options(scipen = 999999)
library(stargazer)
library(foreign)
datos_crime <- read.dta("https://stats.idre.ucla.edu/stat/data/crime.dta")
modelo.crime<-lm(crime~poverty+single,data=datos_crime)
stargazer(modelo.crime,
title = "Modelo Crime", type = "html")
| Dependent variable: | |
| crime | |
| poverty | 6.787 |
| (8.989) | |
| single | 166.373*** |
| (19.423) | |
| Constant | -1,368.189*** |
| (187.205) | |
| Observations | 51 |
| R2 | 0.707 |
| Adjusted R2 | 0.695 |
| Residual Std. Error | 243.610 (df = 48) |
| F Statistic | 57.964*** (df = 2; 48) |
| Note: | p<0.1; p<0.05; p<0.01 |
library(lmtest)
BP_test<-bptest(modelo.crime,~I(poverty^2)+I(single^2)+poverty*single,data = datos_crime)
print(BP_test)
##
## studentized Breusch-Pagan test
##
## data: modelo.crime
## BP = 10.73, df = 5, p-value = 0.057
Hay evidencia de Heterocedasticidad porque el Pvalue 0.057 < 0.05
library(car)
durbinWatsonTest(model = modelo.crime)
## lag Autocorrelation D-W Statistic p-value
## 1 -0.07014421 2.040007 0.994
## Alternative hypothesis: rho != 0
No hay evidencia de Autocorrelación de 1° orden porque el Pvalue > 0.05
library(lmtest)
BG_test<-bgtest(modelo.crime,order = 2)
print(BG_test)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo.crime
## LM test = 0.27165, df = 2, p-value = 0.873
No hay evidencia de Autocorrelación de 2° orden porque el Pvalue > 0.05
options(scipen = 99999)
library(lmtest)
coeftest(modelo.crime)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1368.1887 187.2052 -7.3085 0.00000000247861 ***
## poverty 6.7874 8.9885 0.7551 0.4539
## single 166.3727 19.4229 8.5658 0.00000000003117 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(scipen = 99999)
library(lmtest)
library(sandwich)
estimacion_corregida <- vcovHC(modelo.crime,type="HC0")
coeftest(modelo.crime,vcov. = estimacion_corregida)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1368.1887 276.4111 -4.9498 0.00000956181 ***
## poverty 6.7874 10.6010 0.6403 0.5251
## single 166.3727 25.4510 6.5370 0.00000003774 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(scipen = 999999)
library(stargazer)
library(robustbase)
modelo.crime_robusto<-lmrob(crime~poverty+single,data=datos_crime)
stargazer(modelo.crime,modelo.crime_robusto,estimacion_corregida,title= "Comparativa",type = "html")
| Dependent variable: | ||
| crime | ||
| OLS | MM-type | |
| linear | ||
| (1) | (2) | |
| poverty | 6.787 | 11.466 |
| (8.989) | (9.263) | |
| single | 166.373*** | 176.569*** |
| (19.423) | (23.223) | |
| Constant | -1,368.189*** | -1,539.640*** |
| (187.205) | (235.765) | |
| Observations | 51 | 51 |
| R2 | 0.707 | 0.795 |
| Adjusted R2 | 0.695 | 0.787 |
| Residual Std. Error (df = 48) | 243.610 | 191.864 |
| F Statistic | 57.964*** (df = 2; 48) | |
| Note: | p<0.1; p<0.05; p<0.01 | |
| (Intercept) | poverty | single | |
| (Intercept) | 76,403.090 | -703.845 | -6,127.593 |
| poverty | -703.845 | 112.382 | -69.274 |
| single | -6,127.593 | -69.274 | 647.752 |