Analysis of field trial

Install agricolae package

install.packages("agricolae")

Load agricloae package

library(agricolae)

Default command line for AL design analysis

PBIB.test(block,trt,replication,y,k, method=c("REML","ML","VC"), 
          test = c("lsd","tukey"), alpha=0.05, console=TRUE, group=TRUE)

REML is restricted maximum likelihood

ML is maximum likelihood

VC is variance components

block is the block, trt is the genotype/treatment,replication is replication,

y is the response variable/traits,

k is block size

we need to change Block,trt,replication into Factor

For example,

my data name is ALdata, REP is the replication, BLOCK is block, GEN is trt (treatment)

Load data from the website

https://gist.githubusercontent.com/ikmalmal/1819fc03dd0fb9219c3f42d62693be35/raw/e3f9120f2629d28d68fcb9a600eae29a46a1d288/ALdata.csv

ALdata<-read.csv(file='https://gist.githubusercontent.com/ikmalmal/1819fc03dd0fb9219c3f42d62693be35/raw/e3f9120f2629d28d68fcb9a600eae29a46a1d288/ALdata.csv')

Check structure of data

str(ALdata)
## 'data.frame':    182 obs. of  7 variables:
##  $ SAMPLE    : int  112 112 113 113 114 114 116 116 117 117 ...
##  $ Genotype  : chr  "GEN112" "GEN112" "GEN113" "GEN113" ...
##  $ BLOCK     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ QTLclasses: chr  "B" "B" "E" "E" ...
##  $ ENV       : chr  "NS" "NS" "NS" "NS" ...
##  $ REP       : int  1 2 1 2 1 2 1 2 1 2 ...
##  $ GY        : num  8214 8763 8771 10725 12199 ...

Change into factor

ALdata$REP<-as.factor(ALdata$REP)
ALdata$BLOCK<-as.factor(ALdata$BLOCK)
ALdata$Genotype<-as.factor(ALdata$Genotype)

