649625 | 11101 | 1135200474 | 371240701 |
11101132011 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 44 | 0.0007610 | 11101 | 13298408 | 8749875 |
11101991999 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 301 | 0.0052060 | 11101 | 90973201 | 179898422 |
11102012004 | 11102 | 1 | 2017 | NA | NA | NA | NA | NA | NA | 308 | 0.3615023 | 11102 | NA | 8749875 |
11102042003 | 11102 | 4 | 2017 | NA | NA | NA | NA | NA | NA | 244 | 0.2863850 | 11102 | NA | 35449723 |
11102052002 | 11102 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 203 | 0.2382629 | 11102 | NA | 26516865 |
11201011001 | 11201 | 47 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2035 | 0.0849368 | 11201 | 605740586 | 426104834 |
11201011002 | 11201 | 62 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3187 | 0.1330189 | 11201 | 948646313 | 563533063 |
11201011003 | 11201 | 83 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3870 | 0.1615259 | 11201 | 1151948927 | 756438898 |
11201012009 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 52 | 0.0021704 | 11201 | 15478384 | 26516865 |
11201012013 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 35 | 0.0014608 | 11201 | 10418143 | 17611946 |
11201012055 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 148 | 0.0061772 | 11201 | 44053861 | 8749875 |
11201012067 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 98 | 0.0040903 | 11201 | 29170800 | 8749875 |
11201012901 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 172 | 0.0071789 | 11201 | 51197730 | 17611946 |
11201021001 | 11201 | 8 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 1561 | 0.0651530 | 11201 | 464649167 | 71354002 |
11201022011 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 32 | 0.0013356 | 11201 | 9525159 | 17611946 |
11201022057 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 58 | 0.0024208 | 11201 | 17264351 | 8749875 |
11201032068 | 11201 | 4 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 149 | 0.0062190 | 11201 | 44351522 | 35449723 |
11201041001 | 11201 | 12 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2623 | 0.1094787 | 11201 | 780765384 | 107431876 |
11201041002 | 11201 | 68 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2692 | 0.1123586 | 11201 | 801304008 | 618595143 |
11201041003 | 11201 | 36 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3034 | 0.1266330 | 11201 | 903104146 | 325576815 |
11201042006 | 11201 | 13 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 244 | 0.0101841 | 11201 | 72629338 | 116470455 |
11201042007 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 54 | 0.0022539 | 11201 | 16073706 | 26516865 |
11201052901 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 14 | 0.0005843 | 11201 | 4167257 | 17611946 |
11201062044 | 11201 | 35 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 541 | 0.0225802 | 11201 | 161034721 | 316450811 |
11201071001 | 11201 | 9 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 1239 | 0.0517133 | 11201 | 368802253 | 80360473 |
11201072901 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 208 | 0.0086815 | 11201 | 61913534 | 26516865 |
11202011001 | 11202 | 51 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 2558 | 0.3925119 | 11202 | 652916090 | 462717403 |
11202021001 | 11202 | 15 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 1431 | 0.2195796 | 11202 | 365255248 | 134566415 |
11202022016 | 11202 | 10 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 280 | 0.0429646 | 11202 | 71468532 | 89376195 |
11202022020 | 11202 | 14 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 1037 | 0.1591223 | 11202 | 264688814 | 125515453 |
11202032022 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 6 | 0.0009207 | 11202 | 1531469 | 8749875 |
11202052021 | 11202 | 2 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 239 | 0.0366733 | 11202 | 61003497 | 17611946 |
11202052023 | 11202 | 16 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 170 | 0.0260856 | 11202 | 43391609 | 143622946 |
11202052901 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 40 | 0.0061378 | 11202 | 10209790 | 8749875 |
11202991999 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 125 | 0.0191806 | 11202 | 31905595 | 8749875 |
11203011001 | 11203 | 13 | 2017 | NA | NA | NA | NA | NA | NA | 1329 | 0.7211069 | 11203 | NA | 116470455 |
11203012004 | 11203 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 32 | 0.0173630 | 11203 | NA | 26516865 |
11203012005 | 11203 | 1 | 2017 | NA | NA | NA | NA | NA | NA | 31 | 0.0168204 | 11203 | NA | 8749875 |
11203012901 | 11203 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 75 | 0.0406945 | 11203 | NA | 26516865 |
