set.seed(42)
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
library(boot)
## Warning: package 'boot' was built under R version 4.0.5
attach(Wage)
agelims=range(age)
#Setting up models for CV
all.deltas = rep(NA, 5)
for (i in 1:5) {
glm.fit = glm(wage~poly(age, i))
all.deltas[i] = cv.glm(Wage, glm.fit, K=5)$delta[2]
}
plot(1:5, all.deltas, xlab="Degree", ylab="CV error", type="l", pch=20, lwd=2,ylim=c(1500, 1700))
min.point = min(all.deltas)
sd.points = sd(all.deltas)
abline(h=min.point + 0.2 * sd.points, col="darkblue", lty="dashed")
abline(h=min.point - 0.2 * sd.points, col="lightblue", lty="dashed")
#Doing fit with statistical tests to determine scale
fit=lm(wage~poly(age,5),data=Wage)
coef(summary(fit))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 111.70361 0.7287647 153.2780243 0.000000e+00
## poly(age, 5)1 447.06785 39.9160847 11.2001930 1.491111e-28
## poly(age, 5)2 -478.31581 39.9160847 -11.9830341 2.367734e-32
## poly(age, 5)3 125.52169 39.9160847 3.1446392 1.679213e-03
## poly(age, 5)4 -77.91118 39.9160847 -1.9518743 5.104623e-02
## poly(age, 5)5 -35.81289 39.9160847 -0.8972045 3.696820e-01
#Reviewed model and decided to use polynomial of degree 3
fit2=lm(wage~poly(age,3),data=Wage)
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit2, data.frame(age=age.grid))
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("Degree-3 Polynomial")
lines(age.grid,preds,lwd=2,col="blue")
Lovaas answer ex 6a: From my CV chart I see that the line doesn’t go believe the 0.2 standard error until after 2 - we’ll need at least 2 degrees in this GLM model.
I fit the GLM model with 5 degrees and looked at the coefficient summary. The Pr(>|t|) was less than 0.05 (my assumed P value) for degrees 1, 2, and 3. It was near 0.05 for the forth degree but I will still leave that out for my chart.
I realize that the question technically asked for an ANOVA chart, so here ya go. note the p values are the same as in the summary of the model with 5 poly.
fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5)
## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.5931 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.8888 0.001679 **
## 4 2995 4771604 1 6070 3.8098 0.051046 .
## 5 2994 4770322 1 1283 0.8050 0.369682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#CV for various cuts
all.cvs = rep(NA, 11)
for (i in 2:11) {
Wage$age.cut = cut(Wage$age, i)
lm.fit = glm(wage~age.cut, data=Wage)
all.cvs[i] = cv.glm(Wage, lm.fit, K=11)$delta[2]
}
plot(2:11, all.cvs[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)
# Decided to go with 8
table(cut(age,8))
##
## (17.9,25.8] (25.8,33.5] (33.5,41.2] (41.2,49] (49,56.8] (56.8,64.5]
## 231 519 671 728 503 276
## (64.5,72.2] (72.2,80.1]
## 54 18
fit.cut8=lm(wage∼cut (age ,8))
coef(summary(fit.cut8))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 76.28175 2.629812 29.006542 3.110596e-163
## cut(age, 8)(25.8,33.5] 25.83329 3.161343 8.171618 4.440913e-16
## cut(age, 8)(33.5,41.2] 40.22568 3.049065 13.192791 1.136044e-38
## cut(age, 8)(41.2,49] 43.50112 3.018341 14.412262 1.406253e-45
## cut(age, 8)(49,56.8] 40.13583 3.176792 12.634076 1.098741e-35
## cut(age, 8)(56.8,64.5] 44.10243 3.564299 12.373380 2.481643e-34
## cut(age, 8)(64.5,72.2] 28.94825 6.041576 4.791505 1.736008e-06
## cut(age, 8)(72.2,80.1] 15.22418 9.781110 1.556488 1.196978e-01
#Predictions and plots
agelims=range(age) #IDK why I had to reinstate that
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit.cut8, data.frame(age=age.grid))
plot(age,wage,xlim=agelims,cex=.5,col="darkgrey")
title("8-Cut Step Model")
lines(age.grid,preds,lwd=2,col="blue")
Lovaas answer ex 6b: The CV error is lowest around 8 or 11 cuts. It’s probably not best to use more than 10 cuts, so I’ll stick with 8. I’ll admit to stealing the code from the CV from the internet; it’s better than what I’ve found in the book.
This question relates to the College data set.
library(ISLR)
library(leaps)
## Warning: package 'leaps' was built under R version 4.0.5
# ?College
sum(is.na(College$Apps)) # no need to fix data
## [1] 0
attach(College)
#Split data into test and train
train=sample(c(TRUE,FALSE), nrow(College),rep=TRUE)
test=(!train)
college.train = College[train,]
college.test = College[test,]
regfit.fwd=regsubsets(Outstate∼.,data = college.train, nvmax =19,method = "forward")
summary(regfit.fwd)
## Subset selection object
## Call: regsubsets.formula(Outstate ~ ., data = college.train, nvmax = 19,
## method = "forward")
## 17 Variables (and intercept)
## Forced in Forced out
## PrivateYes FALSE FALSE
## Apps FALSE FALSE
## Accept FALSE FALSE
## Enroll FALSE FALSE
## Top10perc FALSE FALSE
## Top25perc FALSE FALSE
## F.Undergrad FALSE FALSE
## P.Undergrad FALSE FALSE
## Room.Board FALSE FALSE
## Books FALSE FALSE
## Personal FALSE FALSE
## PhD FALSE FALSE
## Terminal FALSE FALSE
## S.F.Ratio FALSE FALSE
## perc.alumni FALSE FALSE
## Expend FALSE FALSE
## Grad.Rate FALSE FALSE
## 1 subsets of each size up to 17
## Selection Algorithm: forward
## PrivateYes Apps Accept Enroll Top10perc Top25perc F.Undergrad
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) "*" " " " " " " " " " " " "
## 3 ( 1 ) "*" " " " " " " " " " " " "
## 4 ( 1 ) "*" " " " " " " " " " " " "
## 5 ( 1 ) "*" " " " " " " " " " " " "
## 6 ( 1 ) "*" " " " " " " " " " " " "
## 7 ( 1 ) "*" " " " " " " " " " " " "
## 8 ( 1 ) "*" " " " " " " " " "*" " "
## 9 ( 1 ) "*" " " " " " " " " "*" " "
## 10 ( 1 ) "*" " " " " " " " " "*" " "
## 11 ( 1 ) "*" " " " " " " " " "*" " "
## 12 ( 1 ) "*" " " "*" " " " " "*" " "
## 13 ( 1 ) "*" "*" "*" " " " " "*" " "
## 14 ( 1 ) "*" "*" "*" "*" " " "*" " "
## 15 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## P.Undergrad Room.Board Books Personal PhD Terminal S.F.Ratio
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " "*" " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " "
## 5 ( 1 ) " " "*" " " " " " " " " " "
## 6 ( 1 ) " " "*" " " " " " " "*" " "
## 7 ( 1 ) " " "*" " " "*" " " "*" " "
## 8 ( 1 ) " " "*" " " "*" " " "*" " "
## 9 ( 1 ) " " "*" " " "*" " " "*" "*"
## 10 ( 1 ) " " "*" " " "*" "*" "*" "*"
## 11 ( 1 ) "*" "*" " " "*" "*" "*" "*"
## 12 ( 1 ) "*" "*" " " "*" "*" "*" "*"
## 13 ( 1 ) "*" "*" " " "*" "*" "*" "*"
## 14 ( 1 ) "*" "*" " " "*" "*" "*" "*"
## 15 ( 1 ) "*" "*" " " "*" "*" "*" "*"
## 16 ( 1 ) "*" "*" " " "*" "*" "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## perc.alumni Expend Grad.Rate
## 1 ( 1 ) " " "*" " "
## 2 ( 1 ) " " "*" " "
## 3 ( 1 ) " " "*" " "
## 4 ( 1 ) "*" "*" " "
## 5 ( 1 ) "*" "*" "*"
## 6 ( 1 ) "*" "*" "*"
## 7 ( 1 ) "*" "*" "*"
## 8 ( 1 ) "*" "*" "*"
## 9 ( 1 ) "*" "*" "*"
## 10 ( 1 ) "*" "*" "*"
## 11 ( 1 ) "*" "*" "*"
## 12 ( 1 ) "*" "*" "*"
## 13 ( 1 ) "*" "*" "*"
## 14 ( 1 ) "*" "*" "*"
## 15 ( 1 ) "*" "*" "*"
## 16 ( 1 ) "*" "*" "*"
## 17 ( 1 ) "*" "*" "*"
reg.summary = summary(regfit.fwd)
par(mfrow = c(1, 3))
plot(reg.summary$cp, xlab = "Number of Variables", ylab = "Cp", type = "l")
min.cp = min(reg.summary$cp)
std.cp = sd(reg.summary$cp)
abline(h = min.cp + 0.2 * std.cp, col = "darkgreen", lty = 2)
abline(h = min.cp - 0.2 * std.cp, col = "darkgreen", lty = 2)
plot(reg.summary$bic, xlab = "Number of Variables", ylab = "BIC", type = "l")
min.bic = min(reg.summary$bic)
std.bic = sd(reg.summary$bic)
abline(h = min.bic + 0.2 * std.bic, col = "darkblue", lty = 2)
abline(h = min.bic - 0.2 * std.bic, col = "darkblue", lty = 2)
plot(reg.summary$adjr2, xlab = "Number of Variables", ylab = "Adjusted R2",
type = "l", ylim = c(0.4, 0.84))
max.adjr2 = max(reg.summary$adjr2)
std.adjr2 = sd(reg.summary$adjr2)
abline(h = max.adjr2 + 0.2 * std.adjr2, col = "purple", lty = 2)
abline(h = max.adjr2 - 0.2 * std.adjr2, col = "purple", lty = 2)
Lovaas answer ex 10a: Based on the summary of my forward stepwise selection, we can see a ranking of the variables. Using Mallow’s CP (far left in plot), we need at least around 7 variables. The lower the BIC (middle plot) is, the better, so I want 6-7 variables. The higher the r-squared the better - we may want to go with 6 or 7 variables, since the r-squared shoots up a bit around there. I’ll go with 7; there’s not much difference in CV or BIC and a small boost in r-squared.
reg.fit = regsubsets(Outstate ~ ., data = college.train, method = "forward")
coefi = coef(reg.fit, id = 7)
names(coefi)
## [1] "(Intercept)" "PrivateYes" "Room.Board" "Personal" "Terminal"
## [6] "perc.alumni" "Expend" "Grad.Rate"
Lovaas answer ex 10a some more: The variable selected under forward stepwise selection are “Private,” “Room.Board,” “Personal,” “Terminal,” ’perc.alumni," “Expend,” “Grad.Rate.”
library(akima)
## Warning: package 'akima' was built under R version 4.0.5
library(gam)
## Warning: package 'gam' was built under R version 4.0.5
## Loading required package: splines
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 4.0.5
## Loaded gam 1.20
gam1=lm(Outstate~ Private + s(Room.Board, df = 2) + s(Personal, df = 3) + Terminal + perc.alumni + Expend + Grad.Rate,data=college.train)
par(mfrow=c(2,2))
plot(gam1, se=TRUE,col="blue")
## Warning in plot.window(...): "se" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "se" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "se" is not a
## graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "se" is not a
## graphical parameter
## Warning in box(...): "se" is not a graphical parameter
## Warning in title(...): "se" is not a graphical parameter
## Warning in plot.xy(xy.coords(x, y), type = type, ...): "se" is not a graphical
## parameter
## Warning in plot.window(...): "se" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "se" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "se" is not a
## graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "se" is not a
## graphical parameter
## Warning in box(...): "se" is not a graphical parameter
## Warning in title(...): "se" is not a graphical parameter
## Warning in plot.window(...): "se" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "se" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "se" is not a
## graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "se" is not a
## graphical parameter
## Warning in box(...): "se" is not a graphical parameter
## Warning in title(...): "se" is not a graphical parameter
## Warning in plot.xy(xy.coords(x, y), type = type, ...): "se" is not a graphical
## parameter
## Warning in plot.window(...): "se" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "se" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "se" is not a
## graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "se" is not a
## graphical parameter
## Warning in box(...): "se" is not a graphical parameter
## Warning in title(...): "se" is not a graphical parameter
## Warning in plot.xy(xy.coords(x, y), type = type, ...): "se" is not a graphical
## parameter
Lovaas answer ex 10b: It’s weird, you can do a lot with GAM (throw some splines in there, for example), but the problem didn’t ask/tell me what to do. I would have been overwhelmed with the options if it had, selecting the knots in a spline or the degrees in a polynomial for each of my 7 variables would have been stressful.
Anyways, the residuals plot and normalized q-q plots look pretty good. There’s a bit of curvature towards the edges of the q-q plots but no worse than what I’ve seen before. The cook’ distance plot (bottom right) does list 3 or four outliers, but those could be removed.
college.pred = predict(gam1, college.test)
x = mean((college.test[,"Outstate"] - college.pred)^2)
x
## [1] 4387794
gam.tss = mean((college.test$Outstate - mean(college.test$Outstate))^2)
test.rss = 1 - x/gam.tss
test.rss
## [1] 0.7326108
Lovaas answer ex 10c: Test r-squared is 73%. I bet if I played around a bit with the imputs into the GAM model I could get a slightly better fit.
summary(gam1)
##
## Call:
## lm(formula = Outstate ~ Private + s(Room.Board, df = 2) + s(Personal,
## df = 3) + Terminal + perc.alumni + Expend + Grad.Rate, data = college.train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7684.5 -1287.8 -101.9 1238.2 9066.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.924e+03 7.718e+02 -3.789 0.000176 ***
## PrivateYes 2.598e+03 2.805e+02 9.262 < 2e-16 ***
## s(Room.Board, df = 2) 1.048e+00 1.169e-01 8.971 < 2e-16 ***
## s(Personal, df = 3) -4.193e-01 1.689e-01 -2.482 0.013480 *
## Terminal 2.960e+01 8.768e+00 3.376 0.000812 ***
## perc.alumni 4.193e+01 9.861e+00 4.252 2.66e-05 ***
## Expend 2.683e-01 2.599e-02 10.321 < 2e-16 ***
## Grad.Rate 2.457e+01 7.281e+00 3.375 0.000814 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1976 on 384 degrees of freedom
## Multiple R-squared: 0.7598, Adjusted R-squared: 0.7554
## F-statistic: 173.5 on 7 and 384 DF, p-value: < 2.2e-16
anova(gam1)
## Analysis of Variance Table
##
## Response: Outstate
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1978109809 1978109809 506.627 < 2.2e-16 ***
## s(Room.Board, df = 2) 1 1499260751 1499260751 383.986 < 2.2e-16 ***
## s(Personal, df = 3) 1 75820656 75820656 19.419 1.364e-05 ***
## Terminal 1 441198603 441198603 112.998 < 2.2e-16 ***
## perc.alumni 1 275459911 275459911 70.550 8.791e-16 ***
## Expend 1 427896942 427896942 109.591 < 2.2e-16 ***
## Grad.Rate 1 44471296 44471296 11.390 0.0008137 ***
## Residuals 384 1499316701 3904471
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Lovaas answer ex 10d: The p values for all intercepts are well below 0.05, so all could fit well under a linear model.