fit your data to this command

AL1<-PBIB.test(ALdata$BLOCK,ALdata$Genotype,ALdata$REP,ALdata$GY,7,method="REML", test = "lsd", alpha=0.05,console=TRUE, group=TRUE)
## 
## ANALYSIS PBIB:  ALdata$GY 
## 
## Class level information
## ALdata$BLOCK : 26 
## ALdata$Genotype : 91
## 
## Number of observations:  182 
## 
## Estimation Method:  Residual (restricted) maximum likelihood 
## 
## Parameter Estimates
##                             Variance
## ALdata$BLOCK:ALdata$REP 4.346409e-04
## ALdata$REP              1.447415e-03
## Residual                7.604985e+05
## 
##                       Fit Statistics
## AIC                        1741.6206
## BIC                        1977.6414
## -2 Res Log Likelihood      -776.8103
## 
## Analysis of Variance Table
## 
## Response: ALdata$GY
##                 Df    Sum Sq  Mean Sq F value    Pr(>F)    
## ALdata$Genotype 90 977038280 10855981  14.275 < 2.2e-16 ***
## Residuals       84  63881874   760498                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Coefficient of variation: 10.9 %
## ALdata$GY Means: 7967.263 
## 
## Parameters PBIB
##                          .
## ALdata$Genotype         91
## ALdata$BLOCK size        7
## ALdata$BLOCK/ALdata$REP 13
## ALdata$REP               2
## 
## Efficiency factor 0.7894737 
## 
## Comparison test lsd 
## 
## Treatments with the same letter are not significantly different.
## 
##           ALdata$GY.adj         groups
## GEN206        13892.800              a
## GEN249        13190.615             ab
## GEN230        13015.465            abc
## GEN234        12910.130            abc
## GEN191        12732.800           abcd
## GEN114        12163.520          abcde
## GEN269        12059.415           bcde
## GEN157        11958.080           bcde
## GEN190        11442.775           cdef
## GEN124        11155.255           defg
## GEN154        11101.120           defg
## GEN239        11083.575           defg
## GEN128        11061.705           defg
## GEN266        10747.625            efg
## GEN192        10607.470           efgh
## GEN213        10201.070           fghi
## GEN251        10113.280          fghij
## GEN229         9761.065         fghijk
## NMR152         9756.000         fghijk
## GEN113         9747.735         fghijk
## UKM5           9625.600         ghijkl
## GEN159         9617.035         ghijkl
## GEN210         9545.865        ghijklm
## GEN219         8996.335        hijklmn
## GEN176         8948.160       hijklmno
## GEN207         8861.335        ijklmno
## GEN150         8657.070       ijklmnop
## GEN133         8645.200       ijklmnop
## GEN163         8630.745       ijklmnop
## GEN188         8579.465       ijklmnop
## GEN263         8540.845       ijklmnop
## GEN132         8509.120       ijklmnop
## GEN112         8488.215       ijklmnop
## GEN250         8442.135        jklmnop
## GEN168         8436.615        jklmnop
## GEN118         8381.440       jklmnopq
## GEN122         8361.865        klmnopq
## GEN262         8182.880       klmnopqr
## GEN247         8131.520       klmnopqr
## GEN172         8077.760       klmnopqr
## GEN268         8059.155       klmnopqr
## GEN261         7956.960       lmnopqrs
## GEN164         7926.745       lmnopqrs
## GEN240         7869.760       mnopqrst
## GEN231         7849.200       mnopqrst
## GEN197         7747.945       nopqrstu
## GEN165         7720.935       nopqrstu
## GEN218         7709.065       nopqrstu
## GEN193         7617.335      nopqrstuv
## GEN140         7582.200      nopqrstuv
## GEN147         7565.385      nopqrstuv
## GEN158         7495.725     nopqrstuvw
## GEN216         7384.265    nopqrstuvwx
## GEN227         7219.945    opqrstuvwxy
## GEN228         7104.400    pqrstuvwxyz
## GEN167         7102.135    pqrstuvwxyz
## GEN152         7073.065   pqrstuvwxyzA
## GEN155         7061.515   pqrstuvwxyzA
## GEN243         7028.800   pqrstuvwxyzA
## GEN116         7005.865  pqrstuvwxyzAB
## IR64-Sub1      6938.880 pqrstuvwxyzABC
## GEN134         6682.400 qrstuvwxyzABCD
## GEN238         6675.520 qrstuvwxyzABCD
## GEN209         6658.135 qrstuvwxyzABCD
## GEN236         6517.600 rstuvwxyzABCDE
## GEN267         6275.200  stuvwxyzABCDE
## GEN258         6153.335  tuvwxyzABCDEF
## GEN166         6136.410  tuvwxyzABCDEF
## GEN170         6037.120  uvwxyzABCDEFG
## MR219          5959.815   vwxyzABCDEFG
## GEN223         5946.560   vwxyzABCDEFG
## GEN160         5817.095    wxyzABCDEFG
## GEN148         5781.920    wxyzABCDEFG
## GEN264         5778.745    wxyzABCDEFG
## GEN146         5686.775     xyzABCDEFG
## GEN204         5544.535      yzABCDEFG
## GEN127         5521.580      yzABCDEFG
## GEN222         5509.865      yzABCDEFG
## GEN187         5451.465       zABCDEFG
## GEN270         5355.015        ABCDEFG
## GEN125         5294.080        BCDEFGH
## GEN226         5232.000         CDEFGH
## GEN138         5219.095         CDEFGH
## GEN242         5060.960          DEFGH
## GEN117         5005.280          DEFGH
## GEN220         4865.600           EFGH
## GEN129         4535.305            FGH
## IR84984        4519.040            FGH
## GEN185         4457.600            FGH
## IR81896        4346.400             GH
## GEN215         3616.535              H
## 
## <<< to see the objects: means, comparison and groups. >>>

References

De Mendiburu, Felipe (2009). Una herramienta de analisis estadistico para la investigacion agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU).

Mohd Ikmal, A.; Noraziyah, A.A.S.;Wickneswari, R. Incorporating Drought and Submergence Tolerance QTL in Rice (Oryza sativa L.)β€”The Effects under Reproductive Stage Drought and Vegetative Stage Submergence Stresses. Plants 2021, 10, 225. https://doi.org/10.3390/plants10020225