11301011001 | 11301 | 87 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 2789 | 0.7991404 | 11301 | 875960355 | 793237945 |
11301012002 | 11301 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 26 | 0.0074499 | 11301 | 8165998 | 8749875 |
11301012003 | 11301 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 78 | 0.0223496 | 11301 | 24497995 | 8749875 |
11301012004 | 11301 | 2 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 76 | 0.0217765 | 11301 | 23869841 | 17611946 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11101011001 | 11101 | 30 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 324 | 0.0056038 | 11101 | 97924642 | 270858316 | 835982.46 |
11101011002 | 11101 | 80 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1672 | 0.0289183 | 11101 | 505339508 | 728850301 | 435915.25 |
11101011003 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 499 | 0.0086305 | 11101 | 150816037 | 179898422 | 360517.88 |
11101011004 | 11101 | 22 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 667 | 0.0115362 | 11101 | 201591778 | 198062236 | 296944.88 |
11101011005 | 11101 | 32 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 977 | 0.0168979 | 11101 | 295285107 | 289087506 | 295893.05 |
11101011006 | 11101 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1595 | 0.0275866 | 11101 | 482067294 | 848465567 | 531953.33 |
11101011007 | 11101 | 75 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2251 | 0.0389325 | 11101 | 680334470 | 682890685 | 303372.14 |
11101022003 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 11 | 0.0001903 | 11101 | 3324602 | 17611946 | 1601086.03 |
11101022010 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 53 | 0.0009167 | 11101 | 16018537 | 17611946 | 332300.87 |
11101022031 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 55 | 0.0009513 | 11101 | 16623010 | 8749875 | 159088.64 |
11101022038 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 339 | 0.0058632 | 11101 | 102458190 | 26516865 | 78220.84 |
11101032005 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 53 | 0.0009167 | 11101 | 16018537 | 8749875 | 165091.99 |
11101032032 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 257 | 0.0044450 | 11101 | 77674793 | 44403415 | 172775.93 |
11101032034 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 31 | 0.0005362 | 11101 | 9369333 | 8749875 | 282254.04 |
11101032901 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 43 | 0.0007437 | 11101 | 12996172 | 17611946 | 409580.15 |
11101042022 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 27 | 0.0004670 | 11101 | 8160387 | 26516865 | 982106.10 |
11101042024 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 47 | 0.0008129 | 11101 | 14205118 | 26516865 | 564188.61 |
11101042027 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 77 | 0.0013318 | 11101 | 23272214 | 53373744 | 693165.50 |
11101052004 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 474 | 0.0081981 | 11101 | 143260124 | 53373744 | 112602.83 |
11101052008 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 76 | 0.0013145 | 11101 | 22969978 | 44403415 | 584255.46 |
11101052014 | 11101 | 6 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 250 | 0.0043239 | 11101 | 75559137 | 53373744 | 213494.97 |
11101052901 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 50 | 0.0008648 | 11101 | 15111827 | 26516865 | 530337.29 |
11101062023 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 54 | 0.0009340 | 11101 | 16320774 | 8749875 | 162034.73 |
11101062025 | 11101 | 2 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 24 | 0.0004151 | 11101 | 7253677 | 17611946 | 733831.10 |
11101072014 | 11101 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 107 | 0.0018506 | 11101 | 32339311 | 35449723 | 331305.82 |
11101072018 | 11101 | 57 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 806 | 0.0139403 | 11101 | 243602658 | 517685359 | 642289.53 |
11101072019 | 11101 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 102 | 0.0017642 | 11101 | 30828128 | 62357932 | 611352.28 |
11101072020 | 11101 | 4 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 190 | 0.0032862 | 11101 | 57424944 | 35449723 | 186577.49 |
11101072035 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 109 | 0.0018852 | 11101 | 32943784 | 26516865 | 243273.99 |
11101072036 | 11101 | 8 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 539 | 0.0093224 | 11101 | 162905499 | 71354002 | 132382.19 |
11101072037 | 11101 | 7 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 265 | 0.0045833 | 11101 | 80092685 | 62357932 | 235312.95 |
