1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).

1.1 Lectura y filtrado de la tabla censal de viviendas

Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 1:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 5) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
5101011001 1 5101 200 2017
5101011002 1 5101 183 2017
5101011003 1 5101 184 2017
5101011004 1 5101 49 2017
5101011005 1 5101 97 2017
5101011006 1 5101 193 2017
5101011007 1 5101 210 2017
5101021001 1 5101 5 2017
5101021002 1 5101 218 2017
5101021003 1 5101 140 2017
5101021004 1 5101 74 2017
5101031001 1 5101 86 2017
5101031002 1 5101 78 2017
5101031003 1 5101 81 2017
5101031004 1 5101 43 2017
5101031005 1 5101 29 2017
5101031006 1 5101 29 2017
5101031007 1 5101 84 2017
5101031008 1 5101 93 2017
5101031009 1 5101 29 2017
5101031010 1 5101 38 2017
5101031011 1 5101 104 2017
5101031012 1 5101 35 2017
5101041001 1 5101 10 2017
5101051001 1 5101 67 2017
5101051002 1 5101 49 2017
5101051003 1 5101 75 2017
5101051004 1 5101 65 2017
5101051005 1 5101 34 2017
5101051006 1 5101 53 2017
5101051007 1 5101 31 2017
5101061001 1 5101 52 2017
5101061002 1 5101 36 2017
5101061003 1 5101 83 2017
5101061004 1 5101 71 2017
5101061005 1 5101 102 2017
5101071001 1 5101 152 2017
5101081001 1 5101 68 2017
5101081002 1 5101 50 2017
5101081003 1 5101 23 2017
5101081004 1 5101 65 2017
5101081005 1 5101 70 2017
5101081006 1 5101 39 2017
5101081007 1 5101 63 2017
5101081008 1 5101 41 2017
5101081009 1 5101 57 2017
5101081010 1 5101 79 2017
5101081011 1 5101 25 2017
5101091001 1 5101 87 2017
5101091002 1 5101 97 2017
5101091003 1 5101 79 2017
5101091004 1 5101 37 2017
5101101001 1 5101 77 2017
5101101002 1 5101 115 2017
5101101003 1 5101 75 2017
5101101004 1 5101 47 2017
5101101005 1 5101 46 2017
5101101006 1 5101 87 2017
5101101007 1 5101 10 2017
5101101008 1 5101 38 2017
5101101009 1 5101 113 2017
5101111001 1 5101 142 2017
5101121001 1 5101 107 2017
5101121002 1 5101 79 2017
5101121003 1 5101 75 2017
5101131001 1 5101 49 2017
5101131002 1 5101 17 2017
5101131003 1 5101 20 2017
5101131004 1 5101 23 2017
5101131005 1 5101 24 2017
5101141001 1 5101 52 2017
5101141002 1 5101 27 2017
5101141003 1 5101 39 2017
5101141004 1 5101 9 2017
5101141005 1 5101 52 2017
5101141006 1 5101 53 2017
5101151001 1 5101 25 2017
5101151002 1 5101 35 2017
5101151003 1 5101 23 2017
5101151004 1 5101 20 2017
5101151005 1 5101 27 2017
5101151006 1 5101 28 2017
5101151007 1 5101 66 2017
5101161001 1 5101 17 2017
5101161002 1 5101 23 2017
5101161003 1 5101 8 2017
5101161004 1 5101 64 2017
5101161005 1 5101 13 2017
5101161006 1 5101 24 2017
5101161007 1 5101 24 2017
5101161008 1 5101 64 2017
5101161009 1 5101 24 2017
5101161010 1 5101 23 2017
5101161011 1 5101 40 2017
5101161012 1 5101 50 2017
5101171001 1 5101 79 2017
5101171002 1 5101 147 2017
5101171003 1 5101 114 2017
5101171004 1 5101 54 2017
5101171005 1 5101 60 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
5101011001 200 2017 05101
5101011002 183 2017 05101
5101011003 184 2017 05101
5101011004 49 2017 05101
5101011005 97 2017 05101
5101011006 193 2017 05101
5101011007 210 2017 05101
5101021001 5 2017 05101
5101021002 218 2017 05101
5101021003 140 2017 05101
5101021004 74 2017 05101
5101031001 86 2017 05101
5101031002 78 2017 05101
5101031003 81 2017 05101
5101031004 43 2017 05101
5101031005 29 2017 05101
5101031006 29 2017 05101
5101031007 84 2017 05101
5101031008 93 2017 05101
5101031009 29 2017 05101
5101031010 38 2017 05101
5101031011 104 2017 05101
5101031012 35 2017 05101
5101041001 10 2017 05101
5101051001 67 2017 05101
5101051002 49 2017 05101
5101051003 75 2017 05101
5101051004 65 2017 05101
5101051005 34 2017 05101
5101051006 53 2017 05101
5101051007 31 2017 05101
5101061001 52 2017 05101
5101061002 36 2017 05101
5101061003 83 2017 05101
5101061004 71 2017 05101
5101061005 102 2017 05101
5101071001 152 2017 05101
5101081001 68 2017 05101
5101081002 50 2017 05101
5101081003 23 2017 05101
5101081004 65 2017 05101
5101081005 70 2017 05101
5101081006 39 2017 05101
5101081007 63 2017 05101
5101081008 41 2017 05101
5101081009 57 2017 05101
5101081010 79 2017 05101
5101081011 25 2017 05101
5101091001 87 2017 05101
5101091002 97 2017 05101
5101091003 79 2017 05101
5101091004 37 2017 05101
5101101001 77 2017 05101
5101101002 115 2017 05101
5101101003 75 2017 05101
5101101004 47 2017 05101
5101101005 46 2017 05101
5101101006 87 2017 05101
5101101007 10 2017 05101
5101101008 38 2017 05101
5101101009 113 2017 05101
5101111001 142 2017 05101
5101121001 107 2017 05101
5101121002 79 2017 05101
5101121003 75 2017 05101
5101131001 49 2017 05101
5101131002 17 2017 05101
5101131003 20 2017 05101
5101131004 23 2017 05101
5101131005 24 2017 05101
5101141001 52 2017 05101
5101141002 27 2017 05101
5101141003 39 2017 05101
5101141004 9 2017 05101
5101141005 52 2017 05101
5101141006 53 2017 05101
5101151001 25 2017 05101
5101151002 35 2017 05101
5101151003 23 2017 05101
5101151004 20 2017 05101
5101151005 27 2017 05101
5101151006 28 2017 05101
5101151007 66 2017 05101
5101161001 17 2017 05101
5101161002 23 2017 05101
5101161003 8 2017 05101
5101161004 64 2017 05101
5101161005 13 2017 05101
5101161006 24 2017 05101
5101161007 24 2017 05101
5101161008 64 2017 05101
5101161009 24 2017 05101
5101161010 23 2017 05101
5101161011 40 2017 05101
5101161012 50 2017 05101
5101171001 79 2017 05101
5101171002 147 2017 05101
5101171003 114 2017 05101
5101171004 54 2017 05101
5101171005 60 2017 05101


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 Iquique 354820.7 2017 1101 191468 67936815240
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397
01401 Pozo Almonte 285981.8 2017 1401 15711 4493059532
01402 Camiña 262850.3 2017 1402 1250 328562901
01404 Huara 253968.5 2017 1404 2730 693334131
01405 Pica 313007.5 2017 1405 9296 2909717399
02101 Antofagasta 347580.2 2017 2101 361873 125779893517
02102 Mejillones 369770.7 2017 2102 13467 4979702302
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188
02104 Taltal 364539.1 2017 2104 13317 4854566842
02201 Calama 409671.3 2017 2201 165731 67895226712
02203 San Pedro de Atacama 426592.0 2017 2203 10996 4690805471
02301 Tocopilla 246615.3 2017 2301 25186 6211253937
02302 María Elena 466266.9 2017 2302 6457 3010685220
03101 Copiapó 330075.2 2017 3101 153937 50810778473
03102 Caldera 299314.8 2017 3102 17662 5286498241
03103 Tierra Amarilla 314643.9 2017 3103 14019 4410992711
03201 Chañaral 286389.3 2017 3201 12219 3499391196
03202 Diego de Almagro 336256.8 2017 3202 13925 4682376047
03301 Vallenar 304336.7 2017 3301 51917 15800246795
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833
03303 Freirina 253086.7 2017 3303 7041 1781983257
03304 Huasco 287406.6 2017 3304 10149 2916889629
04101 La Serena 270221.9 2017 4101 221054 59733627577
04102 Coquimbo 261852.6 2017 4102 227730 59631700074
04103 Andacollo 248209.3 2017 4103 11044 2741223967
04104 La Higuera 228356.8 2017 4104 4241 968461330
04105 Paiguano 205942.1 2017 4105 4497 926121774
04106 Vicuña 211431.9 2017 4106 27771 5871675449
04201 Illapel 238674.4 2017 4201 30848 7362627007
04202 Canela 207933.6 2017 4202 9093 1890740321
04203 Los Vilos 255200.4 2017 4203 21382 5456695139
04204 Salamanca 242879.5 2017 4204 29347 7127783272
04301 Ovalle 266522.9 2017 4301 111272 29656533187
04302 Combarbalá 210409.7 2017 4302 13322 2803077721
04303 Monte Patria 211907.9 2017 4303 30751 6516380780
04304 Punitaqui 194997.8 2017 4304 10956 2136395349
04305 Río Hurtado 182027.2 2017 4305 4278 778712384
05101 Valparaíso 298720.7 2017 5101 296655 88616992249
05102 Casablanca 312802.7 2017 5102 26867 8404070481
05103 Concón 318496.3 2017 5103 42152 13425257057
05105 Puchuncaví 288737.2 2017 5105 18546 5354920887
05107 Quintero 316659.1 2017 5107 31923 10108709691
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611
05301 Los Andes 338182.5 2017 5301 66708 22559476922
05302 Calle Larga 245165.4 2017 5302 14832 3636293159
05303 Rinconada 281633.2 2017 5303 10207 2874630315
05304 San Esteban 220958.4 2017 5304 18855 4166170587
05401 La Ligua 229623.7 2017 5401 35390 8126381563
05402 Cabildo 249717.7 2017 5402 19388 4841527150

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
05101 5101011004 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011005 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101021001 5 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101021002 218 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011007 210 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011003 184 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031006 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011006 193 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011002 183 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031009 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031010 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031007 84 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031008 93 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101041001 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051001 67 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031011 104 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031012 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051004 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051005 34 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051006 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051007 31 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061001 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061002 36 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061003 83 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061004 71 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061005 102 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101071001 152 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081001 68 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051002 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051003 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011001 200 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081005 70 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081006 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081007 63 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081008 41 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081009 57 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081010 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081011 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101091001 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101021003 140 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101021004 74 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031001 86 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031002 78 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031003 81 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031004 43 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031005 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101005 46 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101006 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101007 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101008 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101009 113 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101111001 142 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101121001 107 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101121002 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101121003 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131001 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131002 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131003 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131004 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131005 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141001 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141002 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141003 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141004 9 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141005 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141006 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101151001 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101151002 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081002 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081003 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081004 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101151006 28 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101151007 66 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161001 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161002 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161003 8 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161004 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161005 13 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161006 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161007 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161008 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161009 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161010 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161011 40 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161012 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171001 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171002 147 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171003 114 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171004 54 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171005 60 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171006 113 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171007 133 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171008 7 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171009 72 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171010 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101181001 170 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101181002 122 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101181003 98 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101181004 125 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101191001 117 2017 Valparaíso 298720.7 2017 5101 296655 88616992249


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
05101 5101011004 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011005 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101021001 5 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101021002 218 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011007 210 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011003 184 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031006 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011006 193 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011002 183 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031009 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031010 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031007 84 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031008 93 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101041001 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051001 67 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031011 104 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031012 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051004 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051005 34 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051006 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051007 31 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061001 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061002 36 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061003 83 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061004 71 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101061005 102 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101071001 152 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081001 68 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051002 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101051003 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101011001 200 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081005 70 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081006 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081007 63 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081008 41 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081009 57 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081010 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081011 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101091001 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101021003 140 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101021004 74 