De ingresos sobre una categoría de respuesta
Abstract
Expandiremos los ingresos promedios comunales obtenidos de la CASEN sobre la categoría de respuesta: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del CENSO de viviendas, que fue la categoría de respuesta que más alto correlaciona con los ingresos expandidos (obtenidos de la multiplicación del ingreso promedio y los habitantes), ambos a nivel comunal.
Haremos el análisis sobre la región 01.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas” del campo P03B del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).
Leemos la tabla Casen 2017 de viviendas que ya tiene integrada la clave zonal:
tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | P01 | P02 | P03A | P03B | P03C | P04 | P05 | CANT_HOG | CANT_PER | REGION_15R | PROVINCIA_15R | COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 4 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 5 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 6 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 8 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 11 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 12 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 5 | 3 | 4 | 1 | 4 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 14 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 8 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 3 | 1 | 5 | 3 | 5 | 1 | 1 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 3 | 1 | 5 | 3 | 5 | 1 | 3 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 21 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 22 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 24 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 26 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 27 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 29 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 30 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 31 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 32 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 5 | 3 | 5 | 3 | 4 | 1 | 4 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 34 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 35 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 5 | 3 | 5 | 3 | 2 | 1 | 9 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 37 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 5 | 3 | 5 | 99 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 40 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 41 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 42 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 3 | 1 | 5 | 3 | 5 | 2 | 1 | 1 | 5 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 44 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 45 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 2 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 3 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 4 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 3 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 6 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 5 | 99 | 5 | 2 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 3 | 1 | 5 | 3 | 5 | 3 | 3 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 9 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 10 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 11 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 12 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 13 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 14 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 15 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 16 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 18 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 20 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 3 | 1 | 5 | 3 | 5 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 23 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 24 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 25 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 26 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 27 | 1 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 28 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 29 | 1 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 5 | 1 | 4 | 2 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 1 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 2 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 3 | 1 | 5 | 3 | 5 | 2 | 3 | 1 | 4 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 4 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 5 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 6 | 3 | 3 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 7 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 8 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 3 | 1 | 5 | 3 | 5 | 1 | 4 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 10 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 11 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 12 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 13 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 14 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 15 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 16 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 17 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 18 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 3 | 1 | 99 | 99 | 99 | 99 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 3 | 1 | 5 | 3 | 5 | 3 | 99 | 1 | 1 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 3 | 1 | 5 | 99 | 5 | 1 | 4 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 22 | 3 | 2 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 23 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 3 | 1 | 5 | 3 | 5 | 1 | 2 | 1 | 2 | 15 | 152 | 15202 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 25 | 3 | 4 | 98 | 98 | 98 | 98 | 98 | 0 | 0 | 15 | 152 | 15202 | 15202012012 |
Despleguemos los códigos de regiones de nuestra tabla:
regiones <- unique(tabla_con_clave$REGION)
regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la 1:
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 3)
tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[2] <- "Tipo de techo"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de techo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de techo`
d <- tabla_con_clave_ff$COMUNA
cross_tab = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona"
d$anio <- "2017"
Veamos los primeros 100 registros:
r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | unlist.c. | unlist.d. | Freq | anio | |
---|---|---|---|---|---|
1 | 3101011001 | 1 | 3101 | 59 | 2017 |
2 | 3101021001 | 1 | 3101 | 77 | 2017 |
3 | 3101031001 | 1 | 3101 | 45 | 2017 |
4 | 3101041001 | 1 | 3101 | 91 | 2017 |
5 | 3101051001 | 1 | 3101 | 71 | 2017 |
6 | 3101061001 | 1 | 3101 | 55 | 2017 |
7 | 3101061002 | 1 | 3101 | 12 | 2017 |
8 | 3101061003 | 1 | 3101 | 25 | 2017 |
9 | 3101061004 | 1 | 3101 | 87 | 2017 |
10 | 3101061005 | 1 | 3101 | 75 | 2017 |
11 | 3101061006 | 1 | 3101 | 89 | 2017 |
12 | 3101061007 | 1 | 3101 | 35 | 2017 |
13 | 3101061008 | 1 | 3101 | 30 | 2017 |
14 | 3101061009 | 1 | 3101 | 109 | 2017 |
15 | 3101071001 | 1 | 3101 | 162 | 2017 |
16 | 3101071002 | 1 | 3101 | 162 | 2017 |
17 | 3101081001 | 1 | 3101 | 68 | 2017 |
18 | 3101091001 | 1 | 3101 | 102 | 2017 |
19 | 3101101001 | 1 | 3101 | 2 | 2017 |
20 | 3101102901 | 1 | 3101 | 2 | 2017 |
21 | 3101111001 | 1 | 3101 | 665 | 2017 |
22 | 3101111002 | 1 | 3101 | 187 | 2017 |
23 | 3101111003 | 1 | 3101 | 640 | 2017 |
24 | 3101122013 | 1 | 3101 | 54 | 2017 |
25 | 3101122047 | 1 | 3101 | 1 | 2017 |
26 | 3101122901 | 1 | 3101 | 1 | 2017 |
27 | 3101132901 | 1 | 3101 | 1 | 2017 |
28 | 3101161001 | 1 | 3101 | 186 | 2017 |
29 | 3101161002 | 1 | 3101 | 654 | 2017 |
30 | 3101161003 | 1 | 3101 | 264 | 2017 |
31 | 3101161004 | 1 | 3101 | 334 | 2017 |
32 | 3101162050 | 1 | 3101 | 2 | 2017 |
33 | 3101172013 | 1 | 3101 | 11 | 2017 |
34 | 3101172017 | 1 | 3101 | 18 | 2017 |
35 | 3101172021 | 1 | 3101 | 1 | 2017 |
36 | 3101172026 | 1 | 3101 | 16 | 2017 |
37 | 3101172035 | 1 | 3101 | 15 | 2017 |
38 | 3101172037 | 1 | 3101 | 12 | 2017 |
39 | 3101182901 | 1 | 3101 | 1 | 2017 |
40 | 3101211001 | 1 | 3101 | 367 | 2017 |
41 | 3101211002 | 1 | 3101 | 80 | 2017 |
42 | 3101211003 | 1 | 3101 | 108 | 2017 |
43 | 3101211004 | 1 | 3101 | 169 | 2017 |
44 | 3101211005 | 1 | 3101 | 301 | 2017 |
45 | 3101211006 | 1 | 3101 | 219 | 2017 |
46 | 3101211007 | 1 | 3101 | 248 | 2017 |
47 | 3101222015 | 1 | 3101 | 1 | 2017 |
48 | 3101222048 | 1 | 3101 | 1 | 2017 |
49 | 3101231001 | 1 | 3101 | 16 | 2017 |
50 | 3101231002 | 1 | 3101 | 81 | 2017 |
51 | 3101231003 | 1 | 3101 | 122 | 2017 |
52 | 3101231004 | 1 | 3101 | 81 | 2017 |
53 | 3101231005 | 1 | 3101 | 36 | 2017 |
54 | 3101241001 | 1 | 3101 | 515 | 2017 |
55 | 3101241002 | 1 | 3101 | 719 | 2017 |
56 | 3101241003 | 1 | 3101 | 149 | 2017 |
57 | 3101241004 | 1 | 3101 | 98 | 2017 |
58 | 3101241005 | 1 | 3101 | 287 | 2017 |
251 | 3102011001 | 1 | 3102 | 179 | 2017 |
252 | 3102011002 | 1 | 3102 | 148 | 2017 |
253 | 3102011003 | 1 | 3102 | 228 | 2017 |
254 | 3102011007 | 1 | 3102 | 343 | 2017 |
255 | 3102012001 | 1 | 3102 | 66 | 2017 |
256 | 3102012004 | 1 | 3102 | 2 | 2017 |
257 | 3102022010 | 1 | 3102 | 22 | 2017 |
258 | 3102022901 | 1 | 3102 | 2 | 2017 |
259 | 3102032003 | 1 | 3102 | 10 | 2017 |
260 | 3102032007 | 1 | 3102 | 4 | 2017 |
261 | 3102042002 | 1 | 3102 | 1 | 2017 |
262 | 3102991999 | 1 | 3102 | 9 | 2017 |
455 | 3103011001 | 1 | 3103 | 73 | 2017 |
456 | 3103011002 | 1 | 3103 | 19 | 2017 |
457 | 3103011003 | 1 | 3103 | 127 | 2017 |
458 | 3103012003 | 1 | 3103 | 2 | 2017 |
459 | 3103012022 | 1 | 3103 | 5 | 2017 |
460 | 3103012029 | 1 | 3103 | 1 | 2017 |
461 | 3103032006 | 1 | 3103 | 1 | 2017 |
462 | 3103032009 | 1 | 3103 | 1 | 2017 |
463 | 3103032014 | 1 | 3103 | 1 | 2017 |
464 | 3103042028 | 1 | 3103 | 1 | 2017 |
465 | 3103052020 | 1 | 3103 | 4 | 2017 |
466 | 3103062901 | 1 | 3103 | 1 | 2017 |
467 | 3103072012 | 1 | 3103 | 1 | 2017 |
468 | 3103991999 | 1 | 3103 | 2 | 2017 |
661 | 3201011001 | 1 | 3201 | 49 | 2017 |
662 | 3201011002 | 1 | 3201 | 65 | 2017 |
663 | 3201011003 | 1 | 3201 | 44 | 2017 |
664 | 3201011004 | 1 | 3201 | 15 | 2017 |
665 | 3201011005 | 1 | 3201 | 31 | 2017 |
666 | 3201011006 | 1 | 3201 | 11 | 2017 |
667 | 3201012003 | 1 | 3201 | 4 | 2017 |
668 | 3201012005 | 1 | 3201 | 1 | 2017 |
669 | 3201022006 | 1 | 3201 | 6 | 2017 |
670 | 3201032007 | 1 | 3201 | 3 | 2017 |
863 | 3202011001 | 1 | 3202 | 81 | 2017 |
864 | 3202011002 | 1 | 3202 | 38 | 2017 |
865 | 3202011003 | 1 | 3202 | 89 | 2017 |
866 | 3202021001 | 1 | 3202 | 56 | 2017 |
867 | 3202021002 | 1 | 3202 | 231 | 2017 |
868 | 3202021003 | 1 | 3202 | 119 | 2017 |
Agregamos un cero a los códigos comunales de cuatro dígitos:
codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código"
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | anio | código | |
---|---|---|---|---|
1 | 3101011001 | 59 | 2017 | 03101 |
2 | 3101021001 | 77 | 2017 | 03101 |
3 | 3101031001 | 45 | 2017 | 03101 |
4 | 3101041001 | 91 | 2017 | 03101 |
5 | 3101051001 | 71 | 2017 | 03101 |
6 | 3101061001 | 55 | 2017 | 03101 |
7 | 3101061002 | 12 | 2017 | 03101 |
8 | 3101061003 | 25 | 2017 | 03101 |
9 | 3101061004 | 87 | 2017 | 03101 |
10 | 3101061005 | 75 | 2017 | 03101 |
11 | 3101061006 | 89 | 2017 | 03101 |
12 | 3101061007 | 35 | 2017 | 03101 |
13 | 3101061008 | 30 | 2017 | 03101 |
14 | 3101061009 | 109 | 2017 | 03101 |
15 | 3101071001 | 162 | 2017 | 03101 |
16 | 3101071002 | 162 | 2017 | 03101 |
17 | 3101081001 | 68 | 2017 | 03101 |
18 | 3101091001 | 102 | 2017 | 03101 |
19 | 3101101001 | 2 | 2017 | 03101 |
20 | 3101102901 | 2 | 2017 | 03101 |
21 | 3101111001 | 665 | 2017 | 03101 |
22 | 3101111002 | 187 | 2017 | 03101 |
23 | 3101111003 | 640 | 2017 | 03101 |
24 | 3101122013 | 54 | 2017 | 03101 |
25 | 3101122047 | 1 | 2017 | 03101 |
26 | 3101122901 | 1 | 2017 | 03101 |
27 | 3101132901 | 1 | 2017 | 03101 |
28 | 3101161001 | 186 | 2017 | 03101 |
29 | 3101161002 | 654 | 2017 | 03101 |
30 | 3101161003 | 264 | 2017 | 03101 |
31 | 3101161004 | 334 | 2017 | 03101 |
32 | 3101162050 | 2 | 2017 | 03101 |
33 | 3101172013 | 11 | 2017 | 03101 |
34 | 3101172017 | 18 | 2017 | 03101 |
35 | 3101172021 | 1 | 2017 | 03101 |
36 | 3101172026 | 16 | 2017 | 03101 |
37 | 3101172035 | 15 | 2017 | 03101 |
38 | 3101172037 | 12 | 2017 | 03101 |
39 | 3101182901 | 1 | 2017 | 03101 |
40 | 3101211001 | 367 | 2017 | 03101 |
41 | 3101211002 | 80 | 2017 | 03101 |
42 | 3101211003 | 108 | 2017 | 03101 |
43 | 3101211004 | 169 | 2017 | 03101 |
44 | 3101211005 | 301 | 2017 | 03101 |
45 | 3101211006 | 219 | 2017 | 03101 |
46 | 3101211007 | 248 | 2017 | 03101 |
47 | 3101222015 | 1 | 2017 | 03101 |
48 | 3101222048 | 1 | 2017 | 03101 |
49 | 3101231001 | 16 | 2017 | 03101 |
50 | 3101231002 | 81 | 2017 | 03101 |
51 | 3101231003 | 122 | 2017 | 03101 |
52 | 3101231004 | 81 | 2017 | 03101 |
53 | 3101231005 | 36 | 2017 | 03101 |
54 | 3101241001 | 515 | 2017 | 03101 |
55 | 3101241002 | 719 | 2017 | 03101 |
56 | 3101241003 | 149 | 2017 | 03101 |
57 | 3101241004 | 98 | 2017 | 03101 |
58 | 3101241005 | 287 | 2017 | 03101 |
251 | 3102011001 | 179 | 2017 | 03102 |
252 | 3102011002 | 148 | 2017 | 03102 |
253 | 3102011003 | 228 | 2017 | 03102 |
254 | 3102011007 | 343 | 2017 | 03102 |
255 | 3102012001 | 66 | 2017 | 03102 |
256 | 3102012004 | 2 | 2017 | 03102 |
257 | 3102022010 | 22 | 2017 | 03102 |
258 | 3102022901 | 2 | 2017 | 03102 |
259 | 3102032003 | 10 | 2017 | 03102 |
260 | 3102032007 | 4 | 2017 | 03102 |
261 | 3102042002 | 1 | 2017 | 03102 |
262 | 3102991999 | 9 | 2017 | 03102 |
455 | 3103011001 | 73 | 2017 | 03103 |
456 | 3103011002 | 19 | 2017 | 03103 |
457 | 3103011003 | 127 | 2017 | 03103 |
458 | 3103012003 | 2 | 2017 | 03103 |
459 | 3103012022 | 5 | 2017 | 03103 |
460 | 3103012029 | 1 | 2017 | 03103 |
461 | 3103032006 | 1 | 2017 | 03103 |
462 | 3103032009 | 1 | 2017 | 03103 |
463 | 3103032014 | 1 | 2017 | 03103 |
464 | 3103042028 | 1 | 2017 | 03103 |
465 | 3103052020 | 4 | 2017 | 03103 |
466 | 3103062901 | 1 | 2017 | 03103 |
467 | 3103072012 | 1 | 2017 | 03103 |
468 | 3103991999 | 2 | 2017 | 03103 |
661 | 3201011001 | 49 | 2017 | 03201 |
662 | 3201011002 | 65 | 2017 | 03201 |
663 | 3201011003 | 44 | 2017 | 03201 |
664 | 3201011004 | 15 | 2017 | 03201 |
665 | 3201011005 | 31 | 2017 | 03201 |
666 | 3201011006 | 11 | 2017 | 03201 |
667 | 3201012003 | 4 | 2017 | 03201 |
668 | 3201012005 | 1 | 2017 | 03201 |
669 | 3201022006 | 6 | 2017 | 03201 |
670 | 3201032007 | 3 | 2017 | 03201 |
863 | 3202011001 | 81 | 2017 | 03202 |
864 | 3202011002 | 38 | 2017 | 03202 |
865 | 3202011003 | 89 | 2017 | 03202 |
866 | 3202021001 | 56 | 2017 | 03202 |
867 | 3202021002 | 231 | 2017 | 03202 |
868 | 3202021003 | 119 | 2017 | 03202 |
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
h_y_m_2017_censo <- readRDS("ingresos_expandidos_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|
01101 | Iquique | 354820.7 | 2017 | 1101 | 191468 | 67936815240 |
01107 | Alto Hospicio | 301933.4 | 2017 | 1107 | 108375 | 32722034397 |
01401 | Pozo Almonte | 285981.8 | 2017 | 1401 | 15711 | 4493059532 |
01402 | Camiña | 262850.3 | 2017 | 1402 | 1250 | 328562901 |
01404 | Huara | 253968.5 | 2017 | 1404 | 2730 | 693334131 |
01405 | Pica | 313007.5 | 2017 | 1405 | 9296 | 2909717399 |
02101 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 |
02102 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02103 | Sierra Gorda | 403458.5 | 2017 | 2103 | 10186 | 4109628188 |
02104 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 |
02201 | Calama | 409671.3 | 2017 | 2201 | 165731 | 67895226712 |
02203 | San Pedro de Atacama | 426592.0 | 2017 | 2203 | 10996 | 4690805471 |
02301 | Tocopilla | 246615.3 | 2017 | 2301 | 25186 | 6211253937 |
02302 | María Elena | 466266.9 | 2017 | 2302 | 6457 | 3010685220 |
03101 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03102 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03103 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03201 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03301 | Vallenar | 304336.7 | 2017 | 3301 | 51917 | 15800246795 |
03302 | Alto del Carmen | 227130.4 | 2017 | 3302 | 5299 | 1203563833 |
03303 | Freirina | 253086.7 | 2017 | 3303 | 7041 | 1781983257 |
03304 | Huasco | 287406.6 | 2017 | 3304 | 10149 | 2916889629 |
04101 | La Serena | 270221.9 | 2017 | 4101 | 221054 | 59733627577 |
04102 | Coquimbo | 261852.6 | 2017 | 4102 | 227730 | 59631700074 |
04103 | Andacollo | 248209.3 | 2017 | 4103 | 11044 | 2741223967 |
04104 | La Higuera | 228356.8 | 2017 | 4104 | 4241 | 968461330 |
04105 | Paiguano | 205942.1 | 2017 | 4105 | 4497 | 926121774 |
04106 | Vicuña | 211431.9 | 2017 | 4106 | 27771 | 5871675449 |
04201 | Illapel | 238674.4 | 2017 | 4201 | 30848 | 7362627007 |
04202 | Canela | 207933.6 | 2017 | 4202 | 9093 | 1890740321 |
04203 | Los Vilos | 255200.4 | 2017 | 4203 | 21382 | 5456695139 |
04204 | Salamanca | 242879.5 | 2017 | 4204 | 29347 | 7127783272 |
04301 | Ovalle | 266522.9 | 2017 | 4301 | 111272 | 29656533187 |
04302 | Combarbalá | 210409.7 | 2017 | 4302 | 13322 | 2803077721 |
04303 | Monte Patria | 211907.9 | 2017 | 4303 | 30751 | 6516380780 |
04304 | Punitaqui | 194997.8 | 2017 | 4304 | 10956 | 2136395349 |
04305 | Río Hurtado | 182027.2 | 2017 | 4305 | 4278 | 778712384 |
05101 | Valparaíso | 298720.7 | 2017 | 5101 | 296655 | 88616992249 |
05102 | Casablanca | 312802.7 | 2017 | 5102 | 26867 | 8404070481 |
05103 | Concón | 318496.3 | 2017 | 5103 | 42152 | 13425257057 |
05105 | Puchuncaví | 288737.2 | 2017 | 5105 | 18546 | 5354920887 |
05107 | Quintero | 316659.1 | 2017 | 5107 | 31923 | 10108709691 |
05109 | Viña del Mar | 337006.1 | 2017 | 5109 | 334248 | 112643604611 |
05301 | Los Andes | 338182.5 | 2017 | 5301 | 66708 | 22559476922 |
05302 | Calle Larga | 245165.4 | 2017 | 5302 | 14832 | 3636293159 |
05303 | Rinconada | 281633.2 | 2017 | 5303 | 10207 | 2874630315 |
05304 | San Esteban | 220958.4 | 2017 | 5304 | 18855 | 4166170587 |
05401 | La Ligua | 229623.7 | 2017 | 5401 | 35390 | 8126381563 |
05402 | Cabildo | 249717.7 | 2017 | 5402 | 19388 | 4841527150 |
Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.
comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
03101 | 3101011001 | 59 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101021001 | 77 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101031001 | 45 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101041001 | 91 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101051001 | 71 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061001 | 55 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061002 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061003 | 25 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061004 | 87 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061005 | 75 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061006 | 89 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061007 | 35 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061008 | 30 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061009 | 109 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101071001 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101071002 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101081001 | 68 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101091001 | 102 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101101001 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101102901 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101111001 | 665 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101111002 | 187 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101111003 | 640 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101122013 | 54 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101122047 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101122901 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101132901 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101161001 | 186 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101161002 | 654 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101161003 | 264 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101161004 | 334 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101162050 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172013 | 11 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172017 | 18 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172021 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172026 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172035 | 15 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172037 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101182901 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211001 | 367 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211002 | 80 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211003 | 108 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211004 | 169 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211005 | 301 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211006 | 219 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211007 | 248 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101222015 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101222048 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231001 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231002 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231003 | 122 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231004 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231005 | 36 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241001 | 515 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241002 | 719 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241003 | 149 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241004 | 98 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241005 | 287 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03102 | 3102011001 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102011002 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102011003 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102011007 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102012001 | 66 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102012004 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102022010 | 22 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102022901 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102032003 | 10 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102032007 | 4 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102042002 | 1 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102991999 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03103 | 3103011001 | 73 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103011002 | 19 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103011003 | 127 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103012003 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103012022 | 5 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103012029 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103032006 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103032009 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103032014 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103042028 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103052020 | 4 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103062901 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103072012 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103991999 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03201 | 3201011001 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011002 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011003 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011004 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011005 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011006 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201012003 | 4 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201012005 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201022006 | 6 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201032007 | 3 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | 3202011001 | 81 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202011002 | 38 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202011003 | 89 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202021001 | 56 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202021002 | 231 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202021003 | 119 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
prop_pob <- readRDS("tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional"
Veamos los 100 primeros registros:
r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | Freq | p_poblacional | código |
---|---|---|---|
1101011001 | 2491 | 0.0130100 | 01101 |
1101011002 | 1475 | 0.0077036 | 01101 |
1101021001 | 1003 | 0.0052385 | 01101 |
1101021002 | 54 | 0.0002820 | 01101 |
1101021003 | 2895 | 0.0151200 | 01101 |
1101021004 | 2398 | 0.0125243 | 01101 |
1101021005 | 4525 | 0.0236332 | 01101 |
1101031001 | 2725 | 0.0142321 | 01101 |
1101031002 | 3554 | 0.0185618 | 01101 |
1101031003 | 5246 | 0.0273988 | 01101 |
1101031004 | 3389 | 0.0177001 | 01101 |
1101041001 | 1800 | 0.0094010 | 01101 |
1101041002 | 2538 | 0.0132555 | 01101 |
1101041003 | 3855 | 0.0201339 | 01101 |
1101041004 | 5663 | 0.0295767 | 01101 |
1101041005 | 4162 | 0.0217373 | 01101 |
1101041006 | 2689 | 0.0140441 | 01101 |
1101051001 | 3296 | 0.0172144 | 01101 |
1101051002 | 4465 | 0.0233198 | 01101 |
1101051003 | 4656 | 0.0243174 | 01101 |
1101051004 | 2097 | 0.0109522 | 01101 |
1101051005 | 3569 | 0.0186402 | 01101 |
1101051006 | 2741 | 0.0143157 | 01101 |
1101061001 | 1625 | 0.0084871 | 01101 |
1101061002 | 4767 | 0.0248971 | 01101 |
1101061003 | 4826 | 0.0252053 | 01101 |
1101061004 | 4077 | 0.0212934 | 01101 |
1101061005 | 2166 | 0.0113126 | 01101 |
1101071001 | 2324 | 0.0121378 | 01101 |
1101071002 | 2801 | 0.0146291 | 01101 |
1101071003 | 3829 | 0.0199981 | 01101 |
1101071004 | 1987 | 0.0103777 | 01101 |
1101081001 | 5133 | 0.0268087 | 01101 |
1101081002 | 3233 | 0.0168853 | 01101 |
1101081003 | 2122 | 0.0110828 | 01101 |
1101081004 | 2392 | 0.0124929 | 01101 |
1101092001 | 57 | 0.0002977 | 01101 |
1101092004 | 247 | 0.0012900 | 01101 |
1101092005 | 76 | 0.0003969 | 01101 |
1101092006 | 603 | 0.0031494 | 01101 |
1101092007 | 84 | 0.0004387 | 01101 |
1101092010 | 398 | 0.0020787 | 01101 |
1101092012 | 58 | 0.0003029 | 01101 |
1101092014 | 23 | 0.0001201 | 01101 |
1101092016 | 20 | 0.0001045 | 01101 |
1101092017 | 8 | 0.0000418 | 01101 |
1101092018 | 74 | 0.0003865 | 01101 |
1101092019 | 25 | 0.0001306 | 01101 |
1101092021 | 177 | 0.0009244 | 01101 |
1101092022 | 23 | 0.0001201 | 01101 |
1101092023 | 288 | 0.0015042 | 01101 |
1101092024 | 14 | 0.0000731 | 01101 |
1101092901 | 30 | 0.0001567 | 01101 |
1101101001 | 2672 | 0.0139553 | 01101 |
1101101002 | 4398 | 0.0229699 | 01101 |
1101101003 | 4524 | 0.0236280 | 01101 |
1101101004 | 3544 | 0.0185096 | 01101 |
1101101005 | 4911 | 0.0256492 | 01101 |
1101101006 | 3688 | 0.0192617 | 01101 |
1101111001 | 3886 | 0.0202958 | 01101 |
1101111002 | 2312 | 0.0120751 | 01101 |
1101111003 | 4874 | 0.0254560 | 01101 |
1101111004 | 4543 | 0.0237272 | 01101 |
1101111005 | 4331 | 0.0226200 | 01101 |
1101111006 | 3253 | 0.0169898 | 01101 |
1101111007 | 4639 | 0.0242286 | 01101 |
1101111008 | 4881 | 0.0254925 | 01101 |
1101111009 | 5006 | 0.0261454 | 01101 |
1101111010 | 366 | 0.0019115 | 01101 |
1101111011 | 4351 | 0.0227244 | 01101 |
1101111012 | 2926 | 0.0152819 | 01101 |
1101111013 | 3390 | 0.0177053 | 01101 |
1101111014 | 2940 | 0.0153550 | 01101 |
1101112003 | 33 | 0.0001724 | 01101 |
1101112013 | 104 | 0.0005432 | 01101 |
1101112019 | 34 | 0.0001776 | 01101 |
1101112025 | 21 | 0.0001097 | 01101 |
1101112901 | 6 | 0.0000313 | 01101 |
1101991999 | 1062 | 0.0055466 | 01101 |
1107011001 | 4104 | 0.0378685 | 01107 |
1107011002 | 4360 | 0.0402307 | 01107 |
1107011003 | 8549 | 0.0788835 | 01107 |
1107012003 | 3 | 0.0000277 | 01107 |
1107012901 | 17 | 0.0001569 | 01107 |
1107021001 | 6701 | 0.0618316 | 01107 |
1107021002 | 3971 | 0.0366413 | 01107 |
1107021003 | 6349 | 0.0585836 | 01107 |
1107021004 | 5125 | 0.0472895 | 01107 |
1107021005 | 4451 | 0.0410704 | 01107 |
1107021006 | 3864 | 0.0356540 | 01107 |
1107021007 | 5235 | 0.0483045 | 01107 |
1107021008 | 4566 | 0.0421315 | 01107 |
1107031001 | 4195 | 0.0387082 | 01107 |
1107031002 | 7099 | 0.0655040 | 01107 |
1107031003 | 4720 | 0.0435525 | 01107 |
1107032005 | 38 | 0.0003506 | 01107 |
1107032006 | 2399 | 0.0221361 | 01107 |
1107032008 | 4 | 0.0000369 | 01107 |
1107041001 | 3630 | 0.0334948 | 01107 |
1107041002 | 5358 | 0.0494394 | 01107 |
Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | zona | Freq | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|
03101 | 3101011001 | 59 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101021001 | 77 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101031001 | 45 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101041001 | 91 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101051001 | 71 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061001 | 55 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061002 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061003 | 25 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061004 | 87 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061005 | 75 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061006 | 89 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061007 | 35 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061008 | 30 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101061009 | 109 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101071001 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101071002 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101081001 | 68 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101091001 | 102 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101101001 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101102901 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101111001 | 665 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101111002 | 187 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101111003 | 640 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101122013 | 54 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101122047 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101122901 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101132901 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101161001 | 186 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101161002 | 654 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101161003 | 264 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101161004 | 334 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101162050 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172013 | 11 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172017 | 18 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172021 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172026 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172035 | 15 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101172037 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101182901 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211001 | 367 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211002 | 80 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211003 | 108 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211004 | 169 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211005 | 301 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211006 | 219 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101211007 | 248 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101222015 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101222048 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231001 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231002 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231003 | 122 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231004 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101231005 | 36 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241001 | 515 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241002 | 719 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241003 | 149 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241004 | 98 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03101 | 3101241005 | 287 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 |
03102 | 3102011001 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102011002 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102011003 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102011007 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102012001 | 66 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102012004 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102022010 | 22 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102022901 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102032003 | 10 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102032007 | 4 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102042002 | 1 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03102 | 3102991999 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 |
03103 | 3103011001 | 73 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103011002 | 19 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103011003 | 127 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103012003 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103012022 | 5 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103012029 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103032006 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103032009 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103032014 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103042028 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103052020 | 4 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103062901 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103072012 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03103 | 3103991999 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 |
03201 | 3201011001 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011002 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011003 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011004 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011005 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201011006 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201012003 | 4 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201012005 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201022006 | 6 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03201 | 3201032007 | 3 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | 3202011001 | 81 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202011002 | 38 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202011003 | 89 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202021001 | 56 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202021002 | 231 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
03202 | 3202021003 | 119 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 |
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :
h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3101011001 | 03101 | 59 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 869 | 0.0056452 | 03101 |
3101021001 | 03101 | 77 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1437 | 0.0093350 | 03101 |
3101031001 | 03101 | 45 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1502 | 0.0097572 | 03101 |
3101041001 | 03101 | 91 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1734 | 0.0112643 | 03101 |
3101051001 | 03101 | 71 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1576 | 0.0102380 | 03101 |
3101061001 | 03101 | 55 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4376 | 0.0284272 | 03101 |
3101061002 | 03101 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2049 | 0.0133106 | 03101 |
3101061003 | 03101 | 25 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4199 | 0.0272774 | 03101 |
3101061004 | 03101 | 87 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5838 | 0.0379246 | 03101 |
3101061005 | 03101 | 75 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3217 | 0.0208982 | 03101 |
3101061006 | 03101 | 89 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1930 | 0.0125376 | 03101 |
3101061007 | 03101 | 35 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3446 | 0.0223858 | 03101 |
3101061008 | 03101 | 30 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2624 | 0.0170459 | 03101 |
3101061009 | 03101 | 109 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5319 | 0.0345531 | 03101 |
3101071001 | 03101 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3367 | 0.0218726 | 03101 |
3101071002 | 03101 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2651 | 0.0172213 | 03101 |
3101081001 | 03101 | 68 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2352 | 0.0152790 | 03101 |
3101091001 | 03101 | 102 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4467 | 0.0290184 | 03101 |
3101101001 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 94 | 0.0006106 | 03101 |
3101102901 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 26 | 0.0001689 | 03101 |
3101111001 | 03101 | 665 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3046 | 0.0197873 | 03101 |
3101111002 | 03101 | 187 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2128 | 0.0138238 | 03101 |
3101111003 | 03101 | 640 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4579 | 0.0297459 | 03101 |
3101122013 | 03101 | 54 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 332 | 0.0021567 | 03101 |
3101122047 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 183 | 0.0011888 | 03101 |
3101122901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 54 | 0.0003508 | 03101 |
3101132901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 14 | 0.0000909 | 03101 |
3101161001 | 03101 | 186 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3897 | 0.0253156 | 03101 |
3101161002 | 03101 | 654 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5267 | 0.0342153 | 03101 |
3101161003 | 03101 | 264 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4789 | 0.0311101 | 03101 |
3101161004 | 03101 | 334 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4382 | 0.0284662 | 03101 |
3101162050 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 33 | 0.0002144 | 03101 |
3101172013 | 03101 | 11 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 194 | 0.0012603 | 03101 |
3101172017 | 03101 | 18 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 121 | 0.0007860 | 03101 |
3101172021 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 74 | 0.0004807 | 03101 |
3101172026 | 03101 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 340 | 0.0022087 | 03101 |
3101172035 | 03101 | 15 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 293 | 0.0019034 | 03101 |
3101172037 | 03101 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 859 | 0.0055802 | 03101 |
3101182901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 17 | 0.0001104 | 03101 |
3101211001 | 03101 | 367 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4698 | 0.0305190 | 03101 |
3101211002 | 03101 | 80 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2574 | 0.0167211 | 03101 |
3101211003 | 03101 | 108 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4857 | 0.0315519 | 03101 |
3101211004 | 03101 | 169 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4381 | 0.0284597 | 03101 |
3101211005 | 03101 | 301 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3957 | 0.0257053 | 03101 |
3101211006 | 03101 | 219 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5331 | 0.0346311 | 03101 |
3101211007 | 03101 | 248 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2203 | 0.0143110 | 03101 |
3101222015 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 97 | 0.0006301 | 03101 |
3101222048 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 62 | 0.0004028 | 03101 |
3101231001 | 03101 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2431 | 0.0157922 | 03101 |
3101231002 | 03101 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4099 | 0.0266278 | 03101 |
3101231003 | 03101 | 122 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 6102 | 0.0396396 | 03101 |
3101231004 | 03101 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3368 | 0.0218791 | 03101 |
3101231005 | 03101 | 36 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3855 | 0.0250427 | 03101 |
3101241001 | 03101 | 515 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5023 | 0.0326302 | 03101 |
3101241002 | 03101 | 719 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 6270 | 0.0407309 | 03101 |
3101241003 | 03101 | 149 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3082 | 0.0200212 | 03101 |
3101241004 | 03101 | 98 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3115 | 0.0202356 | 03101 |
3101241005 | 03101 | 287 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4323 | 0.0280829 | 03101 |
3102011001 | 03102 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 2174 | 0.1230891 | 03102 |
3102011002 | 03102 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 2696 | 0.1526441 | 03102 |
3102011003 | 03102 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 3928 | 0.2223984 | 03102 |
3102011007 | 03102 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 6749 | 0.3821198 | 03102 |
3102012001 | 03102 | 66 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 590 | 0.0334051 | 03102 |
3102012004 | 03102 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 117 | 0.0066244 | 03102 |
3102022010 | 03102 | 22 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 542 | 0.0306874 | 03102 |
3102022901 | 03102 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 53 | 0.0030008 | 03102 |
3102032003 | 03102 | 10 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 297 | 0.0168158 | 03102 |
3102032007 | 03102 | 4 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 181 | 0.0102480 | 03102 |
3102042002 | 03102 | 1 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 22 | 0.0012456 | 03102 |
3102991999 | 03102 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 228 | 0.0129091 | 03102 |
3103011001 | 03103 | 73 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 6039 | 0.4307725 | 03103 |
3103011002 | 03103 | 19 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 1412 | 0.1007205 | 03103 |
3103011003 | 03103 | 127 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 2406 | 0.1716242 | 03103 |
3103012003 | 03103 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 74 | 0.0052786 | 03103 |
3103012022 | 03103 | 5 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 553 | 0.0394465 | 03103 |
3103012029 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 86 | 0.0061345 | 03103 |
3103032006 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 476 | 0.0339539 | 03103 |
3103032009 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 22 | 0.0015693 | 03103 |
3103032014 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 41 | 0.0029246 | 03103 |
3103042028 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 195 | 0.0139097 | 03103 |
3103052020 | 03103 | 4 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 952 | 0.0679078 | 03103 |
3103062901 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 122 | 0.0087025 | 03103 |
3103072012 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 27 | 0.0019260 | 03103 |
3103991999 | 03103 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 78 | 0.0055639 | 03103 |
3201011001 | 03201 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 4870 | 0.3985596 | 03201 |
3201011002 | 03201 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1606 | 0.1314347 | 03201 |
3201011003 | 03201 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 2325 | 0.1902774 | 03201 |
3201011004 | 03201 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1169 | 0.0956707 | 03201 |
3201011005 | 03201 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 735 | 0.0601522 | 03201 |
3201011006 | 03201 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 368 | 0.0301170 | 03201 |
3201012003 | 03201 | 4 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 27 | 0.0022097 | 03201 |
3201012005 | 03201 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 29 | 0.0023734 | 03201 |
3201022006 | 03201 | 6 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 699 | 0.0572060 | 03201 |
3201032007 | 03201 | 3 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 185 | 0.0151404 | 03201 |
3202011001 | 03202 | 81 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 2416 | 0.1735009 | 03202 |
3202011002 | 03202 | 38 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1650 | 0.1184919 | 03202 |
3202011003 | 03202 | 89 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 3157 | 0.2267145 | 03202 |
3202021001 | 03202 | 56 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1494 | 0.1072890 | 03202 |
3202021002 | 03202 | 231 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 2848 | 0.2045242 | 03202 |
3202021003 | 03202 | 119 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1690 | 0.1213645 | 03202 |
Hacemos la multiplicación que queda almacenada en la variable multi_pob:
h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101011001 | 03101 | 59 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 869 | 0.0056452 | 03101 | 286835306 |
3101021001 | 03101 | 77 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1437 | 0.0093350 | 03101 | 474317992 |
3101031001 | 03101 | 45 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1502 | 0.0097572 | 03101 | 495772876 |
3101041001 | 03101 | 91 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1734 | 0.0112643 | 03101 | 572350311 |
3101051001 | 03101 | 71 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1576 | 0.0102380 | 03101 | 520198438 |
3101061001 | 03101 | 55 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4376 | 0.0284272 | 03101 | 1444408859 |
3101061002 | 03101 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2049 | 0.0133106 | 03101 | 676323984 |
3101061003 | 03101 | 25 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4199 | 0.0272774 | 03101 | 1385985558 |
3101061004 | 03101 | 87 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5838 | 0.0379246 | 03101 | 1926978730 |
3101061005 | 03101 | 75 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3217 | 0.0208982 | 03101 | 1061851760 |
3101061006 | 03101 | 89 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1930 | 0.0125376 | 03101 | 637045041 |
3101061007 | 03101 | 35 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3446 | 0.0223858 | 03101 | 1137438969 |
3101061008 | 03101 | 30 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2624 | 0.0170459 | 03101 | 866117195 |
3101061009 | 03101 | 109 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5319 | 0.0345531 | 03101 | 1755669727 |
3101071001 | 03101 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3367 | 0.0218726 | 03101 | 1111363032 |
3101071002 | 03101 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2651 | 0.0172213 | 03101 | 875029225 |
3101081001 | 03101 | 68 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2352 | 0.0152790 | 03101 | 776336754 |
3101091001 | 03101 | 102 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4467 | 0.0290184 | 03101 | 1474445698 |
3101101001 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 94 | 0.0006106 | 03101 | 31027064 |
3101102901 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 26 | 0.0001689 | 03101 | 8581954 |
3101111001 | 03101 | 665 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3046 | 0.0197873 | 03101 | 1005408909 |
3101111002 | 03101 | 187 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2128 | 0.0138238 | 03101 | 702399921 |
3101111003 | 03101 | 640 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4579 | 0.0297459 | 03101 | 1511414115 |
3101122013 | 03101 | 54 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 332 | 0.0021567 | 03101 | 109584950 |
3101122047 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 183 | 0.0011888 | 03101 | 60403753 |
3101122901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 54 | 0.0003508 | 03101 | 17824058 |
3101132901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 14 | 0.0000909 | 03101 | 4621052 |
3101161001 | 03101 | 186 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3897 | 0.0253156 | 03101 | 1286302862 |
3101161002 | 03101 | 654 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5267 | 0.0342153 | 03101 | 1738505819 |
3101161003 | 03101 | 264 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4789 | 0.0311101 | 03101 | 1580729897 |
3101161004 | 03101 | 334 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4382 | 0.0284662 | 03101 | 1446389310 |
3101162050 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 33 | 0.0002144 | 03101 | 10892480 |
3101172013 | 03101 | 11 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 194 | 0.0012603 | 03101 | 64034579 |
3101172017 | 03101 | 18 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 121 | 0.0007860 | 03101 | 39939093 |
3101172021 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 74 | 0.0004807 | 03101 | 24425561 |
3101172026 | 03101 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 340 | 0.0022087 | 03101 | 112225551 |
3101172035 | 03101 | 15 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 293 | 0.0019034 | 03101 | 96712019 |
3101172037 | 03101 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 859 | 0.0055802 | 03101 | 283534554 |
3101182901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 17 | 0.0001104 | 03101 | 5611278 |
3101211001 | 03101 | 367 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4698 | 0.0305190 | 03101 | 1550693058 |
3101211002 | 03101 | 80 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2574 | 0.0167211 | 03101 | 849613438 |
3101211003 | 03101 | 108 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4857 | 0.0315519 | 03101 | 1603175007 |
3101211004 | 03101 | 169 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4381 | 0.0284597 | 03101 | 1446059235 |
3101211005 | 03101 | 301 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3957 | 0.0257053 | 03101 | 1306107371 |
3101211006 | 03101 | 219 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5331 | 0.0346311 | 03101 | 1759630628 |
3101211007 | 03101 | 248 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2203 | 0.0143110 | 03101 | 727155557 |
3101222015 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 97 | 0.0006301 | 03101 | 32017290 |
3101222048 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 62 | 0.0004028 | 03101 | 20464659 |
3101231001 | 03101 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2431 | 0.0157922 | 03101 | 802412691 |
3101231002 | 03101 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4099 | 0.0266278 | 03101 | 1352978043 |
3101231003 | 03101 | 122 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 6102 | 0.0396396 | 03101 | 2014118570 |
3101231004 | 03101 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3368 | 0.0218791 | 03101 | 1111693108 |
3101231005 | 03101 | 36 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3855 | 0.0250427 | 03101 | 1272439706 |
3101241001 | 03101 | 515 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5023 | 0.0326302 | 03101 | 1657967482 |
3101241002 | 03101 | 719 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 6270 | 0.0407309 | 03101 | 2069571195 |
3101241003 | 03101 | 149 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3082 | 0.0200212 | 03101 | 1017291614 |
3101241004 | 03101 | 98 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3115 | 0.0202356 | 03101 | 1028184094 |
3101241005 | 03101 | 287 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4323 | 0.0280829 | 03101 | 1426914876 |
3102011001 | 03102 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 2174 | 0.1230891 | 03102 | 650710405 |
3102011002 | 03102 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 2696 | 0.1526441 | 03102 | 806952738 |
3102011003 | 03102 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 3928 | 0.2223984 | 03102 | 1175708588 |
3102011007 | 03102 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 6749 | 0.3821198 | 03102 | 2020075678 |
3102012001 | 03102 | 66 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 590 | 0.0334051 | 03102 | 176595740 |
3102012004 | 03102 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 117 | 0.0066244 | 03102 | 35019833 |
3102022010 | 03102 | 22 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 542 | 0.0306874 | 03102 | 162228629 |
3102022901 | 03102 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 53 | 0.0030008 | 03102 | 15863685 |
3102032003 | 03102 | 10 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 297 | 0.0168158 | 03102 | 88896500 |
3102032007 | 03102 | 4 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 181 | 0.0102480 | 03102 | 54175981 |
3102042002 | 03102 | 1 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 22 | 0.0012456 | 03102 | 6584926 |
3102991999 | 03102 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 228 | 0.0129091 | 03102 | 68243778 |
3103011001 | 03103 | 73 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 6039 | 0.4307725 | 03103 | 1900134459 |
3103011002 | 03103 | 19 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 1412 | 0.1007205 | 03103 | 444277174 |
3103011003 | 03103 | 127 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 2406 | 0.1716242 | 03103 | 757033202 |
3103012003 | 03103 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 74 | 0.0052786 | 03103 | 23283648 |
3103012022 | 03103 | 5 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 553 | 0.0394465 | 03103 | 173998072 |
3103012029 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 86 | 0.0061345 | 03103 | 27059375 |
3103032006 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 476 | 0.0339539 | 03103 | 149770492 |
3103032009 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 22 | 0.0015693 | 03103 | 6922166 |
3103032014 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 41 | 0.0029246 | 03103 | 12900400 |
3103042028 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 195 | 0.0139097 | 03103 | 61355559 |
3103052020 | 03103 | 4 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 952 | 0.0679078 | 03103 | 299540984 |
3103062901 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 122 | 0.0087025 | 03103 | 38386555 |
3103072012 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 27 | 0.0019260 | 03103 | 8495385 |
3103991999 | 03103 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 78 | 0.0055639 | 03103 | 24542224 |
3201011001 | 03201 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 4870 | 0.3985596 | 03201 | 1394716026 |
3201011002 | 03201 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1606 | 0.1314347 | 03201 | 459941260 |
3201011003 | 03201 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 2325 | 0.1902774 | 03201 | 665855187 |
3201011004 | 03201 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1169 | 0.0956707 | 03201 | 334789124 |
3201011005 | 03201 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 735 | 0.0601522 | 03201 | 210496156 |
3201011006 | 03201 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 368 | 0.0301170 | 03201 | 105391273 |
3201012003 | 03201 | 4 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 27 | 0.0022097 | 03201 | 7732512 |
3201012005 | 03201 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 29 | 0.0023734 | 03201 | 8305291 |
3201022006 | 03201 | 6 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 699 | 0.0572060 | 03201 | 200186140 |
3201032007 | 03201 | 3 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 185 | 0.0151404 | 03201 | 52982026 |
3202011001 | 03202 | 81 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 2416 | 0.1735009 | 03202 | 812396447 |
3202011002 | 03202 | 38 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1650 | 0.1184919 | 03202 | 554823733 |
3202011003 | 03202 | 89 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 3157 | 0.2267145 | 03202 | 1061562742 |
3202021001 | 03202 | 56 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1494 | 0.1072890 | 03202 | 502367671 |
3202021002 | 03202 | 231 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 2848 | 0.2045242 | 03202 | 957659388 |
3202021003 | 03202 | 119 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1690 | 0.1213645 | 03202 | 568274005 |
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.406e+09 -2.277e+08 -1.840e+08 9.344e+07 1.462e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 237888554 33446077 7.113 2.25e-11 ***
## Freq.x 2742196 196164 13.979 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 405100000 on 190 degrees of freedom
## Multiple R-squared: 0.507, Adjusted R-squared: 0.5044
## F-statistic: 195.4 on 1 and 190 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.406e+09 -2.277e+08 -1.840e+08 9.344e+07 1.462e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 237888554 33446077 7.113 2.25e-11 ***
## Freq.x 2742196 196164 13.979 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 405100000 on 190 degrees of freedom
## Multiple R-squared: 0.507, Adjusted R-squared: 0.5044
## F-statistic: 195.4 on 1 and 190 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.406e+09 -2.277e+08 -1.840e+08 9.344e+07 1.462e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 237888554 33446077 7.113 2.25e-11 ***
## Freq.x 2742196 196164 13.979 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 405100000 on 190 degrees of freedom
## Multiple R-squared: 0.507, Adjusted R-squared: 0.5044
## F-statistic: 195.4 on 1 and 190 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 ln X \]
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -620130689 -274938633 -21357939 212092739 1099862470
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -203853599 43455141 -4.691 5.18e-06 ***
## log(Freq.x) 234036844 12509820 18.708 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 342200000 on 190 degrees of freedom
## Multiple R-squared: 0.6481, Adjusted R-squared: 0.6463
## F-statistic: 350 on 1 and 190 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -910715490 -149789040 -64443067 19716290 1287495382
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -33223145 33970130 -0.978 0.329
## sqrt(Freq.x) 75592456 3732221 20.254 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 324600000 on 190 degrees of freedom
## Multiple R-squared: 0.6835, Adjusted R-squared: 0.6818
## F-statistic: 410.2 on 1 and 190 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22095 -4318 -1864 1804 23161
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5085.26 754.21 6.743 1.82e-10 ***
## sqrt(Freq.x) 1796.50 82.86 21.680 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7206 on 190 degrees of freedom
## Multiple R-squared: 0.7121, Adjusted R-squared: 0.7106
## F-statistic: 470 on 1 and 190 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4883 -0.7319 0.0417 0.6895 2.7335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.13133 0.12302 139.26 <2e-16 ***
## sqrt(Freq.x) 0.23698 0.01352 17.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.175 on 190 degrees of freedom
## Multiple R-squared: 0.618, Adjusted R-squared: 0.616
## F-statistic: 307.4 on 1 and 190 DF, p-value: < 2.2e-16
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13193.0 -4743.9 -798.1 3530.9 18153.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -92.91 810.59 -0.115 0.909
## log(Freq.x) 5954.95 233.35 25.519 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6383 on 190 degrees of freedom
## Multiple R-squared: 0.7741, Adjusted R-squared: 0.773
## F-statistic: 651.2 on 1 and 190 DF, p-value: < 2.2e-16
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7140 -0.5050 -0.0602 0.4293 2.6117
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.21286 0.10243 158.28 <2e-16 ***
## log(Freq.x) 0.86789 0.02949 29.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8066 on 190 degrees of freedom
## Multiple R-squared: 0.8201, Adjusted R-squared: 0.8192
## F-statistic: 866.3 on 1 and 190 DF, p-value: < 2.2e-16
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.8192).
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(h_y_m_comuna_corr_01$Freq.x), y=log(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Observemos nuevamente el resultado sobre log-log.
linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod)
##
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7140 -0.5050 -0.0602 0.4293 2.6117
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.21286 0.10243 158.28 <2e-16 ***
## log(Freq.x) 0.86789 0.02949 29.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8066 on 190 degrees of freedom
## Multiple R-squared: 0.8201, Adjusted R-squared: 0.8192
## F-statistic: 866.3 on 1 and 190 DF, p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = log(Freq.x) , y = log(multi_pob))) +
geom_point() +
stat_smooth(method = "lm", col = "red")
par(mfrow = c (2,2))
plot(linearMod)
\[ \hat Y = e^(16.21286 + 0.96940 * lnX) \]
Esta nueva variable se llamará: est_ing
h_y_m_comuna_corr_01$est_ing <- exp(16.21286 + 0.96940 * log(h_y_m_comuna_corr_01$Freq.x))
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101011001 | 03101 | 59 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 869 | 0.0056452 | 03101 | 286835306 | 572558114 |
3101021001 | 03101 | 77 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1437 | 0.0093350 | 03101 | 474317992 | 741173261 |
3101031001 | 03101 | 45 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1502 | 0.0097572 | 03101 | 495772876 | 440331591 |
3101041001 | 03101 | 91 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1734 | 0.0112643 | 03101 | 572350311 | 871465823 |
3101051001 | 03101 | 71 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1576 | 0.0102380 | 03101 | 520198438 | 685118157 |
3101061001 | 03101 | 55 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4376 | 0.0284272 | 03101 | 1444408859 | 534888456 |
3101061002 | 03101 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2049 | 0.0133106 | 03101 | 676323984 | 122268317 |
3101061003 | 03101 | 25 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4199 | 0.0272774 | 03101 | 1385985558 | 249068427 |
3101061004 | 03101 | 87 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5838 | 0.0379246 | 03101 | 1926978730 | 834306443 |
3101061005 | 03101 | 75 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3217 | 0.0208982 | 03101 | 1061851760 | 722503612 |
3101061006 | 03101 | 89 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1930 | 0.0125376 | 03101 | 637045041 | 852892521 |
3101061007 | 03101 | 35 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3446 | 0.0223858 | 03101 | 1137438969 | 345124028 |
3101061008 | 03101 | 30 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2624 | 0.0170459 | 03101 | 866117195 | 297219280 |
3101061009 | 03101 | 109 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5319 | 0.0345531 | 03101 | 1755669727 | 1038094478 |
3101071001 | 03101 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3367 | 0.0218726 | 03101 | 1111363032 | 1524261530 |
3101071002 | 03101 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2651 | 0.0172213 | 03101 | 875029225 | 1524261530 |
3101081001 | 03101 | 68 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2352 | 0.0152790 | 03101 | 776336754 | 657036920 |
3101091001 | 03101 | 102 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4467 | 0.0290184 | 03101 | 1474445698 | 973402910 |
3101101001 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 94 | 0.0006106 | 03101 | 31027064 | 21526534 |
3101102901 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 26 | 0.0001689 | 03101 | 8581954 | 21526534 |
3101111001 | 03101 | 665 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3046 | 0.0197873 | 03101 | 1005408909 | 5992374356 |
3101111002 | 03101 | 187 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2128 | 0.0138238 | 03101 | 702399921 | 1751777271 |
3101111003 | 03101 | 640 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4579 | 0.0297459 | 03101 | 1511414115 | 5773863342 |
3101122013 | 03101 | 54 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 332 | 0.0021567 | 03101 | 109584950 | 525458165 |
3101122047 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 183 | 0.0011888 | 03101 | 60403753 | 10993997 |
3101122901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 54 | 0.0003508 | 03101 | 17824058 | 10993997 |
3101132901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 14 | 0.0000909 | 03101 | 4621052 | 10993997 |
3101161001 | 03101 | 186 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3897 | 0.0253156 | 03101 | 1286302862 | 1742695389 |
3101161002 | 03101 | 654 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5267 | 0.0342153 | 03101 | 1738505819 | 5896261049 |
3101161003 | 03101 | 264 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4789 | 0.0311101 | 03101 | 1580729897 | 2447138111 |
3101161004 | 03101 | 334 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4382 | 0.0284662 | 03101 | 1446389310 | 3073798956 |
3101162050 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 33 | 0.0002144 | 03101 | 10892480 | 21526534 |
3101172013 | 03101 | 11 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 194 | 0.0012603 | 03101 | 64034579 | 112378105 |
3101172017 | 03101 | 18 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 121 | 0.0007860 | 03101 | 39939093 | 181141016 |
3101172021 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 74 | 0.0004807 | 03101 | 24425561 | 10993997 |
3101172026 | 03101 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 340 | 0.0022087 | 03101 | 112225551 | 161595605 |
3101172035 | 03101 | 15 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 293 | 0.0019034 | 03101 | 96712019 | 151795361 |
3101172037 | 03101 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 859 | 0.0055802 | 03101 | 283534554 | 122268317 |
3101182901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 17 | 0.0001104 | 03101 | 5611278 | 10993997 |
3101211001 | 03101 | 367 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4698 | 0.0305190 | 03101 | 1550693058 | 3367773820 |
3101211002 | 03101 | 80 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2574 | 0.0167211 | 03101 | 849613438 | 769150041 |
3101211003 | 03101 | 108 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4857 | 0.0315519 | 03101 | 1603175007 | 1028860804 |
3101211004 | 03101 | 169 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4381 | 0.0284597 | 03101 | 1446059235 | 1588067673 |
3101211005 | 03101 | 301 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3957 | 0.0257053 | 03101 | 1306107371 | 2778932479 |
3101211006 | 03101 | 219 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5331 | 0.0346311 | 03101 | 1759630628 | 2041654070 |
3101211007 | 03101 | 248 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2203 | 0.0143110 | 03101 | 727155557 | 2303228858 |
3101222015 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 97 | 0.0006301 | 03101 | 32017290 | 10993997 |
3101222048 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 62 | 0.0004028 | 03101 | 20464659 | 10993997 |
3101231001 | 03101 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2431 | 0.0157922 | 03101 | 802412691 | 161595605 |
3101231002 | 03101 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4099 | 0.0266278 | 03101 | 1352978043 | 778468441 |
3101231003 | 03101 | 122 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 6102 | 0.0396396 | 03101 | 2014118570 | 1157904799 |
3101231004 | 03101 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3368 | 0.0218791 | 03101 | 1111693108 | 778468441 |
3101231005 | 03101 | 36 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3855 | 0.0250427 | 03101 | 1272439706 | 354678839 |
3101241001 | 03101 | 515 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5023 | 0.0326302 | 03101 | 1657967482 | 4677152837 |
3101241002 | 03101 | 719 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 6270 | 0.0407309 | 03101 | 2069571195 | 6463512904 |
3101241003 | 03101 | 149 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3082 | 0.0200212 | 03101 | 1017291614 | 1405537388 |
3101241004 | 03101 | 98 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3115 | 0.0202356 | 03101 | 1028184094 | 936375823 |
3101241005 | 03101 | 287 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4323 | 0.0280829 | 03101 | 1426914876 | 2653544313 |
3102011001 | 03102 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 2174 | 0.1230891 | 03102 | 650710405 | 1679079897 |
3102011002 | 03102 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 2696 | 0.1526441 | 03102 | 806952738 | 1396391964 |
3102011003 | 03102 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 3928 | 0.2223984 | 03102 | 1175708588 | 2122939778 |
3102011007 | 03102 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 6749 | 0.3821198 | 03102 | 2020075678 | 3154058570 |
3102012001 | 03102 | 66 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 590 | 0.0334051 | 03102 | 176595740 | 638295121 |
3102012004 | 03102 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 117 | 0.0066244 | 03102 | 35019833 | 21526534 |
3102022010 | 03102 | 22 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 542 | 0.0306874 | 03102 | 162228629 | 220039262 |
3102022901 | 03102 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 53 | 0.0030008 | 03102 | 15863685 | 21526534 |
3102032003 | 03102 | 10 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 297 | 0.0168158 | 03102 | 88896500 | 102460303 |
3102032007 | 03102 | 4 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 181 | 0.0102480 | 03102 | 54175981 | 42149516 |
3102042002 | 03102 | 1 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 22 | 0.0012456 | 03102 | 6584926 | 10993997 |
3102991999 | 03102 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 228 | 0.0129091 | 03102 | 68243778 | 92512054 |
3103011001 | 03103 | 73 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 6039 | 0.4307725 | 03103 | 1900134459 | 703818721 |
3103011002 | 03103 | 19 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 1412 | 0.1007205 | 03103 | 444277174 | 190888328 |
3103011003 | 03103 | 127 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 2406 | 0.1716242 | 03103 | 757033202 | 1203879338 |
3103012003 | 03103 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 74 | 0.0052786 | 03103 | 23283648 | 21526534 |
3103012022 | 03103 | 5 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 553 | 0.0394465 | 03103 | 173998072 | 52328364 |
3103012029 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 86 | 0.0061345 | 03103 | 27059375 | 10993997 |
3103032006 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 476 | 0.0339539 | 03103 | 149770492 | 10993997 |
3103032009 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 22 | 0.0015693 | 03103 | 6922166 | 10993997 |
3103032014 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 41 | 0.0029246 | 03103 | 12900400 | 10993997 |
3103042028 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 195 | 0.0139097 | 03103 | 61355559 | 10993997 |
3103052020 | 03103 | 4 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 952 | 0.0679078 | 03103 | 299540984 | 42149516 |
3103062901 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 122 | 0.0087025 | 03103 | 38386555 | 10993997 |
3103072012 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 27 | 0.0019260 | 03103 | 8495385 | 10993997 |
3103991999 | 03103 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 78 | 0.0055639 | 03103 | 24542224 | 21526534 |
3201011001 | 03201 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 4870 | 0.3985596 | 03201 | 1394716026 | 478224381 |
3201011002 | 03201 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1606 | 0.1314347 | 03201 | 459941260 | 628917735 |
3201011003 | 03201 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 2325 | 0.1902774 | 03201 | 665855187 | 430842620 |
3201011004 | 03201 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1169 | 0.0956707 | 03201 | 334789124 | 151795361 |
3201011005 | 03201 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 735 | 0.0601522 | 03201 | 210496156 | 306818583 |
3201011006 | 03201 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 368 | 0.0301170 | 03201 | 105391273 | 112378105 |
3201012003 | 03201 | 4 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 27 | 0.0022097 | 03201 | 7732512 | 42149516 |
3201012005 | 03201 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 29 | 0.0023734 | 03201 | 8305291 | 10993997 |
3201022006 | 03201 | 6 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 699 | 0.0572060 | 03201 | 200186140 | 62444682 |
3201032007 | 03201 | 3 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 185 | 0.0151404 | 03201 | 52982026 | 31891649 |
3202011001 | 03202 | 81 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 2416 | 0.1735009 | 03202 | 812396447 | 778468441 |
3202011002 | 03202 | 38 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1650 | 0.1184919 | 03202 | 554823733 | 373764330 |
3202011003 | 03202 | 89 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 3157 | 0.2267145 | 03202 | 1061562742 | 852892521 |
3202021001 | 03202 | 56 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1494 | 0.1072890 | 03202 | 502367671 | 544313502 |
3202021002 | 03202 | 231 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 2848 | 0.2045242 | 03202 | 957659388 | 2150013006 |
3202021003 | 03202 | 119 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1690 | 0.1213645 | 03202 | 568274005 | 1130292532 |
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing /( h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional)
r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3101011001 | 03101 | 59 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 869 | 0.0056452 | 03101 | 286835306 | 572558114 | 658870.10 |
3101021001 | 03101 | 77 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1437 | 0.0093350 | 03101 | 474317992 | 741173261 | 515778.19 |
3101031001 | 03101 | 45 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1502 | 0.0097572 | 03101 | 495772876 | 440331591 | 293163.51 |
3101041001 | 03101 | 91 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1734 | 0.0112643 | 03101 | 572350311 | 871465823 | 502575.45 |
3101051001 | 03101 | 71 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1576 | 0.0102380 | 03101 | 520198438 | 685118157 | 434719.64 |
3101061001 | 03101 | 55 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4376 | 0.0284272 | 03101 | 1444408859 | 534888456 | 122232.28 |
3101061002 | 03101 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2049 | 0.0133106 | 03101 | 676323984 | 122268317 | 59672.19 |
3101061003 | 03101 | 25 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4199 | 0.0272774 | 03101 | 1385985558 | 249068427 | 59316.13 |
3101061004 | 03101 | 87 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5838 | 0.0379246 | 03101 | 1926978730 | 834306443 | 142909.63 |
3101061005 | 03101 | 75 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3217 | 0.0208982 | 03101 | 1061851760 | 722503612 | 224589.25 |
3101061006 | 03101 | 89 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 1930 | 0.0125376 | 03101 | 637045041 | 852892521 | 441913.22 |
3101061007 | 03101 | 35 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3446 | 0.0223858 | 03101 | 1137438969 | 345124028 | 100152.07 |
3101061008 | 03101 | 30 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2624 | 0.0170459 | 03101 | 866117195 | 297219280 | 113269.54 |
3101061009 | 03101 | 109 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5319 | 0.0345531 | 03101 | 1755669727 | 1038094478 | 195167.23 |
3101071001 | 03101 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3367 | 0.0218726 | 03101 | 1111363032 | 1524261530 | 452706.13 |
3101071002 | 03101 | 162 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2651 | 0.0172213 | 03101 | 875029225 | 1524261530 | 574976.06 |
3101081001 | 03101 | 68 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2352 | 0.0152790 | 03101 | 776336754 | 657036920 | 279352.43 |
3101091001 | 03101 | 102 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4467 | 0.0290184 | 03101 | 1474445698 | 973402910 | 217909.76 |
3101101001 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 94 | 0.0006106 | 03101 | 31027064 | 21526534 | 229005.68 |
3101102901 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 26 | 0.0001689 | 03101 | 8581954 | 21526534 | 827943.62 |
3101111001 | 03101 | 665 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3046 | 0.0197873 | 03101 | 1005408909 | 5992374356 | 1967292.96 |
3101111002 | 03101 | 187 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2128 | 0.0138238 | 03101 | 702399921 | 1751777271 | 823203.60 |
3101111003 | 03101 | 640 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4579 | 0.0297459 | 03101 | 1511414115 | 5773863342 | 1260944.17 |
3101122013 | 03101 | 54 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 332 | 0.0021567 | 03101 | 109584950 | 525458165 | 1582705.32 |
3101122047 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 183 | 0.0011888 | 03101 | 60403753 | 10993997 | 60076.49 |
3101122901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 54 | 0.0003508 | 03101 | 17824058 | 10993997 | 203592.55 |
3101132901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 14 | 0.0000909 | 03101 | 4621052 | 10993997 | 785285.54 |
3101161001 | 03101 | 186 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3897 | 0.0253156 | 03101 | 1286302862 | 1742695389 | 447188.96 |
3101161002 | 03101 | 654 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5267 | 0.0342153 | 03101 | 1738505819 | 5896261049 | 1119472.38 |
3101161003 | 03101 | 264 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4789 | 0.0311101 | 03101 | 1580729897 | 2447138111 | 510991.46 |
3101161004 | 03101 | 334 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4382 | 0.0284662 | 03101 | 1446389310 | 3073798956 | 701460.28 |
3101162050 | 03101 | 2 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 33 | 0.0002144 | 03101 | 10892480 | 21526534 | 652319.22 |
3101172013 | 03101 | 11 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 194 | 0.0012603 | 03101 | 64034579 | 112378105 | 579268.58 |
3101172017 | 03101 | 18 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 121 | 0.0007860 | 03101 | 39939093 | 181141016 | 1497033.19 |
3101172021 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 74 | 0.0004807 | 03101 | 24425561 | 10993997 | 148567.53 |
3101172026 | 03101 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 340 | 0.0022087 | 03101 | 112225551 | 161595605 | 475281.19 |
3101172035 | 03101 | 15 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 293 | 0.0019034 | 03101 | 96712019 | 151795361 | 518072.91 |
3101172037 | 03101 | 12 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 859 | 0.0055802 | 03101 | 283534554 | 122268317 | 142337.97 |
3101182901 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 17 | 0.0001104 | 03101 | 5611278 | 10993997 | 646705.74 |
3101211001 | 03101 | 367 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4698 | 0.0305190 | 03101 | 1550693058 | 3367773820 | 716852.66 |
3101211002 | 03101 | 80 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2574 | 0.0167211 | 03101 | 849613438 | 769150041 | 298815.09 |
3101211003 | 03101 | 108 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4857 | 0.0315519 | 03101 | 1603175007 | 1028860804 | 211830.51 |
3101211004 | 03101 | 169 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4381 | 0.0284597 | 03101 | 1446059235 | 1588067673 | 362489.77 |
3101211005 | 03101 | 301 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3957 | 0.0257053 | 03101 | 1306107371 | 2778932479 | 702282.66 |
3101211006 | 03101 | 219 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5331 | 0.0346311 | 03101 | 1759630628 | 2041654070 | 382977.69 |
3101211007 | 03101 | 248 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2203 | 0.0143110 | 03101 | 727155557 | 2303228858 | 1045496.53 |
3101222015 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 97 | 0.0006301 | 03101 | 32017290 | 10993997 | 113340.18 |
3101222048 | 03101 | 1 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 62 | 0.0004028 | 03101 | 20464659 | 10993997 | 177322.54 |
3101231001 | 03101 | 16 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 2431 | 0.0157922 | 03101 | 802412691 | 161595605 | 66472.89 |
3101231002 | 03101 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4099 | 0.0266278 | 03101 | 1352978043 | 778468441 | 189916.67 |
3101231003 | 03101 | 122 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 6102 | 0.0396396 | 03101 | 2014118570 | 1157904799 | 189758.24 |
3101231004 | 03101 | 81 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3368 | 0.0218791 | 03101 | 1111693108 | 778468441 | 231136.71 |
3101231005 | 03101 | 36 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3855 | 0.0250427 | 03101 | 1272439706 | 354678839 | 92004.89 |
3101241001 | 03101 | 515 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 5023 | 0.0326302 | 03101 | 1657967482 | 4677152837 | 931147.29 |
3101241002 | 03101 | 719 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 6270 | 0.0407309 | 03101 | 2069571195 | 6463512904 | 1030863.30 |
3101241003 | 03101 | 149 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3082 | 0.0200212 | 03101 | 1017291614 | 1405537388 | 456047.17 |
3101241004 | 03101 | 98 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 3115 | 0.0202356 | 03101 | 1028184094 | 936375823 | 300602.19 |
3101241005 | 03101 | 287 | 2017 | Copiapó | 330075.2 | 2017 | 3101 | 153937 | 50810778473 | 4323 | 0.0280829 | 03101 | 1426914876 | 2653544313 | 613820.10 |
3102011001 | 03102 | 179 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 2174 | 0.1230891 | 03102 | 650710405 | 1679079897 | 772345.86 |
3102011002 | 03102 | 148 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 2696 | 0.1526441 | 03102 | 806952738 | 1396391964 | 517949.54 |
3102011003 | 03102 | 228 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 3928 | 0.2223984 | 03102 | 1175708588 | 2122939778 | 540463.28 |
3102011007 | 03102 | 343 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 6749 | 0.3821198 | 03102 | 2020075678 | 3154058570 | 467337.17 |
3102012001 | 03102 | 66 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 590 | 0.0334051 | 03102 | 176595740 | 638295121 | 1081856.14 |
3102012004 | 03102 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 117 | 0.0066244 | 03102 | 35019833 | 21526534 | 183987.47 |
3102022010 | 03102 | 22 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 542 | 0.0306874 | 03102 | 162228629 | 220039262 | 405976.50 |
3102022901 | 03102 | 2 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 53 | 0.0030008 | 03102 | 15863685 | 21526534 | 406161.02 |
3102032003 | 03102 | 10 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 297 | 0.0168158 | 03102 | 88896500 | 102460303 | 344984.18 |
3102032007 | 03102 | 4 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 181 | 0.0102480 | 03102 | 54175981 | 42149516 | 232870.25 |
3102042002 | 03102 | 1 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 22 | 0.0012456 | 03102 | 6584926 | 10993997 | 499727.16 |
3102991999 | 03102 | 9 | 2017 | Caldera | 299314.8 | 2017 | 3102 | 17662 | 5286498241 | 228 | 0.0129091 | 03102 | 68243778 | 92512054 | 405754.62 |
3103011001 | 03103 | 73 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 6039 | 0.4307725 | 03103 | 1900134459 | 703818721 | 116545.57 |
3103011002 | 03103 | 19 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 1412 | 0.1007205 | 03103 | 444277174 | 190888328 | 135190.03 |
3103011003 | 03103 | 127 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 2406 | 0.1716242 | 03103 | 757033202 | 1203879338 | 500365.48 |
3103012003 | 03103 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 74 | 0.0052786 | 03103 | 23283648 | 21526534 | 290899.11 |
3103012022 | 03103 | 5 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 553 | 0.0394465 | 03103 | 173998072 | 52328364 | 94626.34 |
3103012029 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 86 | 0.0061345 | 03103 | 27059375 | 10993997 | 127837.18 |
3103032006 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 476 | 0.0339539 | 03103 | 149770492 | 10993997 | 23096.63 |
3103032009 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 22 | 0.0015693 | 03103 | 6922166 | 10993997 | 499727.16 |
3103032014 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 41 | 0.0029246 | 03103 | 12900400 | 10993997 | 268146.28 |
3103042028 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 195 | 0.0139097 | 03103 | 61355559 | 10993997 | 56379.47 |
3103052020 | 03103 | 4 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 952 | 0.0679078 | 03103 | 299540984 | 42149516 | 44274.70 |
3103062901 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 122 | 0.0087025 | 03103 | 38386555 | 10993997 | 90114.73 |
3103072012 | 03103 | 1 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 27 | 0.0019260 | 03103 | 8495385 | 10993997 | 407185.09 |
3103991999 | 03103 | 2 | 2017 | Tierra Amarilla | 314643.9 | 2017 | 3103 | 14019 | 4410992711 | 78 | 0.0055639 | 03103 | 24542224 | 21526534 | 275981.21 |
3201011001 | 03201 | 49 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 4870 | 0.3985596 | 03201 | 1394716026 | 478224381 | 98198.02 |
3201011002 | 03201 | 65 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1606 | 0.1314347 | 03201 | 459941260 | 628917735 | 391605.07 |
3201011003 | 03201 | 44 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 2325 | 0.1902774 | 03201 | 665855187 | 430842620 | 185308.65 |
3201011004 | 03201 | 15 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 1169 | 0.0956707 | 03201 | 334789124 | 151795361 | 129850.61 |
3201011005 | 03201 | 31 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 735 | 0.0601522 | 03201 | 210496156 | 306818583 | 417440.25 |
3201011006 | 03201 | 11 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 368 | 0.0301170 | 03201 | 105391273 | 112378105 | 305375.28 |
3201012003 | 03201 | 4 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 27 | 0.0022097 | 03201 | 7732512 | 42149516 | 1561093.18 |
3201012005 | 03201 | 1 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 29 | 0.0023734 | 03201 | 8305291 | 10993997 | 379103.36 |
3201022006 | 03201 | 6 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 699 | 0.0572060 | 03201 | 200186140 | 62444682 | 89334.31 |
3201032007 | 03201 | 3 | 2017 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 | 185 | 0.0151404 | 03201 | 52982026 | 31891649 | 172387.29 |
3202011001 | 03202 | 81 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 2416 | 0.1735009 | 03202 | 812396447 | 778468441 | 322213.76 |
3202011002 | 03202 | 38 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1650 | 0.1184919 | 03202 | 554823733 | 373764330 | 226523.84 |
3202011003 | 03202 | 89 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 3157 | 0.2267145 | 03202 | 1061562742 | 852892521 | 270159.18 |
3202021001 | 03202 | 56 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1494 | 0.1072890 | 03202 | 502367671 | 544313502 | 364333.00 |
3202021002 | 03202 | 231 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 2848 | 0.2045242 | 03202 | 957659388 | 2150013006 | 754920.30 |
3202021003 | 03202 | 119 | 2017 | Diego de Almagro | 336256.8 | 2017 | 3202 | 13925 | 4682376047 | 1690 | 0.1213645 | 03202 | 568274005 | 1130292532 | 668812.15 |
Guardamos:
saveRDS(h_y_m_comuna_corr_01, "casen_censo_region_03.rds")
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda