1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).

1.1 Lectura y filtrado de la tabla censal de viviendas

Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la 1:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 4) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE] 
names(tabla_con_clave_f)[2] <- "Tipo de techo" 
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
4101011001 1 4101 119 2017
4101021001 1 4101 89 2017
4101021002 1 4101 108 2017
4101021003 1 4101 158 2017
4101021004 1 4101 222 2017
4101021005 1 4101 217 2017
4101022001 1 4101 85 2017
4101031001 1 4101 1023 2017
4101031002 1 4101 172 2017
4101031003 1 4101 670 2017
4101041001 1 4101 153 2017
4101041002 1 4101 89 2017
4101041003 1 4101 952 2017
4101041004 1 4101 452 2017
4101041005 1 4101 148 2017
4101041006 1 4101 130 2017
4101051001 1 4101 118 2017
4101051002 1 4101 216 2017
4101051003 1 4101 372 2017
4101051004 1 4101 286 2017
4101051005 1 4101 661 2017
4101051006 1 4101 1199 2017
4101051007 1 4101 560 2017
4101051008 1 4101 1047 2017
4101051009 1 4101 1119 2017
4101051010 1 4101 630 2017
4101051011 1 4101 712 2017
4101052007 1 4101 20 2017
4101061001 1 4101 253 2017
4101061002 1 4101 349 2017
4101061003 1 4101 679 2017
4101061004 1 4101 755 2017
4101061005 1 4101 35 2017
4101062001 1 4101 48 2017
4101062004 1 4101 114 2017
4101062006 1 4101 25 2017
4101062024 1 4101 15 2017
4101062030 1 4101 1 2017
4101062049 1 4101 25 2017
4101062901 1 4101 11 2017
4101071001 1 4101 35 2017
4101072002 1 4101 55 2017
4101072027 1 4101 17 2017
4101072029 1 4101 3 2017
4101072051 1 4101 20 2017
4101072053 1 4101 2 2017
4101072054 1 4101 4 2017
4101082011 1 4101 8 2017
4101082018 1 4101 25 2017
4101082021 1 4101 61 2017
4101082022 1 4101 1 2017
4101082023 1 4101 46 2017
4101082029 1 4101 7 2017
4101082043 1 4101 38 2017
4101082051 1 4101 5 2017
4101082052 1 4101 5 2017
4101082901 1 4101 6 2017
4101091001 1 4101 41 2017
4101092003 1 4101 94 2017
4101092034 1 4101 46 2017
4101092038 1 4101 6 2017
4101092039 1 4101 7 2017
4101092901 1 4101 2 2017
4101102003 1 4101 9 2017
4101102013 1 4101 49 2017
4101102015 1 4101 21 2017
4101102020 1 4101 169 2017
4101102032 1 4101 1 2017
4101122010 1 4101 1 2017
4101132025 1 4101 30 2017
4101132032 1 4101 19 2017
4101132046 1 4101 1 2017
4101132055 1 4101 1 2017
4101132901 1 4101 1 2017
4101141001 1 4101 154 2017
4101141002 1 4101 175 2017
4101141003 1 4101 378 2017
4101141004 1 4101 229 2017
4101141005 1 4101 510 2017
4101141006 1 4101 194 2017
4101142008 1 4101 6 2017
4101142012 1 4101 25 2017
4101142014 1 4101 23 2017
4101142019 1 4101 3 2017
4101142030 1 4101 2 2017
4101142033 1 4101 10 2017
4101142036 1 4101 4 2017
4101142040 1 4101 1 2017
4101142056 1 4101 98 2017
4101142057 1 4101 5 2017
4101142901 1 4101 36 2017
4101151001 1 4101 1228 2017
4101151002 1 4101 372 2017
4101151003 1 4101 391 2017
4101151004 1 4101 372 2017
4101151005 1 4101 506 2017
4101151006 1 4101 569 2017
4101161001 1 4101 241 2017
4101161002 1 4101 183 2017
4101161003 1 4101 130 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
4101011001 119 2017 04101
4101021001 89 2017 04101
4101021002 108 2017 04101
4101021003 158 2017 04101
4101021004 222 2017 04101
4101021005 217 2017 04101
4101022001 85 2017 04101
4101031001 1023 2017 04101
4101031002 172 2017 04101
4101031003 670 2017 04101
4101041001 153 2017 04101
4101041002 89 2017 04101
4101041003 952 2017 04101
4101041004 452 2017 04101
4101041005 148 2017 04101
4101041006 130 2017 04101
4101051001 118 2017 04101
4101051002 216 2017 04101
4101051003 372 2017 04101
4101051004 286 2017 04101
4101051005 661 2017 04101
4101051006 1199 2017 04101
4101051007 560 2017 04101
4101051008 1047 2017 04101
4101051009 1119 2017 04101
4101051010 630 2017 04101
4101051011 712 2017 04101
4101052007 20 2017 04101
4101061001 253 2017 04101
4101061002 349 2017 04101
4101061003 679 2017 04101
4101061004 755 2017 04101
4101061005 35 2017 04101
4101062001 48 2017 04101
4101062004 114 2017 04101
4101062006 25 2017 04101
4101062024 15 2017 04101
4101062030 1 2017 04101
4101062049 25 2017 04101
4101062901 11 2017 04101
4101071001 35 2017 04101
4101072002 55 2017 04101
4101072027 17 2017 04101
4101072029 3 2017 04101
4101072051 20 2017 04101
4101072053 2 2017 04101
4101072054 4 2017 04101
4101082011 8 2017 04101
4101082018 25 2017 04101
4101082021 61 2017 04101
4101082022 1 2017 04101
4101082023 46 2017 04101
4101082029 7 2017 04101
4101082043 38 2017 04101
4101082051 5 2017 04101
4101082052 5 2017 04101
4101082901 6 2017 04101
4101091001 41 2017 04101
4101092003 94 2017 04101
4101092034 46 2017 04101
4101092038 6 2017 04101
4101092039 7 2017 04101
4101092901 2 2017 04101
4101102003 9 2017 04101
4101102013 49 2017 04101
4101102015 21 2017 04101
4101102020 169 2017 04101
4101102032 1 2017 04101
4101122010 1 2017 04101
4101132025 30 2017 04101
4101132032 19 2017 04101
4101132046 1 2017 04101
4101132055 1 2017 04101
4101132901 1 2017 04101
4101141001 154 2017 04101
4101141002 175 2017 04101
4101141003 378 2017 04101
4101141004 229 2017 04101
4101141005 510 2017 04101
4101141006 194 2017 04101
4101142008 6 2017 04101
4101142012 25 2017 04101
4101142014 23 2017 04101
4101142019 3 2017 04101
4101142030 2 2017 04101
4101142033 10 2017 04101
4101142036 4 2017 04101
4101142040 1 2017 04101
4101142056 98 2017 04101
4101142057 5 2017 04101
4101142901 36 2017 04101
4101151001 1228 2017 04101
4101151002 372 2017 04101
4101151003 391 2017 04101
4101151004 372 2017 04101
4101151005 506 2017 04101
4101151006 569 2017 04101
4101161001 241 2017 04101
4101161002 183 2017 04101
4101161003 130 2017 04101


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 Iquique 354820.7 2017 1101 191468 67936815240
01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397
01401 Pozo Almonte 285981.8 2017 1401 15711 4493059532
01402 Camiña 262850.3 2017 1402 1250 328562901
01404 Huara 253968.5 2017 1404 2730 693334131
01405 Pica 313007.5 2017 1405 9296 2909717399
02101 Antofagasta 347580.2 2017 2101 361873 125779893517
02102 Mejillones 369770.7 2017 2102 13467 4979702302
02103 Sierra Gorda 403458.5 2017 2103 10186 4109628188
02104 Taltal 364539.1 2017 2104 13317 4854566842
02201 Calama 409671.3 2017 2201 165731 67895226712
02203 San Pedro de Atacama 426592.0 2017 2203 10996 4690805471
02301 Tocopilla 246615.3 2017 2301 25186 6211253937
02302 María Elena 466266.9 2017 2302 6457 3010685220
03101 Copiapó 330075.2 2017 3101 153937 50810778473
03102 Caldera 299314.8 2017 3102 17662 5286498241
03103 Tierra Amarilla 314643.9 2017 3103 14019 4410992711
03201 Chañaral 286389.3 2017 3201 12219 3499391196
03202 Diego de Almagro 336256.8 2017 3202 13925 4682376047
03301 Vallenar 304336.7 2017 3301 51917 15800246795
03302 Alto del Carmen 227130.4 2017 3302 5299 1203563833
03303 Freirina 253086.7 2017 3303 7041 1781983257
03304 Huasco 287406.6 2017 3304 10149 2916889629
04101 La Serena 270221.9 2017 4101 221054 59733627577
04102 Coquimbo 261852.6 2017 4102 227730 59631700074
04103 Andacollo 248209.3 2017 4103 11044 2741223967
04104 La Higuera 228356.8 2017 4104 4241 968461330
04105 Paiguano 205942.1 2017 4105 4497 926121774
04106 Vicuña 211431.9 2017 4106 27771 5871675449
04201 Illapel 238674.4 2017 4201 30848 7362627007
04202 Canela 207933.6 2017 4202 9093 1890740321
04203 Los Vilos 255200.4 2017 4203 21382 5456695139
04204 Salamanca 242879.5 2017 4204 29347 7127783272
04301 Ovalle 266522.9 2017 4301 111272 29656533187
04302 Combarbalá 210409.7 2017 4302 13322 2803077721
04303 Monte Patria 211907.9 2017 4303 30751 6516380780
04304 Punitaqui 194997.8 2017 4304 10956 2136395349
04305 Río Hurtado 182027.2 2017 4305 4278 778712384
05101 Valparaíso 298720.7 2017 5101 296655 88616992249
05102 Casablanca 312802.7 2017 5102 26867 8404070481
05103 Concón 318496.3 2017 5103 42152 13425257057
05105 Puchuncaví 288737.2 2017 5105 18546 5354920887
05107 Quintero 316659.1 2017 5107 31923 10108709691
05109 Viña del Mar 337006.1 2017 5109 334248 112643604611
05301 Los Andes 338182.5 2017 5301 66708 22559476922
05302 Calle Larga 245165.4 2017 5302 14832 3636293159
05303 Rinconada 281633.2 2017 5303 10207 2874630315
05304 San Esteban 220958.4 2017 5304 18855 4166170587
05401 La Ligua 229623.7 2017 5401 35390 8126381563
05402 Cabildo 249717.7 2017 5402 19388 4841527150

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
04101 4101011001 119 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021001 89 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021002 108 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021003 158 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021004 222 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021005 217 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101022001 85 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101031001 1023 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101031002 172 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101031003 670 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041001 153 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041002 89 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041003 952 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041004 452 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041005 148 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041006 130 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051001 118 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051002 216 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051003 372 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051004 286 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051005 661 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051006 1199 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051007 560 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051008 1047 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051009 1119 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051010 630 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051011 712 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101052007 20 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061001 253 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061002 349 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061003 679 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061004 755 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061005 35 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062001 48 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062004 114 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062006 25 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062024 15 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062030 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062049 25 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062901 11 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101071001 35 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072002 55 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072027 17 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072029 3 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072051 20 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072053 2 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072054 4 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082011 8 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082018 25 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082021 61 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082022 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082023 46 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082029 7 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082043 38 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082051 5 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082052 5 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082901 6 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101091001 41 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092003 94 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092034 46 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092038 6 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092039 7 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092901 2 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102003 9 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102013 49 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102015 21 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102020 169 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102032 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101122010 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132025 30 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132032 19 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132046 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132055 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132901 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141001 154 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141002 175 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141003 378 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141004 229 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141005 510 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141006 194 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142008 6 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142012 25 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142014 23 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142019 3 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142030 2 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142033 10 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142036 4 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142040 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142056 98 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142057 5 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142901 36 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151001 1228 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151002 372 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151003 391 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151004 372 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151005 506 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151006 569 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101161001 241 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101161002 183 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101161003 130 2017 La Serena 270221.9 2017 4101 221054 59733627577


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
04101 4101011001 119 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021001 89 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021002 108 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021003 158 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021004 222 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101021005 217 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101022001 85 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101031001 1023 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101031002 172 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101031003 670 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041001 153 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041002 89 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041003 952 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041004 452 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041005 148 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101041006 130 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051001 118 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051002 216 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051003 372 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051004 286 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051005 661 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051006 1199 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051007 560 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051008 1047 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051009 1119 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051010 630 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101051011 712 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101052007 20 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061001 253 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061002 349 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061003 679 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061004 755 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101061005 35 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062001 48 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062004 114 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062006 25 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062024 15 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062030 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062049 25 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101062901 11 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101071001 35 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072002 55 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072027 17 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072029 3 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072051 20 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072053 2 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101072054 4 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082011 8 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082018 25 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082021 61 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082022 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082023 46 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082029 7 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082043 38 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082051 5 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082052 5 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101082901 6 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101091001 41 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092003 94 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092034 46 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092038 6 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092039 7 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101092901 2 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102003 9 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102013 49 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102015 21 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102020 169 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101102032 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101122010 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132025 30 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132032 19 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132046 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132055 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101132901 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141001 154 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141002 175 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141003 378 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141004 229 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141005 510 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101141006 194 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142008 6 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142012 25 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142014 23 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142019 3 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142030 2 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142033 10 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142036 4 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142040 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142056 98 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142057 5 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101142901 36 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151001 1228 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151002 372 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151003 391 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151004 372 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151005 506 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101151006 569 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101161001 241 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101161002 183 2017 La Serena 270221.9 2017 4101 221054 59733627577
04101 4101161003 130 2017 La Serena 270221.9 2017 4101 221054 59733627577


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y
4101011001 04101 119 2017 La Serena 270221.9 2017 4101 221054 59733627577 1455 0.0065821 04101
4101021001 04101 89 2017 La Serena 270221.9 2017 4101 221054 59733627577 2431 0.0109973 04101
4101021002 04101 108 2017 La Serena 270221.9 2017 4101 221054 59733627577 2926 0.0132366 04101
4101021003 04101 158 2017 La Serena 270221.9 2017 4101 221054 59733627577 2699 0.0122097 04101
4101021004 04101 222 2017 La Serena 270221.9 2017 4101 221054 59733627577 5323 0.0240801 04101
4101021005 04101 217 2017 La Serena 270221.9 2017 4101 221054 59733627577 2125 0.0096130 04101
4101022001 04101 85 2017 La Serena 270221.9 2017 4101 221054 59733627577 1157 0.0052340 04101
4101031001 04101 1023 2017 La Serena 270221.9 2017 4101 221054 59733627577 4341 0.0196377 04101
4101031002 04101 172 2017 La Serena 270221.9 2017 4101 221054 59733627577 2583 0.0116849 04101
4101031003 04101 670 2017 La Serena 270221.9 2017 4101 221054 59733627577 4026 0.0182127 04101
4101041001 04101 153 2017 La Serena 270221.9 2017 4101 221054 59733627577 1108 0.0050123 04101
4101041002 04101 89 2017 La Serena 270221.9 2017 4101 221054 59733627577 1015 0.0045916 04101
4101041003 04101 952 2017 La Serena 270221.9 2017 4101 221054 59733627577 4721 0.0213568 04101
4101041004 04101 452 2017 La Serena 270221.9 2017 4101 221054 59733627577 3560 0.0161047 04101
4101041005 04101 148 2017 La Serena 270221.9 2017 4101 221054 59733627577 812 0.0036733 04101
4101041006 04101 130 2017 La Serena 270221.9 2017 4101 221054 59733627577 821 0.0037140 04101
4101051001 04101 118 2017 La Serena 270221.9 2017 4101 221054 59733627577 1419 0.0064192 04101
4101051002 04101 216 2017 La Serena 270221.9 2017 4101 221054 59733627577 2920 0.0132094 04101
4101051003 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 3348 0.0151456 04101
4101051004 04101 286 2017 La Serena 270221.9 2017 4101 221054 59733627577 2851 0.0128973 04101
4101051005 04101 661 2017 La Serena 270221.9 2017 4101 221054 59733627577 5493 0.0248491 04101
4101051006 04101 1199 2017 La Serena 270221.9 2017 4101 221054 59733627577 4295 0.0194296 04101
4101051007 04101 560 2017 La Serena 270221.9 2017 4101 221054 59733627577 2336 0.0105676 04101
4101051008 04101 1047 2017 La Serena 270221.9 2017 4101 221054 59733627577 4235 0.0191582 04101
4101051009 04101 1119 2017 La Serena 270221.9 2017 4101 221054 59733627577 3882 0.0175613 04101
4101051010 04101 630 2017 La Serena 270221.9 2017 4101 221054 59733627577 3226 0.0145937 04101
4101051011 04101 712 2017 La Serena 270221.9 2017 4101 221054 59733627577 2966 0.0134175 04101
4101052007 04101 20 2017 La Serena 270221.9 2017 4101 221054 59733627577 125 0.0005655 04101
4101061001 04101 253 2017 La Serena 270221.9 2017 4101 221054 59733627577 4424 0.0200132 04101
4101061002 04101 349 2017 La Serena 270221.9 2017 4101 221054 59733627577 3047 0.0137840 04101
4101061003 04101 679 2017 La Serena 270221.9 2017 4101 221054 59733627577 3472 0.0157066 04101
4101061004 04101 755 2017 La Serena 270221.9 2017 4101 221054 59733627577 5333 0.0241253 04101
4101061005 04101 35 2017 La Serena 270221.9 2017 4101 221054 59733627577 288 0.0013028 04101
4101062001 04101 48 2017 La Serena 270221.9 2017 4101 221054 59733627577 345 0.0015607 04101
4101062004 04101 114 2017 La Serena 270221.9 2017 4101 221054 59733627577 740 0.0033476 04101
4101062006 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 224 0.0010133 04101
4101062024 04101 15 2017 La Serena 270221.9 2017 4101 221054 59733627577 2392 0.0108209 04101
4101062030 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 41 0.0001855 04101
4101062049 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 115 0.0005202 04101
4101062901 04101 11 2017 La Serena 270221.9 2017 4101 221054 59733627577 284 0.0012848 04101
4101071001 04101 35 2017 La Serena 270221.9 2017 4101 221054 59733627577 1056 0.0047771 04101
4101072002 04101 55 2017 La Serena 270221.9 2017 4101 221054 59733627577 394 0.0017824 04101
4101072027 04101 17 2017 La Serena 270221.9 2017 4101 221054 59733627577 461 0.0020855 04101
4101072029 04101 3 2017 La Serena 270221.9 2017 4101 221054 59733627577 119 0.0005383 04101
4101072051 04101 20 2017 La Serena 270221.9 2017 4101 221054 59733627577 179 0.0008098 04101
4101072053 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 35 0.0001583 04101
4101072054 04101 4 2017 La Serena 270221.9 2017 4101 221054 59733627577 114 0.0005157 04101
4101082011 04101 8 2017 La Serena 270221.9 2017 4101 221054 59733627577 304 0.0013752 04101
4101082018 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 348 0.0015743 04101
4101082021 04101 61 2017 La Serena 270221.9 2017 4101 221054 59733627577 748 0.0033838 04101
4101082022 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 13 0.0000588 04101
4101082023 04101 46 2017 La Serena 270221.9 2017 4101 221054 59733627577 733 0.0033159 04101
4101082029 04101 7 2017 La Serena 270221.9 2017 4101 221054 59733627577 140 0.0006333 04101
4101082043 04101 38 2017 La Serena 270221.9 2017 4101 221054 59733627577 692 0.0031305 04101
4101082051 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 36 0.0001629 04101
4101082052 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 52 0.0002352 04101
4101082901 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 37 0.0001674 04101
4101091001 04101 41 2017 La Serena 270221.9 2017 4101 221054 59733627577 1292 0.0058447 04101
4101092003 04101 94 2017 La Serena 270221.9 2017 4101 221054 59733627577 740 0.0033476 04101
4101092034 04101 46 2017 La Serena 270221.9 2017 4101 221054 59733627577 742 0.0033566 04101
4101092038 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 329 0.0014883 04101
4101092039 04101 7 2017 La Serena 270221.9 2017 4101 221054 59733627577 63 0.0002850 04101
4101092901 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 60 0.0002714 04101
4101102003 04101 9 2017 La Serena 270221.9 2017 4101 221054 59733627577 70 0.0003167 04101
4101102013 04101 49 2017 La Serena 270221.9 2017 4101 221054 59733627577 1201 0.0054331 04101
4101102015 04101 21 2017 La Serena 270221.9 2017 4101 221054 59733627577 364 0.0016467 04101
4101102020 04101 169 2017 La Serena 270221.9 2017 4101 221054 59733627577 2212 0.0100066 04101
4101102032 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 48 0.0002171 04101
4101122010 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 44 0.0001990 04101
4101132025 04101 30 2017 La Serena 270221.9 2017 4101 221054 59733627577 987 0.0044650 04101
4101132032 04101 19 2017 La Serena 270221.9 2017 4101 221054 59733627577 824 0.0037276 04101
4101132046 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 23 0.0001040 04101
4101132055 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 23 0.0001040 04101
4101132901 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 36 0.0001629 04101
4101141001 04101 154 2017 La Serena 270221.9 2017 4101 221054 59733627577 2872 0.0129923 04101
4101141002 04101 175 2017 La Serena 270221.9 2017 4101 221054 59733627577 2750 0.0124404 04101
4101141003 04101 378 2017 La Serena 270221.9 2017 4101 221054 59733627577 4706 0.0212889 04101
4101141004 04101 229 2017 La Serena 270221.9 2017 4101 221054 59733627577 3750 0.0169642 04101
4101141005 04101 510 2017 La Serena 270221.9 2017 4101 221054 59733627577 5866 0.0265365 04101
4101141006 04101 194 2017 La Serena 270221.9 2017 4101 221054 59733627577 2114 0.0095633 04101
4101142008 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 95 0.0004298 04101
4101142012 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 175 0.0007917 04101
4101142014 04101 23 2017 La Serena 270221.9 2017 4101 221054 59733627577 519 0.0023478 04101
4101142019 04101 3 2017 La Serena 270221.9 2017 4101 221054 59733627577 194 0.0008776 04101
4101142030 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 147 0.0006650 04101
4101142033 04101 10 2017 La Serena 270221.9 2017 4101 221054 59733627577 51 0.0002307 04101
4101142036 04101 4 2017 La Serena 270221.9 2017 4101 221054 59733627577 225 0.0010179 04101
4101142040 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 92 0.0004162 04101
4101142056 04101 98 2017 La Serena 270221.9 2017 4101 221054 59733627577 383 0.0017326 04101
4101142057 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 45 0.0002036 04101
4101142901 04101 36 2017 La Serena 270221.9 2017 4101 221054 59733627577 324 0.0014657 04101
4101151001 04101 1228 2017 La Serena 270221.9 2017 4101 221054 59733627577 4957 0.0224244 04101
4101151002 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 1602 0.0072471 04101
4101151003 04101 391 2017 La Serena 270221.9 2017 4101 221054 59733627577 1900 0.0085952 04101
4101151004 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 2649 0.0119835 04101
4101151005 04101 506 2017 La Serena 270221.9 2017 4101 221054 59733627577 2047 0.0092602 04101
4101151006 04101 569 2017 La Serena 270221.9 2017 4101 221054 59733627577 3173 0.0143540 04101
4101161001 04101 241 2017 La Serena 270221.9 2017 4101 221054 59733627577 5756 0.0260389 04101
4101161002 04101 183 2017 La Serena 270221.9 2017 4101 221054 59733627577 3690 0.0166928 04101
4101161003 04101 130 2017 La Serena 270221.9 2017 4101 221054 59733627577 2952 0.0133542 04101


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
4101011001 04101 119 2017 La Serena 270221.9 2017 4101 221054 59733627577 1455 0.0065821 04101 393172836
4101021001 04101 89 2017 La Serena 270221.9 2017 4101 221054 59733627577 2431 0.0109973 04101 656909392
4101021002 04101 108 2017 La Serena 270221.9 2017 4101 221054 59733627577 2926 0.0132366 04101 790669222
4101021003 04101 158 2017 La Serena 270221.9 2017 4101 221054 59733627577 2699 0.0122097 04101 729328856
4101021004 04101 222 2017 La Serena 270221.9 2017 4101 221054 59733627577 5323 0.0240801 04101 1438391070
4101021005 04101 217 2017 La Serena 270221.9 2017 4101 221054 59733627577 2125 0.0096130 04101 574221496
4101022001 04101 85 2017 La Serena 270221.9 2017 4101 221054 59733627577 1157 0.0052340 04101 312646716
4101031001 04101 1023 2017 La Serena 270221.9 2017 4101 221054 59733627577 4341 0.0196377 04101 1173033183
4101031002 04101 172 2017 La Serena 270221.9 2017 4101 221054 59733627577 2583 0.0116849 04101 697983117
4101031003 04101 670 2017 La Serena 270221.9 2017 4101 221054 59733627577 4026 0.0182127 04101 1087913291
4101041001 04101 153 2017 La Serena 270221.9 2017 4101 221054 59733627577 1108 0.0050123 04101 299405844
4101041002 04101 89 2017 La Serena 270221.9 2017 4101 221054 59733627577 1015 0.0045916 04101 274275209
4101041003 04101 952 2017 La Serena 270221.9 2017 4101 221054 59733627577 4721 0.0213568 04101 1275717498
4101041004 04101 452 2017 La Serena 270221.9 2017 4101 221054 59733627577 3560 0.0161047 04101 961989895
4101041005 04101 148 2017 La Serena 270221.9 2017 4101 221054 59733627577 812 0.0036733 04101 219420167
4101041006 04101 130 2017 La Serena 270221.9 2017 4101 221054 59733627577 821 0.0037140 04101 221852164
4101051001 04101 118 2017 La Serena 270221.9 2017 4101 221054 59733627577 1419 0.0064192 04101 383444848
4101051002 04101 216 2017 La Serena 270221.9 2017 4101 221054 59733627577 2920 0.0132094 04101 789047891
4101051003 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 3348 0.0151456 04101 904702856
4101051004 04101 286 2017 La Serena 270221.9 2017 4101 221054 59733627577 2851 0.0128973 04101 770402581
4101051005 04101 661 2017 La Serena 270221.9 2017 4101 221054 59733627577 5493 0.0248491 04101 1484328790
4101051006 04101 1199 2017 La Serena 270221.9 2017 4101 221054 59733627577 4295 0.0194296 04101 1160602977
4101051007 04101 560 2017 La Serena 270221.9 2017 4101 221054 59733627577 2336 0.0105676 04101 631238313
4101051008 04101 1047 2017 La Serena 270221.9 2017 4101 221054 59733627577 4235 0.0191582 04101 1144389664
4101051009 04101 1119 2017 La Serena 270221.9 2017 4101 221054 59733627577 3882 0.0175613 04101 1049001340
4101051010 04101 630 2017 La Serena 270221.9 2017 4101 221054 59733627577 3226 0.0145937 04101 871735787
4101051011 04101 712 2017 La Serena 270221.9 2017 4101 221054 59733627577 2966 0.0134175 04101 801478098
4101052007 04101 20 2017 La Serena 270221.9 2017 4101 221054 59733627577 125 0.0005655 04101 33777735
4101061001 04101 253 2017 La Serena 270221.9 2017 4101 221054 59733627577 4424 0.0200132 04101 1195461599
4101061002 04101 349 2017 La Serena 270221.9 2017 4101 221054 59733627577 3047 0.0137840 04101 823366070
4101061003 04101 679 2017 La Serena 270221.9 2017 4101 221054 59733627577 3472 0.0157066 04101 938210369
4101061004 04101 755 2017 La Serena 270221.9 2017 4101 221054 59733627577 5333 0.0241253 04101 1441093289
4101061005 04101 35 2017 La Serena 270221.9 2017 4101 221054 59733627577 288 0.0013028 04101 77823902
4101062001 04101 48 2017 La Serena 270221.9 2017 4101 221054 59733627577 345 0.0015607 04101 93226549
4101062004 04101 114 2017 La Serena 270221.9 2017 4101 221054 59733627577 740 0.0033476 04101 199964192
4101062006 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 224 0.0010133 04101 60529701
4101062024 04101 15 2017 La Serena 270221.9 2017 4101 221054 59733627577 2392 0.0108209 04101 646370738
4101062030 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 41 0.0001855 04101 11079097
4101062049 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 115 0.0005202 04101 31075516
4101062901 04101 11 2017 La Serena 270221.9 2017 4101 221054 59733627577 284 0.0012848 04101 76743014
4101071001 04101 35 2017 La Serena 270221.9 2017 4101 221054 59733627577 1056 0.0047771 04101 285354306
4101072002 04101 55 2017 La Serena 270221.9 2017 4101 221054 59733627577 394 0.0017824 04101 106467421
4101072027 04101 17 2017 La Serena 270221.9 2017 4101 221054 59733627577 461 0.0020855 04101 124572287
4101072029 04101 3 2017 La Serena 270221.9 2017 4101 221054 59733627577 119 0.0005383 04101 32156404
4101072051 04101 20 2017 La Serena 270221.9 2017 4101 221054 59733627577 179 0.0008098 04101 48369717
4101072053 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 35 0.0001583 04101 9457766
4101072054 04101 4 2017 La Serena 270221.9 2017 4101 221054 59733627577 114 0.0005157 04101 30805294
4101082011 04101 8 2017 La Serena 270221.9 2017 4101 221054 59733627577 304 0.0013752 04101 82147452
4101082018 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 348 0.0015743 04101 94037214
4101082021 04101 61 2017 La Serena 270221.9 2017 4101 221054 59733627577 748 0.0033838 04101 202125967
4101082022 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 13 0.0000588 04101 3512884
4101082023 04101 46 2017 La Serena 270221.9 2017 4101 221054 59733627577 733 0.0033159 04101 198072638
4101082029 04101 7 2017 La Serena 270221.9 2017 4101 221054 59733627577 140 0.0006333 04101 37831063
4101082043 04101 38 2017 La Serena 270221.9 2017 4101 221054 59733627577 692 0.0031305 04101 186993541
4101082051 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 36 0.0001629 04101 9727988
4101082052 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 52 0.0002352 04101 14051538
4101082901 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 37 0.0001674 04101 9998210
4101091001 04101 41 2017 La Serena 270221.9 2017 4101 221054 59733627577 1292 0.0058447 04101 349126670
4101092003 04101 94 2017 La Serena 270221.9 2017 4101 221054 59733627577 740 0.0033476 04101 199964192
4101092034 04101 46 2017 La Serena 270221.9 2017 4101 221054 59733627577 742 0.0033566 04101 200504635
4101092038 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 329 0.0014883 04101 88902999
4101092039 04101 7 2017 La Serena 270221.9 2017 4101 221054 59733627577 63 0.0002850 04101 17023978
4101092901 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 60 0.0002714 04101 16213313
4101102003 04101 9 2017 La Serena 270221.9 2017 4101 221054 59733627577 70 0.0003167 04101 18915532
4101102013 04101 49 2017 La Serena 270221.9 2017 4101 221054 59733627577 1201 0.0054331 04101 324536479
4101102015 04101 21 2017 La Serena 270221.9 2017 4101 221054 59733627577 364 0.0016467 04101 98360765
4101102020 04101 169 2017 La Serena 270221.9 2017 4101 221054 59733627577 2212 0.0100066 04101 597730800
4101102032 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 48 0.0002171 04101 12970650
4101122010 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 44 0.0001990 04101 11889763
4101132025 04101 30 2017 La Serena 270221.9 2017 4101 221054 59733627577 987 0.0044650 04101 266708996
4101132032 04101 19 2017 La Serena 270221.9 2017 4101 221054 59733627577 824 0.0037276 04101 222662830
4101132046 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 23 0.0001040 04101 6215103
4101132055 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 23 0.0001040 04101 6215103
4101132901 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 36 0.0001629 04101 9727988
4101141001 04101 154 2017 La Serena 270221.9 2017 4101 221054 59733627577 2872 0.0129923 04101 776077241
4101141002 04101 175 2017 La Serena 270221.9 2017 4101 221054 59733627577 2750 0.0124404 04101 743110171
4101141003 04101 378 2017 La Serena 270221.9 2017 4101 221054 59733627577 4706 0.0212889 04101 1271664170
4101141004 04101 229 2017 La Serena 270221.9 2017 4101 221054 59733627577 3750 0.0169642 04101 1013332052
4101141005 04101 510 2017 La Serena 270221.9 2017 4101 221054 59733627577 5866 0.0265365 04101 1585121551
4101141006 04101 194 2017 La Serena 270221.9 2017 4101 221054 59733627577 2114 0.0095633 04101 571249055
4101142008 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 95 0.0004298 04101 25671079
4101142012 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 175 0.0007917 04101 47288829
4101142014 04101 23 2017 La Serena 270221.9 2017 4101 221054 59733627577 519 0.0023478 04101 140245156
4101142019 04101 3 2017 La Serena 270221.9 2017 4101 221054 59733627577 194 0.0008776 04101 52423045
4101142030 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 147 0.0006650 04101 39722616
4101142033 04101 10 2017 La Serena 270221.9 2017 4101 221054 59733627577 51 0.0002307 04101 13781316
4101142036 04101 4 2017 La Serena 270221.9 2017 4101 221054 59733627577 225 0.0010179 04101 60799923
4101142040 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 92 0.0004162 04101 24860413
4101142056 04101 98 2017 La Serena 270221.9 2017 4101 221054 59733627577 383 0.0017326 04101 103494980
4101142057 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 45 0.0002036 04101 12159985
4101142901 04101 36 2017 La Serena 270221.9 2017 4101 221054 59733627577 324 0.0014657 04101 87551889
4101151001 04101 1228 2017 La Serena 270221.9 2017 4101 221054 59733627577 4957 0.0224244 04101 1339489862
4101151002 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 1602 0.0072471 04101 432895453
4101151003 04101 391 2017 La Serena 270221.9 2017 4101 221054 59733627577 1900 0.0085952 04101 513421573
4101151004 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 2649 0.0119835 04101 715817762
4101151005 04101 506 2017 La Serena 270221.9 2017 4101 221054 59733627577 2047 0.0092602 04101 553144189
4101151006 04101 569 2017 La Serena 270221.9 2017 4101 221054 59733627577 3173 0.0143540 04101 857414027
4101161001 04101 241 2017 La Serena 270221.9 2017 4101 221054 59733627577 5756 0.0260389 04101 1555397144
4101161002 04101 183 2017 La Serena 270221.9 2017 4101 221054 59733627577 3690 0.0166928 04101 997118739
4101161003 04101 130 2017 La Serena 270221.9 2017 4101 221054 59733627577 2952 0.0133542 04101 797694991

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.132e+09 -1.421e+08 -1.062e+08  3.801e+07  1.171e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 151825903   12814562   11.85   <2e-16 ***
## Freq.x        1785288      63820   27.97   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 290600000 on 625 degrees of freedom
## Multiple R-squared:  0.556,  Adjusted R-squared:  0.5552 
## F-statistic: 782.5 on 1 and 625 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.132e+09 -1.421e+08 -1.062e+08  3.801e+07  1.171e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 151825903   12814562   11.85   <2e-16 ***
## Freq.x        1785288      63820   27.97   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 290600000 on 625 degrees of freedom
## Multiple R-squared:  0.556,  Adjusted R-squared:  0.5552 
## F-statistic: 782.5 on 1 and 625 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.132e+09 -1.421e+08 -1.062e+08  3.801e+07  1.171e+09 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 151825903   12814562   11.85   <2e-16 ***
## Freq.x        1785288      63820   27.97   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 290600000 on 625 degrees of freedom
## Multiple R-squared:  0.556,  Adjusted R-squared:  0.5552 
## F-statistic: 782.5 on 1 and 625 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -557337281 -163222717  -18733565  169628646 1100583501 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -164709579   15732599  -10.47   <2e-16 ***
## log(Freq.x)  180054023    4780588   37.66   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 241200000 on 625 degrees of freedom
## Multiple R-squared:  0.6942, Adjusted R-squared:  0.6937 
## F-statistic:  1419 on 1 and 625 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -773146595  -69941350  -20094906   23992146  940903693 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -41019228   11367738  -3.608 0.000333 ***
## sqrt(Freq.x)  55697638    1232068  45.207  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 211100000 on 625 degrees of freedom
## Multiple R-squared:  0.7658, Adjusted R-squared:  0.7654 
## F-statistic:  2044 on 1 and 625 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20278.7  -3086.8   -737.6   2686.1  16347.3 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4439.50     285.62   15.54   <2e-16 ***
## sqrt(Freq.x)  1441.29      30.96   46.56   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5303 on 625 degrees of freedom
## Multiple R-squared:  0.7762, Adjusted R-squared:  0.7758 
## F-statistic:  2168 on 1 and 625 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5818 -0.7651  0.1520  0.8381  2.4974 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  16.999397   0.059155  287.37   <2e-16 ***
## sqrt(Freq.x)  0.204006   0.006411   31.82   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.098 on 625 degrees of freedom
## Multiple R-squared:  0.6183, Adjusted R-squared:  0.6177 
## F-statistic:  1012 on 1 and 625 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13114.3  -3243.4    -45.6   3013.9  14351.0 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   338.14     317.03   1.067    0.287    
## log(Freq.x)  5005.37      96.33  51.958   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4860 on 625 degrees of freedom
## Multiple R-squared:  0.812,  Adjusted R-squared:  0.8117 
## F-statistic:  2700 on 1 and 625 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.59410 -0.52576  0.06455  0.53118  2.26833 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 16.21575    0.05222  310.54   <2e-16 ***
## log(Freq.x)  0.78654    0.01587   49.57   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8005 on 625 degrees of freedom
## Multiple R-squared:  0.7972, Adjusted R-squared:  0.7969 
## F-statistic:  2457 on 1 and 625 DF,  p-value: < 2.2e-16

9 Modelo raíz-log (r-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.8117).

9.1 Diagrama de dispersión sobre r-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo r-log

Observemos nuevamente el resultado sobre r-log.

linearMod <- lm(sqrt( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13114.3  -3243.4    -45.6   3013.9  14351.0 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   338.14     317.03   1.067    0.287    
## log(Freq.x)  5005.37      96.33  51.958   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4860 on 625 degrees of freedom
## Multiple R-squared:  0.812,  Adjusted R-squared:  0.8117 
## F-statistic:  2700 on 1 and 625 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = log(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = 338.14^2 + 2 \cdot 338.14 \cdot 5005.37 \cdot ln{X} + 5005.37 ^2 \cdot ln ^2 X \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- 338.14^2 + 2  * 338.14 * 5005.37 * log(h_y_m_comuna_corr_01$Freq.x)+ 5005.37 ^2 * {log(h_y_m_comuna_corr_01$Freq.x)}^2
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
4101011001 04101 119 2017 La Serena 270221.9 2017 4101 221054 59733627577 1455 0.0065821 04101 393172836 588519524.7
4101021001 04101 89 2017 La Serena 270221.9 2017 4101 221054 59733627577 2431 0.0109973 04101 656909392 520087447.1
4101021002 04101 108 2017 La Serena 270221.9 2017 4101 221054 59733627577 2926 0.0132366 04101 790669222 565200184.1
4101021003 04101 158 2017 La Serena 270221.9 2017 4101 221054 59733627577 2699 0.0122097 04101 729328856 659375157.7
4101021004 04101 222 2017 La Serena 270221.9 2017 4101 221054 59733627577 5323 0.0240801 04101 1438391070 749693931.6
4101021005 04101 217 2017 La Serena 270221.9 2017 4101 221054 59733627577 2125 0.0096130 04101 574221496 743462939.3
4101022001 04101 85 2017 La Serena 270221.9 2017 4101 221054 59733627577 1157 0.0052340 04101 312646716 509642062.4
4101031001 04101 1023 2017 La Serena 270221.9 2017 4101 221054 59733627577 4341 0.0196377 04101 1173033183 1226948915.6
4101031002 04101 172 2017 La Serena 270221.9 2017 4101 221054 59733627577 2583 0.0116849 04101 697983117 681379891.8
4101031003 04101 670 2017 La Serena 270221.9 2017 4101 221054 59733627577 4026 0.0182127 04101 1087913291 1083033389.7
4101041001 04101 153 2017 La Serena 270221.9 2017 4101 221054 59733627577 1108 0.0050123 04101 299405844 651134796.8
4101041002 04101 89 2017 La Serena 270221.9 2017 4101 221054 59733627577 1015 0.0045916 04101 274275209 520087447.1
4101041003 04101 952 2017 La Serena 270221.9 2017 4101 221054 59733627577 4721 0.0213568 04101 1275717498 1201856056.5
4101041004 04101 452 2017 La Serena 270221.9 2017 4101 221054 59733627577 3560 0.0161047 04101 961989895 957245319.7
4101041005 04101 148 2017 La Serena 270221.9 2017 4101 221054 59733627577 812 0.0036733 04101 219420167 642675046.5
4101041006 04101 130 2017 La Serena 270221.9 2017 4101 221054 59733627577 821 0.0037140 04101 221852164 610186378.9
4101051001 04101 118 2017 La Serena 270221.9 2017 4101 221054 59733627577 1419 0.0064192 04101 383444848 586471889.4
4101051002 04101 216 2017 La Serena 270221.9 2017 4101 221054 59733627577 2920 0.0132094 04101 789047891 742202695.5
4101051003 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 3348 0.0151456 04101 904702856 897864891.7
4101051004 04101 286 2017 La Serena 270221.9 2017 4101 221054 59733627577 2851 0.0128973 04101 770402581 820734932.5
4101051005 04101 661 2017 La Serena 270221.9 2017 4101 221054 59733627577 5493 0.0248491 04101 1484328790 1078582556.7
4101051006 04101 1199 2017 La Serena 270221.9 2017 4101 221054 59733627577 4295 0.0194296 04101 1160602977 1283246133.7
4101051007 04101 560 2017 La Serena 270221.9 2017 4101 221054 59733627577 2336 0.0105676 04101 631238313 1024755655.5
4101051008 04101 1047 2017 La Serena 270221.9 2017 4101 221054 59733627577 4235 0.0191582 04101 1144389664 1235093871.6
4101051009 04101 1119 2017 La Serena 270221.9 2017 4101 221054 59733627577 3882 0.0175613 04101 1049001340 1258602768.2
4101051010 04101 630 2017 La Serena 270221.9 2017 4101 221054 59733627577 3226 0.0145937 04101 871735787 1062848192.2
4101051011 04101 712 2017 La Serena 270221.9 2017 4101 221054 59733627577 2966 0.0134175 04101 801478098 1103156519.4
4101052007 04101 20 2017 La Serena 270221.9 2017 4101 221054 59733627577 125 0.0005655 04101 33777735 235097468.2
4101061001 04101 253 2017 La Serena 270221.9 2017 4101 221054 59733627577 4424 0.0200132 04101 1195461599 785950108.9
4101061002 04101 349 2017 La Serena 270221.9 2017 4101 221054 59733627577 3047 0.0137840 04101 823366070 878822547.5
4101061003 04101 679 2017 La Serena 270221.9 2017 4101 221054 59733627577 3472 0.0157066 04101 938210369 1087433814.2
4101061004 04101 755 2017 La Serena 270221.9 2017 4101 221054 59733627577 5333 0.0241253 04101 1441093289 1122740106.3
4101061005 04101 35 2017 La Serena 270221.9 2017 4101 221054 59733627577 288 0.0013028 04101 77823902 328840959.6
4101062001 04101 48 2017 La Serena 270221.9 2017 4101 221054 59733627577 345 0.0015607 04101 93226549 388678599.1
4101062004 04101 114 2017 La Serena 270221.9 2017 4101 221054 59733627577 740 0.0033476 04101 199964192 578141136.2
4101062006 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 224 0.0010133 04101 60529701 270596067.7
4101062024 04101 15 2017 La Serena 270221.9 2017 4101 221054 59733627577 2392 0.0108209 04101 646370738 193013593.9
4101062030 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 41 0.0001855 04101 11079097 114338.7
4101062049 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 115 0.0005202 04101 31075516 270596067.7
4101062901 04101 11 2017 La Serena 270221.9 2017 4101 221054 59733627577 284 0.0012848 04101 76743014 152287769.0
4101071001 04101 35 2017 La Serena 270221.9 2017 4101 221054 59733627577 1056 0.0047771 04101 285354306 328840959.6
4101072002 04101 55 2017 La Serena 270221.9 2017 4101 221054 59733627577 394 0.0017824 04101 106467421 416010086.0
4101072027 04101 17 2017 La Serena 270221.9 2017 4101 221054 59733627577 461 0.0020855 04101 124572287 210813588.4
4101072029 04101 3 2017 La Serena 270221.9 2017 4101 221054 59733627577 119 0.0005383 04101 32156404 34071748.0
4101072051 04101 20 2017 La Serena 270221.9 2017 4101 221054 59733627577 179 0.0008098 04101 48369717 235097468.2
4101072053 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 35 0.0001583 04101 9457766 14497803.3
4101072054 04101 4 2017 La Serena 270221.9 2017 4101 221054 59733627577 114 0.0005157 04101 30805294 52955547.0
4101082011 04101 8 2017 La Serena 270221.9 2017 4101 221054 59733627577 304 0.0013752 04101 82147452 115487569.8
4101082018 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 348 0.0015743 04101 94037214 270596067.7
4101082021 04101 61 2017 La Serena 270221.9 2017 4101 221054 59733627577 748 0.0033838 04101 202125967 437419853.7
4101082022 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 13 0.0000588 04101 3512884 114338.7
4101082023 04101 46 2017 La Serena 270221.9 2017 4101 221054 59733627577 733 0.0033159 04101 198072638 380324368.3
4101082029 04101 7 2017 La Serena 270221.9 2017 4101 221054 59733627577 140 0.0006333 04101 37831063 101568911.6
4101082043 04101 38 2017 La Serena 270221.9 2017 4101 221054 59733627577 692 0.0031305 04101 186993541 343939451.3
4101082051 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 36 0.0001629 04101 9727988 70458770.0
4101082052 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 52 0.0002352 04101 14051538 70458770.0
4101082901 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 37 0.0001674 04101 9998210 86612042.2
4101091001 04101 41 2017 La Serena 270221.9 2017 4101 221054 59733627577 1292 0.0058447 04101 349126670 358191288.7
4101092003 04101 94 2017 La Serena 270221.9 2017 4101 221054 59733627577 740 0.0033476 04101 199964192 532640767.4
4101092034 04101 46 2017 La Serena 270221.9 2017 4101 221054 59733627577 742 0.0033566 04101 200504635 380324368.3
4101092038 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 329 0.0014883 04101 88902999 86612042.2
4101092039 04101 7 2017 La Serena 270221.9 2017 4101 221054 59733627577 63 0.0002850 04101 17023978 101568911.6
4101092901 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 60 0.0002714 04101 16213313 14497803.3
4101102003 04101 9 2017 La Serena 270221.9 2017 4101 221054 59733627577 70 0.0003167 04101 18915532 128506301.3
4101102013 04101 49 2017 La Serena 270221.9 2017 4101 221054 59733627577 1201 0.0054331 04101 324536479 392758695.5
4101102015 04101 21 2017 La Serena 270221.9 2017 4101 221054 59733627577 364 0.0016467 04101 98360765 242646084.1
4101102020 04101 169 2017 La Serena 270221.9 2017 4101 221054 59733627577 2212 0.0100066 04101 597730800 676789649.3
4101102032 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 48 0.0002171 04101 12970650 114338.7
4101122010 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 44 0.0001990 04101 11889763 114338.7
4101132025 04101 30 2017 La Serena 270221.9 2017 4101 221054 59733627577 987 0.0044650 04101 266708996 301452633.0
4101132032 04101 19 2017 La Serena 270221.9 2017 4101 221054 59733627577 824 0.0037276 04101 222662830 227290194.3
4101132046 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 23 0.0001040 04101 6215103 114338.7
4101132055 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 23 0.0001040 04101 6215103 114338.7
4101132901 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 36 0.0001629 04101 9727988 114338.7
4101141001 04101 154 2017 La Serena 270221.9 2017 4101 221054 59733627577 2872 0.0129923 04101 776077241 652800019.0
4101141002 04101 175 2017 La Serena 270221.9 2017 4101 221054 59733627577 2750 0.0124404 04101 743110171 685905873.9
4101141003 04101 378 2017 La Serena 270221.9 2017 4101 221054 59733627577 4706 0.0212889 04101 1271664170 902670860.2
4101141004 04101 229 2017 La Serena 270221.9 2017 4101 221054 59733627577 3750 0.0169642 04101 1013332052 758227391.7
4101141005 04101 510 2017 La Serena 270221.9 2017 4101 221054 59733627577 5866 0.0265365 04101 1585121551 995003269.4
4101141006 04101 194 2017 La Serena 270221.9 2017 4101 221054 59733627577 2114 0.0095633 04101 571249055 713195437.6
4101142008 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 95 0.0004298 04101 25671079 86612042.2
4101142012 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 175 0.0007917 04101 47288829 270596067.7
4101142014 04101 23 2017 La Serena 270221.9 2017 4101 221054 59733627577 519 0.0023478 04101 140245156 257039410.8
4101142019 04101 3 2017 La Serena 270221.9 2017 4101 221054 59733627577 194 0.0008776 04101 52423045 34071748.0
4101142030 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 147 0.0006650 04101 39722616 14497803.3
4101142033 04101 10 2017 La Serena 270221.9 2017 4101 221054 59733627577 51 0.0002307 04101 13781316 140740979.6
4101142036 04101 4 2017 La Serena 270221.9 2017 4101 221054 59733627577 225 0.0010179 04101 60799923 52955547.0
4101142040 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 92 0.0004162 04101 24860413 114338.7
4101142056 04101 98 2017 La Serena 270221.9 2017 4101 221054 59733627577 383 0.0017326 04101 103494980 542312251.8
4101142057 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 45 0.0002036 04101 12159985 70458770.0
4101142901 04101 36 2017 La Serena 270221.9 2017 4101 221054 59733627577 324 0.0014657 04101 87551889 333974827.8
4101151001 04101 1228 2017 La Serena 270221.9 2017 4101 221054 59733627577 4957 0.0224244 04101 1339489862 1291830822.8
4101151002 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 1602 0.0072471 04101 432895453 897864891.7
4101151003 04101 391 2017 La Serena 270221.9 2017 4101 221054 59733627577 1900 0.0085952 04101 513421573 912869466.0
4101151004 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 2649 0.0119835 04101 715817762 897864891.7
4101151005 04101 506 2017 La Serena 270221.9 2017 4101 221054 59733627577 2047 0.0092602 04101 553144189 992518388.6
4101151006 04101 569 2017 La Serena 270221.9 2017 4101 221054 59733627577 3173 0.0143540 04101 857414027 1029871355.9
4101161001 04101 241 2017 La Serena 270221.9 2017 4101 221054 59733627577 5756 0.0260389 04101 1555397144 772371809.2
4101161002 04101 183 2017 La Serena 270221.9 2017 4101 221054 59733627577 3690 0.0166928 04101 997118739 697675396.7
4101161003 04101 130 2017 La Serena 270221.9 2017 4101 221054 59733627577 2952 0.0133542 04101 797694991 610186378.9


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
4101011001 04101 119 2017 La Serena 270221.9 2017 4101 221054 59733627577 1455 0.0065821 04101 393172836 588519524.7 404480.773
4101021001 04101 89 2017 La Serena 270221.9 2017 4101 221054 59733627577 2431 0.0109973 04101 656909392 520087447.1 213939.715
4101021002 04101 108 2017 La Serena 270221.9 2017 4101 221054 59733627577 2926 0.0132366 04101 790669222 565200184.1 193164.793
4101021003 04101 158 2017 La Serena 270221.9 2017 4101 221054 59733627577 2699 0.0122097 04101 729328856 659375157.7 244303.504
4101021004 04101 222 2017 La Serena 270221.9 2017 4101 221054 59733627577 5323 0.0240801 04101 1438391070 749693931.6 140840.491
4101021005 04101 217 2017 La Serena 270221.9 2017 4101 221054 59733627577 2125 0.0096130 04101 574221496 743462939.3 349864.913
4101022001 04101 85 2017 La Serena 270221.9 2017 4101 221054 59733627577 1157 0.0052340 04101 312646716 509642062.4 440485.793
4101031001 04101 1023 2017 La Serena 270221.9 2017 4101 221054 59733627577 4341 0.0196377 04101 1173033183 1226948915.6 282641.999
4101031002 04101 172 2017 La Serena 270221.9 2017 4101 221054 59733627577 2583 0.0116849 04101 697983117 681379891.8 263793.996
4101031003 04101 670 2017 La Serena 270221.9 2017 4101 221054 59733627577 4026 0.0182127 04101 1087913291 1083033389.7 269009.784
4101041001 04101 153 2017 La Serena 270221.9 2017 4101 221054 59733627577 1108 0.0050123 04101 299405844 651134796.8 587666.784
4101041002 04101 89 2017 La Serena 270221.9 2017 4101 221054 59733627577 1015 0.0045916 04101 274275209 520087447.1 512401.426
4101041003 04101 952 2017 La Serena 270221.9 2017 4101 221054 59733627577 4721 0.0213568 04101 1275717498 1201856056.5 254576.585
4101041004 04101 452 2017 La Serena 270221.9 2017 4101 221054 59733627577 3560 0.0161047 04101 961989895 957245319.7 268889.135
4101041005 04101 148 2017 La Serena 270221.9 2017 4101 221054 59733627577 812 0.0036733 04101 219420167 642675046.5 791471.732
4101041006 04101 130 2017 La Serena 270221.9 2017 4101 221054 59733627577 821 0.0037140 04101 221852164 610186378.9 743223.360
4101051001 04101 118 2017 La Serena 270221.9 2017 4101 221054 59733627577 1419 0.0064192 04101 383444848 586471889.4 413299.429
4101051002 04101 216 2017 La Serena 270221.9 2017 4101 221054 59733627577 2920 0.0132094 04101 789047891 742202695.5 254179.005
4101051003 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 3348 0.0151456 04101 904702856 897864891.7 268179.478
4101051004 04101 286 2017 La Serena 270221.9 2017 4101 221054 59733627577 2851 0.0128973 04101 770402581 820734932.5 287876.160
4101051005 04101 661 2017 La Serena 270221.9 2017 4101 221054 59733627577 5493 0.0248491 04101 1484328790 1078582556.7 196355.827
4101051006 04101 1199 2017 La Serena 270221.9 2017 4101 221054 59733627577 4295 0.0194296 04101 1160602977 1283246133.7 298776.748
4101051007 04101 560 2017 La Serena 270221.9 2017 4101 221054 59733627577 2336 0.0105676 04101 631238313 1024755655.5 438679.647
4101051008 04101 1047 2017 La Serena 270221.9 2017 4101 221054 59733627577 4235 0.0191582 04101 1144389664 1235093871.6 291639.639
4101051009 04101 1119 2017 La Serena 270221.9 2017 4101 221054 59733627577 3882 0.0175613 04101 1049001340 1258602768.2 324215.036
4101051010 04101 630 2017 La Serena 270221.9 2017 4101 221054 59733627577 3226 0.0145937 04101 871735787 1062848192.2 329463.172
4101051011 04101 712 2017 La Serena 270221.9 2017 4101 221054 59733627577 2966 0.0134175 04101 801478098 1103156519.4 371934.093
4101052007 04101 20 2017 La Serena 270221.9 2017 4101 221054 59733627577 125 0.0005655 04101 33777735 235097468.2 1880779.746
4101061001 04101 253 2017 La Serena 270221.9 2017 4101 221054 59733627577 4424 0.0200132 04101 1195461599 785950108.9 177655.992
4101061002 04101 349 2017 La Serena 270221.9 2017 4101 221054 59733627577 3047 0.0137840 04101 823366070 878822547.5 288422.234
4101061003 04101 679 2017 La Serena 270221.9 2017 4101 221054 59733627577 3472 0.0157066 04101 938210369 1087433814.2 313200.983
4101061004 04101 755 2017 La Serena 270221.9 2017 4101 221054 59733627577 5333 0.0241253 04101 1441093289 1122740106.3 210526.928
4101061005 04101 35 2017 La Serena 270221.9 2017 4101 221054 59733627577 288 0.0013028 04101 77823902 328840959.6 1141808.887
4101062001 04101 48 2017 La Serena 270221.9 2017 4101 221054 59733627577 345 0.0015607 04101 93226549 388678599.1 1126604.635
4101062004 04101 114 2017 La Serena 270221.9 2017 4101 221054 59733627577 740 0.0033476 04101 199964192 578141136.2 781271.806
4101062006 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 224 0.0010133 04101 60529701 270596067.7 1208018.159
4101062024 04101 15 2017 La Serena 270221.9 2017 4101 221054 59733627577 2392 0.0108209 04101 646370738 193013593.9 80691.302
4101062030 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 41 0.0001855 04101 11079097 114338.7 2788.748
4101062049 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 115 0.0005202 04101 31075516 270596067.7 2353009.284
4101062901 04101 11 2017 La Serena 270221.9 2017 4101 221054 59733627577 284 0.0012848 04101 76743014 152287769.0 536224.539
4101071001 04101 35 2017 La Serena 270221.9 2017 4101 221054 59733627577 1056 0.0047771 04101 285354306 328840959.6 311402.424
4101072002 04101 55 2017 La Serena 270221.9 2017 4101 221054 59733627577 394 0.0017824 04101 106467421 416010086.0 1055863.162
4101072027 04101 17 2017 La Serena 270221.9 2017 4101 221054 59733627577 461 0.0020855 04101 124572287 210813588.4 457296.287
4101072029 04101 3 2017 La Serena 270221.9 2017 4101 221054 59733627577 119 0.0005383 04101 32156404 34071748.0 286317.210
4101072051 04101 20 2017 La Serena 270221.9 2017 4101 221054 59733627577 179 0.0008098 04101 48369717 235097468.2 1313393.677
4101072053 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 35 0.0001583 04101 9457766 14497803.3 414222.952
4101072054 04101 4 2017 La Serena 270221.9 2017 4101 221054 59733627577 114 0.0005157 04101 30805294 52955547.0 464522.342
4101082011 04101 8 2017 La Serena 270221.9 2017 4101 221054 59733627577 304 0.0013752 04101 82147452 115487569.8 379893.322
4101082018 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 348 0.0015743 04101 94037214 270596067.7 777574.907
4101082021 04101 61 2017 La Serena 270221.9 2017 4101 221054 59733627577 748 0.0033838 04101 202125967 437419853.7 584785.901
4101082022 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 13 0.0000588 04101 3512884 114338.7 8795.282
4101082023 04101 46 2017 La Serena 270221.9 2017 4101 221054 59733627577 733 0.0033159 04101 198072638 380324368.3 518859.984
4101082029 04101 7 2017 La Serena 270221.9 2017 4101 221054 59733627577 140 0.0006333 04101 37831063 101568911.6 725492.225
4101082043 04101 38 2017 La Serena 270221.9 2017 4101 221054 59733627577 692 0.0031305 04101 186993541 343939451.3 497022.329
4101082051 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 36 0.0001629 04101 9727988 70458770.0 1957188.056
4101082052 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 52 0.0002352 04101 14051538 70458770.0 1354976.347
4101082901 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 37 0.0001674 04101 9998210 86612042.2 2340866.005
4101091001 04101 41 2017 La Serena 270221.9 2017 4101 221054 59733627577 1292 0.0058447 04101 349126670 358191288.7 277237.840
4101092003 04101 94 2017 La Serena 270221.9 2017 4101 221054 59733627577 740 0.0033476 04101 199964192 532640767.4 719784.821
4101092034 04101 46 2017 La Serena 270221.9 2017 4101 221054 59733627577 742 0.0033566 04101 200504635 380324368.3 512566.534
4101092038 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 329 0.0014883 04101 88902999 86612042.2 263258.487
4101092039 04101 7 2017 La Serena 270221.9 2017 4101 221054 59733627577 63 0.0002850 04101 17023978 101568911.6 1612204.945
4101092901 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 60 0.0002714 04101 16213313 14497803.3 241630.055
4101102003 04101 9 2017 La Serena 270221.9 2017 4101 221054 59733627577 70 0.0003167 04101 18915532 128506301.3 1835804.304
4101102013 04101 49 2017 La Serena 270221.9 2017 4101 221054 59733627577 1201 0.0054331 04101 324536479 392758695.5 327026.391
4101102015 04101 21 2017 La Serena 270221.9 2017 4101 221054 59733627577 364 0.0016467 04101 98360765 242646084.1 666610.121
4101102020 04101 169 2017 La Serena 270221.9 2017 4101 221054 59733627577 2212 0.0100066 04101 597730800 676789649.3 305962.771
4101102032 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 48 0.0002171 04101 12970650 114338.7 2382.055
4101122010 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 44 0.0001990 04101 11889763 114338.7 2598.606
4101132025 04101 30 2017 La Serena 270221.9 2017 4101 221054 59733627577 987 0.0044650 04101 266708996 301452633.0 305423.134
4101132032 04101 19 2017 La Serena 270221.9 2017 4101 221054 59733627577 824 0.0037276 04101 222662830 227290194.3 275837.614
4101132046 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 23 0.0001040 04101 6215103 114338.7 4971.246
4101132055 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 23 0.0001040 04101 6215103 114338.7 4971.246
4101132901 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 36 0.0001629 04101 9727988 114338.7 3176.074
4101141001 04101 154 2017 La Serena 270221.9 2017 4101 221054 59733627577 2872 0.0129923 04101 776077241 652800019.0 227298.057
4101141002 04101 175 2017 La Serena 270221.9 2017 4101 221054 59733627577 2750 0.0124404 04101 743110171 685905873.9 249420.318
4101141003 04101 378 2017 La Serena 270221.9 2017 4101 221054 59733627577 4706 0.0212889 04101 1271664170 902670860.2 191812.762
4101141004 04101 229 2017 La Serena 270221.9 2017 4101 221054 59733627577 3750 0.0169642 04101 1013332052 758227391.7 202193.971
4101141005 04101 510 2017 La Serena 270221.9 2017 4101 221054 59733627577 5866 0.0265365 04101 1585121551 995003269.4 169622.105
4101141006 04101 194 2017 La Serena 270221.9 2017 4101 221054 59733627577 2114 0.0095633 04101 571249055 713195437.6 337367.757
4101142008 04101 6 2017 La Serena 270221.9 2017 4101 221054 59733627577 95 0.0004298 04101 25671079 86612042.2 911705.707
4101142012 04101 25 2017 La Serena 270221.9 2017 4101 221054 59733627577 175 0.0007917 04101 47288829 270596067.7 1546263.244
4101142014 04101 23 2017 La Serena 270221.9 2017 4101 221054 59733627577 519 0.0023478 04101 140245156 257039410.8 495258.980
4101142019 04101 3 2017 La Serena 270221.9 2017 4101 221054 59733627577 194 0.0008776 04101 52423045 34071748.0 175627.567
4101142030 04101 2 2017 La Serena 270221.9 2017 4101 221054 59733627577 147 0.0006650 04101 39722616 14497803.3 98624.512
4101142033 04101 10 2017 La Serena 270221.9 2017 4101 221054 59733627577 51 0.0002307 04101 13781316 140740979.6 2759627.051
4101142036 04101 4 2017 La Serena 270221.9 2017 4101 221054 59733627577 225 0.0010179 04101 60799923 52955547.0 235357.987
4101142040 04101 1 2017 La Serena 270221.9 2017 4101 221054 59733627577 92 0.0004162 04101 24860413 114338.7 1242.812
4101142056 04101 98 2017 La Serena 270221.9 2017 4101 221054 59733627577 383 0.0017326 04101 103494980 542312251.8 1415958.882
4101142057 04101 5 2017 La Serena 270221.9 2017 4101 221054 59733627577 45 0.0002036 04101 12159985 70458770.0 1565750.445
4101142901 04101 36 2017 La Serena 270221.9 2017 4101 221054 59733627577 324 0.0014657 04101 87551889 333974827.8 1030786.506
4101151001 04101 1228 2017 La Serena 270221.9 2017 4101 221054 59733627577 4957 0.0224244 04101 1339489862 1291830822.8 260607.388
4101151002 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 1602 0.0072471 04101 432895453 897864891.7 560464.976
4101151003 04101 391 2017 La Serena 270221.9 2017 4101 221054 59733627577 1900 0.0085952 04101 513421573 912869466.0 480457.614
4101151004 04101 372 2017 La Serena 270221.9 2017 4101 221054 59733627577 2649 0.0119835 04101 715817762 897864891.7 338944.844
4101151005 04101 506 2017 La Serena 270221.9 2017 4101 221054 59733627577 2047 0.0092602 04101 553144189 992518388.6 484864.870
4101151006 04101 569 2017 La Serena 270221.9 2017 4101 221054 59733627577 3173 0.0143540 04101 857414027 1029871355.9 324573.387
4101161001 04101 241 2017 La Serena 270221.9 2017 4101 221054 59733627577 5756 0.0260389 04101 1555397144 772371809.2 134185.512
4101161002 04101 183 2017 La Serena 270221.9 2017 4101 221054 59733627577 3690 0.0166928 04101 997118739 697675396.7 189071.923
4101161003 04101 130 2017 La Serena 270221.9 2017 4101 221054 59733627577 2952 0.0133542 04101 797694991 610186378.9 206702.703


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_04.rds")