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031001 86 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031002 78 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031003 81 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031004 43 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101031005 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101005 46 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101006 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101007 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101008 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101101009 113 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101111001 142 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101121001 107 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101121002 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101121003 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131001 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131002 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131003 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131004 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101131005 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141001 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141002 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141003 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141004 9 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141005 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101141006 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101151001 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101151002 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081002 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081003 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101081004 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101151006 28 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101151007 66 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161001 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161002 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161003 8 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161004 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161005 13 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161006 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161007 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161008 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161009 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161010 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161011 40 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101161012 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171001 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171002 147 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171003 114 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171004 54 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171005 60 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171006 113 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171007 133 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171008 7 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171009 72 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101171010 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101181001 170 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101181002 122 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101181003 98 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101181004 125 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05101 5101191001 117 2017 Valparaíso 298720.7 2017 5101 296655 88616992249


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y
5101011001 05101 200 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3280 0.0110566 05101
5101011002 05101 183 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3761 0.0126780 05101
5101011003 05101 184 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2365 0.0079722 05101
5101011004 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2690 0.0090678 05101
5101011005 05101 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2518 0.0084880 05101
5101011006 05101 193 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2848 0.0096004 05101
5101011007 05101 210 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3131 0.0105543 05101
5101021001 05101 5 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 273 0.0009203 05101
5101021002 05101 218 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1881 0.0063407 05101
5101021003 05101 140 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1696 0.0057171 05101
5101021004 05101 74 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1415 0.0047699 05101
5101031001 05101 86 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1402 0.0047260 05101
5101031002 05101 78 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1780 0.0060002 05101
5101031003 05101 81 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1071 0.0036103 05101
5101031004 05101 43 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 739 0.0024911 05101
5101031005 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 457 0.0015405 05101
5101031006 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1051 0.0035428 05101
5101031007 05101 84 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2154 0.0072610 05101
5101031008 05101 93 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2337 0.0078778 05101
5101031009 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1059 0.0035698 05101
5101031010 05101 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1678 0.0056564 05101
5101031011 05101 104 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2610 0.0087981 05101
5101031012 05101 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 659 0.0022214 05101
5101041001 05101 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 177 0.0005967 05101
5101051001 05101 67 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1872 0.0063104 05101
5101051002 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1714 0.0057778 05101
5101051003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2345 0.0079048 05101
5101051004 05101 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3014 0.0101600 05101
5101051005 05101 34 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1688 0.0056901 05101
5101051006 05101 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3387 0.0114173 05101
5101051007 05101 31 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2233 0.0075273 05101
5101061001 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1196 0.0040316 05101
5101061002 05101 36 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 878 0.0029597 05101
5101061003 05101 83 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1642 0.0055350 05101
5101061004 05101 71 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 862 0.0029057 05101
5101061005 05101 102 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1546 0.0052114 05101
5101071001 05101 152 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1265 0.0042642 05101
5101081001 05101 68 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 687 0.0023158 05101
5101081002 05101 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 634 0.0021372 05101
5101081003 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 619 0.0020866 05101
5101081004 05101 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 620 0.0020900 05101
5101081005 05101 70 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 979 0.0033001 05101
5101081006 05101 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1435 0.0048373 05101
5101081007 05101 63 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1791 0.0060373 05101
5101081008 05101 41 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1274 0.0042946 05101
5101081009 05101 57 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1519 0.0051204 05101
5101081010 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1320 0.0044496 05101
5101081011 05101 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1143 0.0038530 05101
5101091001 05101 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1689 0.0056935 05101
5101091002 05101 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1322 0.0044564 05101
5101091003 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1275 0.0042979 05101
5101091004 05101 37 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 4201 0.0141612 05101
5101101001 05101 77 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1044 0.0035192 05101
5101101002 05101 115 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 988 0.0033305 05101
5101101003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 849 0.0028619 05101
5101101004 05101 47 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 717 0.0024169 05101
5101101005 05101 46 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 936 0.0031552 05101
5101101006 05101 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1453 0.0048979 05101
5101101007 05101 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 604 0.0020360 05101
5101101008 05101 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2358 0.0079486 05101
5101101009 05101 113 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3502 0.0118050 05101
5101111001 05101 142 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2120 0.0071463 05101
5101121001 05101 107 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1435 0.0048373 05101
5101121002 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1941 0.0065430 05101
5101121003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1528 0.0051508 05101
5101131001 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1170 0.0039440 05101
5101131002 05101 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 572 0.0019282 05101
5101131003 05101 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 638 0.0021506 05101
5101131004 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 880 0.0029664 05101
5101131005 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 664 0.0022383 05101
5101141001 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1502 0.0050631 05101
5101141002 05101 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1122 0.0037822 05101
5101141003 05101 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1031 0.0034754 05101
5101141004 05101 9 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 638 0.0021506 05101
5101141005 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 704 0.0023731 05101
5101141006 05101 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1265 0.0042642 05101
5101151001 05101 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 532 0.0017933 05101
5101151002 05101 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 455 0.0015338 05101
5101151003 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 640 0.0021574 05101
5101151004 05101 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 543 0.0018304 05101
5101151005 05101 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 503 0.0016956 05101
5101151006 05101 28 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 774 0.0026091 05101
5101151007 05101 66 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1448 0.0048811 05101
5101161001 05101 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 625 0.0021068 05101
5101161002 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 697 0.0023495 05101
5101161003 05101 8 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 496 0.0016720 05101
5101161004 05101 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 892 0.0030069 05101
5101161005 05101 13 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 518 0.0017461 05101
5101161006 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1016 0.0034249 05101
5101161007 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 950 0.0032024 05101
5101161008 05101 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1194 0.0040249 05101
5101161009 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 856 0.0028855 05101
5101161010 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1235 0.0041631 05101
5101161011 05101 40 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1840 0.0062025 05101
5101161012 05101 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2467 0.0083161 05101
5101171001 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 932 0.0031417 05101
5101171002 05101 147 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1142 0.0038496 05101
5101171003 05101 114 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1447 0.0048777 05101
5101171004 05101 54 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1122 0.0037822 05101
5101171005 05101 60 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1452 0.0048946 05101


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
5101011001 05101 200 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3280 0.0110566 05101 979803929
5101011002 05101 183 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3761 0.0126780 05101 1123488591
5101011003 05101 184 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2365 0.0079722 05101 706474479
5101011004 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2690 0.0090678 05101 803558710
5101011005 05101 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2518 0.0084880 05101 752178748
5101011006 05101 193 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2848 0.0096004 05101 850756582
5101011007 05101 210 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3131 0.0105543 05101 935294543
5101021001 05101 5 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 273 0.0009203 05101 81550754
5101021002 05101 218 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1881 0.0063407 05101 561893656
5101021003 05101 140 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1696 0.0057171 05101 506630324
5101021004 05101 74 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1415 0.0047699 05101 422689805
5101031001 05101 86 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1402 0.0047260 05101 418806436
5101031002 05101 78 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1780 0.0060002 05101 531722864
5101031003 05101 81 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1071 0.0036103 05101 319929880
5101031004 05101 43 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 739 0.0024911 05101 220754605
5101031005 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 457 0.0015405 05101 136515365
5101031006 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1051 0.0035428 05101 313955466
5101031007 05101 84 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2154 0.0072610 05101 643444410
5101031008 05101 93 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2337 0.0078778 05101 698110299
5101031009 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1059 0.0035698 05101 316345232
5101031010 05101 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1678 0.0056564 05101 501253352
5101031011 05101 104 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2610 0.0087981 05101 779661053
5101031012 05101 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 659 0.0022214 05101 196856948
5101041001 05101 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 177 0.0005967 05101 52873566
5101051001 05101 67 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1872 0.0063104 05101 559205169
5101051002 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1714 0.0057778 05101 512007297
5101051003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2345 0.0079048 05101 700500065
5101051004 05101 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3014 0.0101600 05101 900344220
5101051005 05101 34 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1688 0.0056901 05101 504240559
5101051006 05101 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3387 0.0114173 05101 1011767045
5101051007 05101 31 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2233 0.0075273 05101 667043346
5101061001 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1196 0.0040316 05101 357269969
5101061002 05101 36 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 878 0.0029597 05101 262276783
5101061003 05101 83 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1642 0.0055350 05101 490499406
5101061004 05101 71 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 862 0.0029057 05101 257497252
5101061005 05101 102 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1546 0.0052114 05101 461822218
5101071001 05101 152 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1265 0.0042642 05101 377881698
5101081001 05101 68 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 687 0.0023158 05101 205221128
5101081002 05101 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 634 0.0021372 05101 189388930
5101081003 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 619 0.0020866 05101 184908120
5101081004 05101 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 620 0.0020900 05101 185206840
5101081005 05101 70 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 979 0.0033001 05101 292447575
5101081006 05101 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1435 0.0048373 05101 428664219
5101081007 05101 63 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1791 0.0060373 05101 535008792
5101081008 05101 41 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1274 0.0042946 05101 380570185
5101081009 05101 57 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1519 0.0051204 05101 453756759
5101081010 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1320 0.0044496 05101 394311337
5101081011 05101 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1143 0.0038530 05101 341437772
5101091001 05101 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1689 0.0056935 05101 504539279
5101091002 05101 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1322 0.0044564 05101 394908779
5101091003 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1275 0.0042979 05101 380868905
5101091004 05101 37 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 4201 0.0141612 05101 1254925703
5101101001 05101 77 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1044 0.0035192 05101 311864421
5101101002 05101 115 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 988 0.0033305 05101 295136062
5101101003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 849 0.0028619 05101 253613883
5101101004 05101 47 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 717 0.0024169 05101 214182749
5101101005 05101 46 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 936 0.0031552 05101 279602585
5101101006 05101 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1453 0.0048979 05101 434041192
5101101007 05101 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 604 0.0020360 05101 180427309
5101101008 05101 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2358 0.0079486 05101 704383434
5101101009 05101 113 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3502 0.0118050 05101 1046119927
5101111001 05101 142 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2120 0.0071463 05101 633287905
5101121001 05101 107 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1435 0.0048373 05101 428664219
5101121002 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1941 0.0065430 05101 579816898
5101121003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1528 0.0051508 05101 456445245
5101131001 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1170 0.0039440 05101 349503231
5101131002 05101 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 572 0.0019282 05101 170868246
5101131003 05101 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 638 0.0021506 05101 190583813
5101131004 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 880 0.0029664 05101 262874225
5101131005 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 664 0.0022383 05101 198350551
5101141001 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1502 0.0050631 05101 448678507
5101141002 05101 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1122 0.0037822 05101 335164637
5101141003 05101 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1031 0.0034754 05101 307981052
5101141004 05101 9 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 638 0.0021506 05101 190583813
5101141005 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 704 0.0023731 05101 210299380
5101141006 05101 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1265 0.0042642 05101 377881698
5101151001 05101 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 532 0.0017933 05101 158919418
5101151002 05101 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 455 0.0015338 05101 135917923
5101151003 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 640 0.0021574 05101 191181254
5101151004 05101 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 543 0.0018304 05101 162205346
5101151005 05101 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 503 0.0016956 05101 150256517
5101151006 05101 28 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 774 0.0026091 05101 231209830
5101151007 05101 66 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1448 0.0048811 05101 432547588
5101161001 05101 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 625 0.0021068 05101 186700444
5101161002 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 697 0.0023495 05101 208208335
5101161003 05101 8 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 496 0.0016720 05101 148165472
5101161004 05101 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 892 0.0030069 05101 266458873
5101161005 05101 13 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 518 0.0017461 05101 154737328
5101161006 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1016 0.0034249 05101 303500241
5101161007 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 950 0.0032024 05101 283784675
5101161008 05101 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1194 0.0040249 05101 356672528
5101161009 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 856 0.0028855 05101 255704928
5101161010 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1235 0.0041631 05101 368920077
5101161011 05101 40 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1840 0.0062025 05101 549646107
5101161012 05101 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2467 0.0083161 05101 736943992
5101171001 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 932 0.0031417 05101 278407702
5101171002 05101 147 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1142 0.0038496 05101 341139051
5101171003 05101 114 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1447 0.0048777 05101 432248867
5101171004 05101 54 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1122 0.0037822 05101 335164637
5101171005 05101 60 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1452 0.0048946 05101 433742471

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.964e+09 -2.126e+08 -1.081e+08  1.424e+08  1.516e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 224951349   11316040   19.88   <2e-16 ***
## Freq.x        2282427      60741   37.58   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 319100000 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5473 
## F-statistic:  1412 on 1 and 1166 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.964e+09 -2.126e+08 -1.081e+08  1.424e+08  1.516e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 224951349   11316040   19.88   <2e-16 ***
## Freq.x        2282427      60741   37.58   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 319100000 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5473 
## F-statistic:  1412 on 1 and 1166 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.964e+09 -2.126e+08 -1.081e+08  1.424e+08  1.516e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 224951349   11316040   19.88   <2e-16 ***
## Freq.x        2282427      60741   37.58   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 319100000 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.5477, Adjusted R-squared:  0.5473 
## F-statistic:  1412 on 1 and 1166 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -598747383 -221856049  -35746986  184122556 1282820917 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -325716939   19884864  -16.38   <2e-16 ***
## log(Freq.x)  219762321    4993551   44.01   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 290900000 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.6242, Adjusted R-squared:  0.6239 
## F-statistic:  1937 on 1 and 1166 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -924495683 -134907468  -27844439   69831571 1388411078 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -77931926   12545422  -6.212 7.27e-10 ***
## sqrt(Freq.x)  65757473    1222793  53.776  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 254300000 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.7127, Adjusted R-squared:  0.7124 
## F-statistic:  2892 on 1 and 1166 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26990.5  -4208.2   -961.6   3454.5  23261.7 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    4892.8      294.4   16.62   <2e-16 ***
## sqrt(Freq.x)   1616.5       28.7   56.32   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5969 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.7312, Adjusted R-squared:  0.731 
## F-statistic:  3172 on 1 and 1166 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3367 -0.6386  0.1446  0.7291  2.3431 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  17.308133   0.050219  344.65   <2e-16 ***
## sqrt(Freq.x)  0.213575   0.004895   43.63   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.018 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.6202, Adjusted R-squared:  0.6198 
## F-statistic:  1904 on 1 and 1166 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -13566  -4065    -79   4018  20188 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2890.50     388.19  -7.446 1.87e-13 ***
## log(Freq.x)  5872.41      97.48  60.239  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5678 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.7568, Adjusted R-squared:  0.7566 
## F-statistic:  3629 on 1 and 1166 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.71149 -0.47661 -0.00491  0.48204  2.55066 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.94843    0.05010  318.35   <2e-16 ***
## log(Freq.x)  0.86796    0.01258   68.99   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7328 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.8032, Adjusted R-squared:  0.8031 
## F-statistic:  4760 on 1 and 1166 DF,  p-value: < 2.2e-16

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.8031).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.71149 -0.47661 -0.00491  0.48204  2.55066 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.94843    0.05010  318.35   <2e-16 ***
## log(Freq.x)  0.86796    0.01258   68.99   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7328 on 1166 degrees of freedom
##   (10 observations deleted due to missingness)
## Multiple R-squared:  0.8032, Adjusted R-squared:  0.8031 
## F-statistic:  4760 on 1 and 1166 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{(15.94843+0.86796 \cdot lnX)}\]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- exp(15.94843+0.86796 *log(h_y_m_comuna_corr_01$Freq.x))



r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
5101011001 05101 200 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3280 0.0110566 05101 979803929 838527170
5101011002 05101 183 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3761 0.0126780 05101 1123488591 776304658
5101011003 05101 184 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2365 0.0079722 05101 706474479 779985307
5101011004 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2690 0.0090678 05101 803558710 247364705
5101011005 05101 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2518 0.0084880 05101 752178748 447459300
5101011006 05101 193 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2848 0.0096004 05101 850756582 812994235
5101011007 05101 210 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3131 0.0105543 05101 935294543 874799655
5101021001 05101 5 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 273 0.0009203 05101 81550754 34118753
5101021002 05101 218 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1881 0.0063407 05101 561893656 903653307
5101021003 05101 140 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1696 0.0057171 05101 506630324 615273817
5101021004 05101 74 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1415 0.0047699 05101 422689805 353780187
5101031001 05101 86 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1402 0.0047260 05101 418806436 403071805
5101031002 05101 78 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1780 0.0060002 05101 531722864 370320348
5101031003 05101 81 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1071 0.0036103 05101 319929880 382651836
5101031004 05101 43 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 739 0.0024911 05101 220754605 220851536
5101031005 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 457 0.0015405 05101 136515365 156898254
5101031006 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1051 0.0035428 05101 313955466 156898254
5101031007 05101 84 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2154 0.0072610 05101 643444410 394923151
5101031008 05101 93 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2337 0.0078778 05101 698110299 431399467
5101031009 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1059 0.0035698 05101 316345232 156898254
5101031010 05101 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1678 0.0056564 05101 501253352 198382845
5101031011 05101 104 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2610 0.0087981 05101 779661053 475356461
5101031012 05101 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 659 0.0022214 05101 196856948 184715970
5101041001 05101 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 177 0.0005967 05101 52873566 62269466
5101051001 05101 67 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1872 0.0063104 05101 559205169 324545080
5101051002 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1714 0.0057778 05101 512007297 247364705
5101051003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2345 0.0079048 05101 700500065 357926059
5101051004 05101 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3014 0.0101600 05101 900344220 316119598
5101051005 05101 34 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1688 0.0056901 05101 504240559 180126489
5101051006 05101 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3387 0.0114173 05101 1011767045 264799785
5101051007 05101 31 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2233 0.0075273 05101 667043346 166248387
5101061001 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1196 0.0040316 05101 357269969 260457823
5101061002 05101 36 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 878 0.0029597 05101 262276783 189288166
5101061003 05101 83 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1642 0.0055350 05101 490499406 390839244
5101061004 05101 71 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 862 0.0029057 05101 257497252 341297683
5101061005 05101 102 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1546 0.0052114 05101 461822218 467411883
5101071001 05101 152 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1265 0.0042642 05101 377881698 660797064
5101081001 05101 68 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 687 0.0023158 05101 205221128 328745321
5101081002 05101 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 634 0.0021372 05101 189388930 251740534
5101081003 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 619 0.0020866 05101 184908120 128304071
5101081004 05101 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 620 0.0020900 05101 185206840 316119598
5101081005 05101 70 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 979 0.0033001 05101 292447575 337121491
5101081006 05101 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1435 0.0048373 05101 428664219 202906323
5101081007 05101 63 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1791 0.0060373 05101 535008792 307659810
5101081008 05101 41 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1274 0.0042946 05101 380570185 211907838
5101081009 05101 57 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1519 0.0051204 05101 453756759 282061807
5101081010 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1320 0.0044496 05101 394311337 374437687
5101081011 05101 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1143 0.0038530 05101 341437772 137933944
5101091001 05101 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1689 0.0056935 05101 504539279 407136721
5101091002 05101 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1322 0.0044564 05101 394908779 447459300
5101091003 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1275 0.0042979 05101 380868905 374437687
5101091004 05101 37 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 4201 0.0141612 05101 1254925703 193843620
5101101001 05101 77 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1044 0.0035192 05101 311864421 366196032
5101101002 05101 115 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 988 0.0033305 05101 295136062 518702620
5101101003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 849 0.0028619 05101 253613883 357926059
5101101004 05101 47 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 717 0.0024169 05101 214182749 238577345
5101101005 05101 46 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 936 0.0031552 05101 279602585 234165242
5101101006 05101 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1453 0.0048979 05101 434041192 407136721
5101101007 05101 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 604 0.0020360 05101 180427309 62269466
5101101008 05101 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2358 0.0079486 05101 704383434 198382845
5101101009 05101 113 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3502 0.0118050 05101 1046119927 510863777
5101111001 05101 142 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2120 0.0071463 05101 633287905 622895704
5101121001 05101 107 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1435 0.0048373 05101 428664219 487235684
5101121002 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1941 0.0065430 05101 579816898 374437687
5101121003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1528 0.0051508 05101 456445245 357926059
5101131001 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1170 0.0039440 05101 349503231 247364705
5101131002 05101 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 572 0.0019282 05101 170868246 98695100
5101131003 05101 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 638 0.0021506 05101 190583813 113646781
5101131004 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 880 0.0029664 05101 262874225 128304071
5101131005 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 664 0.0022383 05101 198350551 133132257
5101141001 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1502 0.0050631 05101 448678507 260457823
5101141002 05101 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1122 0.0037822 05101 335164637 147462515
5101141003 05101 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1031 0.0034754 05101 307981052 202906323
5101141004 05101 9 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 638 0.0021506 05101 190583813 56827621
5101141005 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 704 0.0023731 05101 210299380 260457823
5101141006 05101 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1265 0.0042642 05101 377881698 264799785
5101151001 05101 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 532 0.0017933 05101 158919418 137933944
5101151002 05101 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 455 0.0015338 05101 135917923 184715970
5101151003 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 640 0.0021574 05101 191181254 128304071
5101151004 05101 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 543 0.0018304 05101 162205346 113646781
5101151005 05101 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 503 0.0016956 05101 150256517 147462515
5101151006 05101 28 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 774 0.0026091 05101 231209830 152191511
5101151007 05101 66 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1448 0.0048811 05101 432547588 320336553
5101161001 05101 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 625 0.0021068 05101 186700444 98695100
5101161002 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 697 0.0023495 05101 208208335 128304071
5101161003 05101 8 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 496 0.0016720 05101 148165472 51305170
5101161004 05101 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 892 0.0030069 05101 266458873 311894068
5101161005 05101 13 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 518 0.0017461 05101 154737328 78193998
5101161006 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1016 0.0034249 05101 303500241 133132257
5101161007 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 950 0.0032024 05101 283784675 133132257
5101161008 05101 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1194 0.0040249 05101 356672528 311894068
5101161009 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 856 0.0028855 05101 255704928 133132257
5101161010 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1235 0.0041631 05101 368920077 128304071
5101161011 05101 40 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1840 0.0062025 05101 549646107 207414510
5101161012 05101 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2467 0.0083161 05101 736943992 251740534
5101171001 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 932 0.0031417 05101 278407702 374437687
5101171002 05101 147 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1142 0.0038496 05101 341139051 641888948
5101171003 05101 114 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1447 0.0048777 05101 432248867 514785468
5101171004 05101 54 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1122 0.0037822 05101 335164637 269130942
5101171005 05101 60 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1452 0.0048946 05101 433742471 294903077


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
5101011001 05101 200 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3280 0.0110566 05101 979803929 838527170 255648.53
5101011002 05101 183 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3761 0.0126780 05101 1123488591 776304658 206409.11
5101011003 05101 184 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2365 0.0079722 05101 706474479 779985307 329803.51
5101011004 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2690 0.0090678 05101 803558710 247364705 91957.14
5101011005 05101 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2518 0.0084880 05101 752178748 447459300 177704.25
5101011006 05101 193 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2848 0.0096004 05101 850756582 812994235 285461.46
5101011007 05101 210 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3131 0.0105543 05101 935294543 874799655 279399.44
5101021001 05101 5 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 273 0.0009203 05101 81550754 34118753 124977.12
5101021002 05101 218 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1881 0.0063407 05101 561893656 903653307 480411.11
5101021003 05101 140 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1696 0.0057171 05101 506630324 615273817 362779.37
5101021004 05101 74 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1415 0.0047699 05101 422689805 353780187 250021.33
5101031001 05101 86 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1402 0.0047260 05101 418806436 403071805 287497.72
5101031002 05101 78 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1780 0.0060002 05101 531722864 370320348 208045.14
5101031003 05101 81 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1071 0.0036103 05101 319929880 382651836 357284.63
5101031004 05101 43 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 739 0.0024911 05101 220754605 220851536 298851.88
5101031005 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 457 0.0015405 05101 136515365 156898254 343322.22
5101031006 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1051 0.0035428 05101 313955466 156898254 149284.73
5101031007 05101 84 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2154 0.0072610 05101 643444410 394923151 183344.08
5101031008 05101 93 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2337 0.0078778 05101 698110299 431399467 184595.41
5101031009 05101 29 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1059 0.0035698 05101 316345232 156898254 148156.99
5101031010 05101 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1678 0.0056564 05101 501253352 198382845 118225.77
5101031011 05101 104 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2610 0.0087981 05101 779661053 475356461 182128.91
5101031012 05101 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 659 0.0022214 05101 196856948 184715970 280297.37
5101041001 05101 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 177 0.0005967 05101 52873566 62269466 351804.89
5101051001 05101 67 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1872 0.0063104 05101 559205169 324545080 173368.10
5101051002 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1714 0.0057778 05101 512007297 247364705 144320.13
5101051003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2345 0.0079048 05101 700500065 357926059 152633.71
5101051004 05101 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3014 0.0101600 05101 900344220 316119598 104883.74
5101051005 05101 34 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1688 0.0056901 05101 504240559 180126489 106710.01
5101051006 05101 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3387 0.0114173 05101 1011767045 264799785 78181.22
5101051007 05101 31 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2233 0.0075273 05101 667043346 166248387 74450.69
5101061001 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1196 0.0040316 05101 357269969 260457823 217774.10
5101061002 05101 36 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 878 0.0029597 05101 262276783 189288166 215590.17
5101061003 05101 83 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1642 0.0055350 05101 490499406 390839244 238026.34
5101061004 05101 71 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 862 0.0029057 05101 257497252 341297683 395936.99
5101061005 05101 102 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1546 0.0052114 05101 461822218 467411883 302336.28
5101071001 05101 152 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1265 0.0042642 05101 377881698 660797064 522369.22
5101081001 05101 68 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 687 0.0023158 05101 205221128 328745321 478523.03
5101081002 05101 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 634 0.0021372 05101 189388930 251740534 397067.09
5101081003 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 619 0.0020866 05101 184908120 128304071 207276.37
5101081004 05101 65 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 620 0.0020900 05101 185206840 316119598 509870.32
5101081005 05101 70 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 979 0.0033001 05101 292447575 337121491 344352.90
5101081006 05101 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1435 0.0048373 05101 428664219 202906323 141398.13
5101081007 05101 63 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1791 0.0060373 05101 535008792 307659810 171781.02
5101081008 05101 41 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1274 0.0042946 05101 380570185 211907838 166332.68
5101081009 05101 57 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1519 0.0051204 05101 453756759 282061807 185689.14
5101081010 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1320 0.0044496 05101 394311337 374437687 283664.91
5101081011 05101 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1143 0.0038530 05101 341437772 137933944 120677.12
5101091001 05101 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1689 0.0056935 05101 504539279 407136721 241051.94
5101091002 05101 97 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1322 0.0044564 05101 394908779 447459300 338471.48
5101091003 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1275 0.0042979 05101 380868905 374437687 293676.62
5101091004 05101 37 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 4201 0.0141612 05101 1254925703 193843620 46142.26
5101101001 05101 77 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1044 0.0035192 05101 311864421 366196032 350762.48
5101101002 05101 115 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 988 0.0033305 05101 295136062 518702620 525002.65
5101101003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 849 0.0028619 05101 253613883 357926059 421585.46
5101101004 05101 47 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 717 0.0024169 05101 214182749 238577345 332743.86
5101101005 05101 46 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 936 0.0031552 05101 279602585 234165242 250176.54
5101101006 05101 87 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1453 0.0048979 05101 434041192 407136721 280204.21
5101101007 05101 10 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 604 0.0020360 05101 180427309 62269466 103095.14
5101101008 05101 38 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2358 0.0079486 05101 704383434 198382845 84131.83
5101101009 05101 113 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 3502 0.0118050 05101 1046119927 510863777 145877.72
5101111001 05101 142 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2120 0.0071463 05101 633287905 622895704 293818.73
5101121001 05101 107 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1435 0.0048373 05101 428664219 487235684 339537.06
5101121002 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1941 0.0065430 05101 579816898 374437687 192909.68
5101121003 05101 75 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1528 0.0051508 05101 456445245 357926059 234244.80
5101131001 05101 49 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1170 0.0039440 05101 349503231 247364705 211422.83
5101131002 05101 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 572 0.0019282 05101 170868246 98695100 172543.88
5101131003 05101 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 638 0.0021506 05101 190583813 113646781 178129.75
5101131004 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 880 0.0029664 05101 262874225 128304071 145800.08
5101131005 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 664 0.0022383 05101 198350551 133132257 200500.39
5101141001 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1502 0.0050631 05101 448678507 260457823 173407.34
5101141002 05101 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1122 0.0037822 05101 335164637 147462515 131428.27
5101141003 05101 39 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1031 0.0034754 05101 307981052 202906323 196805.36
5101141004 05101 9 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 638 0.0021506 05101 190583813 56827621 89071.51
5101141005 05101 52 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 704 0.0023731 05101 210299380 260457823 369968.50
5101141006 05101 53 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1265 0.0042642 05101 377881698 264799785 209327.89
5101151001 05101 25 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 532 0.0017933 05101 158919418 137933944 259274.33
5101151002 05101 35 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 455 0.0015338 05101 135917923 184715970 405969.16
5101151003 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 640 0.0021574 05101 191181254 128304071 200475.11
5101151004 05101 20 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 543 0.0018304 05101 162205346 113646781 209294.26
5101151005 05101 27 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 503 0.0016956 05101 150256517 147462515 293166.03
5101151006 05101 28 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 774 0.0026091 05101 231209830 152191511 196629.86
5101151007 05101 66 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1448 0.0048811 05101 432547588 320336553 221226.90
5101161001 05101 17 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 625 0.0021068 05101 186700444 98695100 157912.16
5101161002 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 697 0.0023495 05101 208208335 128304071 184080.45
5101161003 05101 8 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 496 0.0016720 05101 148165472 51305170 103437.84
5101161004 05101 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 892 0.0030069 05101 266458873 311894068 349657.03
5101161005 05101 13 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 518 0.0017461 05101 154737328 78193998 150953.66
5101161006 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1016 0.0034249 05101 303500241 133132257 131035.69
5101161007 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 950 0.0032024 05101 283784675 133132257 140139.22
5101161008 05101 64 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1194 0.0040249 05101 356672528 311894068 261217.81
5101161009 05101 24 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 856 0.0028855 05101 255704928 133132257 155528.34
5101161010 05101 23 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1235 0.0041631 05101 368920077 128304071 103889.94
5101161011 05101 40 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1840 0.0062025 05101 549646107 207414510 112725.28
5101161012 05101 50 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 2467 0.0083161 05101 736943992 251740534 102043.18
5101171001 05101 79 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 932 0.0031417 05101 278407702 374437687 401757.18
5101171002 05101 147 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1142 0.0038496 05101 341139051 641888948 562074.39
5101171003 05101 114 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1447 0.0048777 05101 432248867 514785468 355760.52
5101171004 05101 54 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1122 0.0037822 05101 335164637 269130942 239867.15
5101171005 05101 60 2017 Valparaíso 298720.7 2017 5101 296655 88616992249 1452 0.0048946 05101 433742471 294903077 203101.29


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_05.rds")