11101082021 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 8 | 0.0001384 | 11101 | 2417892 | 8749875 | 1093734.41 |
11101092007 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 29 | 0.0005016 | 11101 | 8764860 | 8749875 | 301719.84 |
11101102011 | 11101 | 10 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 143 | 0.0024733 | 11101 | 43219826 | 89376195 | 625008.36 |
11101102020 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 250 | 0.0043239 | 11101 | 75559137 | 179898422 | 719593.69 |
11101102033 | 11101 | 69 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 763 | 0.0131966 | 11101 | 230606486 | 627776624 | 822774.08 |
11101112001 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 186 | 0.0032170 | 11101 | 56215998 | 26516865 | 142563.79 |
11101112009 | 11101 | 23 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 198 | 0.0034245 | 11101 | 59842837 | 207149947 | 1046211.86 |
11101112011 | 11101 | 78 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 579 | 0.0100142 | 11101 | 174994961 | 710463180 | 1227052.13 |
11101112012 | 11101 | 5 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 54 | 0.0009340 | 11101 | 16320774 | 44403415 | 822285.46 |
11101112013 | 11101 | 61 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 615 | 0.0106368 | 11101 | 185875477 | 554360703 | 901399.52 |
11101121001 | 11101 | 26 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 903 | 0.0156180 | 11101 | 272919603 | 234434359 | 259617.23 |
11101121002 | 11101 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3281 | 0.0567470 | 11101 | 991638114 | 371240701 | 113148.64 |
11101121003 | 11101 | 161 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2413 | 0.0417344 | 11101 | 729296790 | 1476300175 | 611811.10 |
11101121004 | 11101 | 81 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3717 | 0.0642879 | 11101 | 1123413249 | 738045457 | 198559.45 |
11101121005 | 11101 | 115 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2462 | 0.0425819 | 11101 | 744106381 | 1051233846 | 426983.69 |
11101121006 | 11101 | 110 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2381 | 0.0411809 | 11101 | 719625221 | 1005116000 | 422140.28 |
11101121007 | 11101 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3498 | 0.0605002 | 11101 | 1057223445 | 325576815 | 93075.13 |
11101121008 | 11101 | 31 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3334 | 0.0576637 | 11101 | 1007656651 | 279971555 | 83974.67 |
11101122011 | 11101 | 36 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 206 | 0.0035629 | 11101 | 62260729 | 325576815 | 1580469.98 |
11101131001 | 11101 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1906 | 0.0329655 | 11101 | 576062861 | 609414907 | 319735.00 |
11101131002 | 11101 | 67 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3237 | 0.0559860 | 11101 | 978339706 | 609414907 | 188265.34 |
11101131003 | 11101 | 93 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3439 | 0.0594797 | 11101 | 1039391489 | 848465567 | 246718.69 |
11101131004 | 11101 | 72 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3238 | 0.0560033 | 11101 | 978641943 | 655328360 | 202386.77 |
11101131005 | 11101 | 42 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 2580 | 0.0446228 | 11101 | 779770294 | 380379856 | 147434.05 |
11101131006 | 11101 | 3 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 1524 | 0.0263586 | 11101 | 460608499 | 26516865 | 17399.52 |
11101131007 | 11101 | 41 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 3756 | 0.0649625 | 11101 | 1135200474 | 371240701 | 98839.38 |
11101132011 | 11101 | 1 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 44 | 0.0007610 | 11101 | 13298408 | 8749875 | 198860.80 |
11101991999 | 11101 | 20 | 2017 | Coyhaique | 302236.5 | 2017 | 11101 | 57818 | 17474712735 | 301 | 0.0052060 | 11101 | 90973201 | 179898422 | 597669.17 |
11102012004 | 11102 | 1 | 2017 | NA | NA | NA | NA | NA | NA | 308 | 0.3615023 | 11102 | NA | 8749875 | NA |
11102042003 | 11102 | 4 | 2017 | NA | NA | NA | NA | NA | NA | 244 | 0.2863850 | 11102 | NA | 35449723 | NA |
11102052002 | 11102 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 203 | 0.2382629 | 11102 | NA | 26516865 | NA |
11201011001 | 11201 | 47 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2035 | 0.0849368 | 11201 | 605740586 | 426104834 | 209388.12 |
11201011002 | 11201 | 62 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3187 | 0.1330189 | 11201 | 948646313 | 563533063 | 176822.42 |
11201011003 | 11201 | 83 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3870 | 0.1615259 | 11201 | 1151948927 | 756438898 | 195462.25 |
11201012009 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 52 | 0.0021704 | 11201 | 15478384 | 26516865 | 509939.71 |
11201012013 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 35 | 0.0014608 | 11201 | 10418143 | 17611946 | 503198.47 |
11201012055 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 148 | 0.0061772 | 11201 | 44053861 | 8749875 | 59120.78 |
11201012067 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 98 | 0.0040903 | 11201 | 29170800 | 8749875 | 89284.44 |
11201012901 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 172 | 0.0071789 | 11201 | 51197730 | 17611946 | 102395.04 |
11201021001 | 11201 | 8 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 1561 | 0.0651530 | 11201 | 464649167 | 71354002 | 45710.44 |
11201022011 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 32 | 0.0013356 | 11201 | 9525159 | 17611946 | 550373.32 |
11201022057 | 11201 | 1 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 58 | 0.0024208 | 11201 | 17264351 | 8749875 | 150859.92 |
11201032068 | 11201 | 4 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 149 | 0.0062190 | 11201 | 44351522 | 35449723 | 237917.60 |
11201041001 | 11201 | 12 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2623 | 0.1094787 | 11201 | 780765384 | 107431876 | 40957.63 |
11201041002 | 11201 | 68 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 2692 | 0.1123586 | 11201 | 801304008 | 618595143 | 229790.17 |
11201041003 | 11201 | 36 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 3034 | 0.1266330 | 11201 | 903104146 | 325576815 | 107309.43 |
11201042006 | 11201 | 13 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 244 | 0.0101841 | 11201 | 72629338 | 116470455 | 477337.93 |
11201042007 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 54 | 0.0022539 | 11201 | 16073706 | 26516865 | 491053.05 |
11201052901 | 11201 | 2 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 14 | 0.0005843 | 11201 | 4167257 | 17611946 | 1257996.17 |
11201062044 | 11201 | 35 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 541 | 0.0225802 | 11201 | 161034721 | 316450811 | 584936.80 |
11201071001 | 11201 | 9 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 1239 | 0.0517133 | 11201 | 368802253 | 80360473 | 64859.14 |
11201072901 | 11201 | 3 | 2017 | Aysén | 297661.2 | 2017 | 11201 | 23959 | 7131665204 | 208 | 0.0086815 | 11201 | 61913534 | 26516865 | 127484.93 |
11202011001 | 11202 | 51 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 2558 | 0.3925119 | 11202 | 652916090 | 462717403 | 180890.31 |
11202021001 | 11202 | 15 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 1431 | 0.2195796 | 11202 | 365255248 | 134566415 | 94036.63 |
11202022016 | 11202 | 10 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 280 | 0.0429646 | 11202 | 71468532 | 89376195 | 319200.70 |
11202022020 | 11202 | 14 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 1037 | 0.1591223 | 11202 | 264688814 | 125515453 | 121037.08 |
11202032022 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 6 | 0.0009207 | 11202 | 1531469 | 8749875 | 1458312.54 |
11202052021 | 11202 | 2 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 239 | 0.0366733 | 11202 | 61003497 | 17611946 | 73690.15 |
11202052023 | 11202 | 16 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 170 | 0.0260856 | 11202 | 43391609 | 143622946 | 844840.86 |
11202052901 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 40 | 0.0061378 | 11202 | 10209790 | 8749875 | 218746.88 |
11202991999 | 11202 | 1 | 2017 | Cisnes | 255244.8 | 2017 | 11202 | 6517 | 1663430085 | 125 | 0.0191806 | 11202 | 31905595 | 8749875 | 69999.00 |
11203011001 | 11203 | 13 | 2017 | NA | NA | NA | NA | NA | NA | 1329 | 0.7211069 | 11203 | NA | 116470455 | NA |
11203012004 | 11203 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 32 | 0.0173630 | 11203 | NA | 26516865 | NA |
11203012005 | 11203 | 1 | 2017 | NA | NA | NA | NA | NA | NA | 31 | 0.0168204 | 11203 | NA | 8749875 | NA |
11203012901 | 11203 | 3 | 2017 | NA | NA | NA | NA | NA | NA | 75 | 0.0406945 | 11203 | NA | 26516865 | NA |
11301011001 | 11301 | 87 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 2789 | 0.7991404 | 11301 | 875960355 | 793237945 | 284416.62 |
11301012002 | 11301 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 26 | 0.0074499 | 11301 | 8165998 | 8749875 | 336533.66 |
11301012003 | 11301 | 1 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 78 | 0.0223496 | 11301 | 24497995 | 8749875 | 112177.89 |
11301012004 | 11301 | 2 | 2017 | Cochrane | 314076.9 | 2017 | 11301 | 3490 | 1096128231 | 76 | 0.0217765 | 11301 | 23869841 | 17611946 | 231736.14 |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_11.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda