# pd_df %>%
# dplyr::select(where(is.numeric)) %>%
# skimr::skim(.) %>%
# dplyr::select(skim_variable, complete_rate, numeric.mean, numeric.sd, numeric.p50) %>%
# kable() %>% kable_styling(font_size = 12)
densityplot(~log(pd_budget_per_capita + 1)| president, data = pd_df)
aggregate(budget ~ president, data = pd_df, FUN = mean)
## president budget
## 1 Obama 3536611
## 2 Trump 2443519
In that case, we need to extract the bin breaks from the histogram. We could then create a new categorical variable using the breaks with cut It turns out that extracting the bins is much easier using base graphics than ggplot2, so let’s do that:
pd_df %>%
filter(!is.na(region_un)) %>%
ggplot(aes(log(pd_budget_per_gdp), log(military_exp_per_gdp))) +
geom_point(aes(color = region_un)) + facet_wrap(~year) -> p
ggplotly(p)