library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.2 v dplyr 1.0.6
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(janitor)
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(dplyr)
library(crunch)
##
## Attaching package: 'crunch'
## The following objects are masked from 'package:dplyr':
##
## combine, filter, id
## The following object is masked from 'package:ggplot2':
##
## resolution
## The following objects are masked from 'package:stats':
##
## filter, rstandard, setNames
## The following object is masked from 'package:graphics':
##
## title
## The following object is masked from 'package:utils':
##
## write.csv
## The following object is masked from 'package:base':
##
## table
library(remotes)
install_github("JanMarvin/readspss")
## Skipping install of 'readspss' from a github remote, the SHA1 (bbc71e6b) has not changed since last install.
## Use `force = TRUE` to force installation
library(readr)
replicationdata <- read_csv("~/Coding-R/replication project/replicationdata.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## .default = col_double(),
## ParticipantID = col_character(),
## General_1_MedList = col_character(),
## General_1_University = col_character()
## )
## i Use `spec()` for the full column specifications.
View(replicationdata)
#loading data
Excluding participants from data
cleandata <- replicationdata %>% # removing participants who were excluded
filter(exclude==0)
Calculating age
ageaverage <- cleandata %>% #calculating average age including sd using cleaned data
select(General_1_Age) %>%
summarise(ageaverage = mean(General_1_Age),
agesd = sd(General_1_Age))
print(ageaverage)
## # A tibble: 1 x 2
## ageaverage agesd
## <dbl> <dbl>
## 1 19.5 1.23
Trying to find average ESS score
ESS <- cleandata %>%
select(Epworth_total) %>%
summarise(ESS = mean(Epworth_total), ESSSD = sd(Epworth_total))
print(ESS)
## # A tibble: 1 x 2
## ESS ESSSD
## <dbl> <dbl>
## 1 15.3 2.83
Trying to find SSS score
SSSgroup <- cleandata %>%
select(AlertTest_1_Feel,
AlertTest_2_Feel,
AlertTest_3_Feel,
AlertTest_4_Feel) %>%
drop_na() %>%
summarise(
AT1F = mean(AlertTest_1_Feel),
AT2F = mean(AlertTest_2_Feel),
AT3F = mean(AlertTest_3_Feel),
AT4F = mean(AlertTest_4_Feel)
)
SSS <- SSSgroup %>%
summarise(SSSav = mean(SSSgroup))
## Warning in mean.default(SSSgroup): argument is not numeric or logical: returning
## NA
print(SSS)
## # A tibble: 1 x 1
## SSSav
## <dbl>
## 1 NA
Attepting merge function: unsuccessful
SSStotal <- cleandata %>%
select(AlertTest_1_Feel,
AlertTest_2_Feel,
AlertTest_3_Feel,
AlertTest_4_Feel) %>%
merge(AlertTest_1_Feel, AlertTest_2_Feel, AlertTest_3_Feel, AlertTest_4_Feel, by=participantID)
print(SSStotal)
attempting to use bind function: successful but not right value
SSS <- cleandata %>%
select(AlertTest_1_Feel,
AlertTest_2_Feel,
AlertTest_3_Feel,
AlertTest_4_Feel) %>%
drop_na() %>%
summarise( mean( rbind(AlertTest_1_Feel, AlertTest_2_Feel, AlertTest_3_Feel, AlertTest_4_Feel)))
print(SSS)
## # A tibble: 1 x 1
## `mean(...)`
## <dbl>
## 1 2.69
Applying above to not tweaked data (ignoring exclusions) - not right value
SSStrial <- replicationdata %>%
select(AlertTest_1_Feel,
AlertTest_2_Feel,
AlertTest_3_Feel,
AlertTest_4_Feel) %>%
drop_na() %>%
summarise( mean( rbind(AlertTest_1_Feel, AlertTest_2_Feel, AlertTest_3_Feel, AlertTest_4_Feel)))
print(SSStrial)
## # A tibble: 1 x 1
## `mean(...)`
## <dbl>
## 1 2.62