Regresión lineal
Abstract
En un trabajo anterior, obtuvimos una tabla la que tiene dos campos sobre los cuales queremos aplicar un modelo de regresión lineal: multi_pob y p_variable. En éste Rpubs excluiremos NAs, outliers, aplicaremos el análisis de regresión y ensayaremos distintas fórmulas de modelos para poder elegir el apropiado.
tabla_001 <- readRDS("tabla_001.rds")
r3_100 <- tabla_001[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | p | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | p_variable |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 60 | 2017 | 0.0055366 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 584 | 0.0023749 | 10101 | 156939747 | 0.0002440 |
10101011002 | 10101 | 177 | 2017 | 0.0163329 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2941 | 0.0119600 | 10101 | 790342117 | 0.0007198 |
10101021001 | 10101 | 82 | 2017 | 0.0075667 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3953 | 0.0160755 | 10101 | 1062299350 | 0.0003335 |
10101021002 | 10101 | 77 | 2017 | 0.0071053 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1107 | 0.0045018 | 10101 | 297486815 | 0.0003131 |
10101021003 | 10101 | 70 | 2017 | 0.0064594 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2294 | 0.0093289 | 10101 | 616472226 | 0.0002847 |
10101021004 | 10101 | 99 | 2017 | 0.0091354 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3391 | 0.0137900 | 10101 | 911271717 | 0.0004026 |
10101021005 | 10101 | 171 | 2017 | 0.0157793 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2564 | 0.0104269 | 10101 | 689029986 | 0.0006954 |
10101031001 | 10101 | 133 | 2017 | 0.0122728 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4530 | 0.0184220 | 10101 | 1217357970 | 0.0005409 |
10101031002 | 10101 | 115 | 2017 | 0.0106118 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4740 | 0.0192760 | 10101 | 1273791783 | 0.0004677 |
10101031003 | 10101 | 94 | 2017 | 0.0086740 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4107 | 0.0167018 | 10101 | 1103684147 | 0.0003823 |
10101031004 | 10101 | 88 | 2017 | 0.0081203 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2856 | 0.0116144 | 10101 | 767499859 | 0.0003579 |
10101031005 | 10101 | 146 | 2017 | 0.0134724 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5690 | 0.0231393 | 10101 | 1529087605 | 0.0005937 |
10101031006 | 10101 | 94 | 2017 | 0.0086740 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2460 | 0.0100040 | 10101 | 661081812 | 0.0003823 |
10101031007 | 10101 | 39 | 2017 | 0.0035988 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2292 | 0.0093208 | 10101 | 615934761 | 0.0001586 |
10101031008 | 10101 | 54 | 2017 | 0.0049829 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3585 | 0.0145790 | 10101 | 963405811 | 0.0002196 |
10101031009 | 10101 | 166 | 2017 | 0.0153179 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4436 | 0.0180397 | 10101 | 1192097121 | 0.0006751 |
10101031010 | 10101 | 92 | 2017 | 0.0084894 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3566 | 0.0145017 | 10101 | 958299894 | 0.0003741 |
10101031011 | 10101 | 49 | 2017 | 0.0045215 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2757 | 0.0112118 | 10101 | 740895347 | 0.0001993 |
10101031012 | 10101 | 94 | 2017 | 0.0086740 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1849 | 0.0075193 | 10101 | 496886289 | 0.0003823 |
10101031013 | 10101 | 73 | 2017 | 0.0067362 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3945 | 0.0160430 | 10101 | 1060149491 | 0.0002969 |
10101031014 | 10101 | 109 | 2017 | 0.0100581 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2265 | 0.0092110 | 10101 | 608678985 | 0.0004433 |
10101031015 | 10101 | 31 | 2017 | 0.0028606 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1930 | 0.0078487 | 10101 | 518653616 | 0.0001261 |
10101031016 | 10101 | 248 | 2017 | 0.0228846 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3071 | 0.0124887 | 10101 | 825277335 | 0.0010085 |
10101031017 | 10101 | 60 | 2017 | 0.0055366 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3885 | 0.0157990 | 10101 | 1044025544 | 0.0002440 |
10101032002 | 10101 | 2 | 2017 | 0.0001846 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 129 | 0.0005246 | 10101 | 34666485 | 0.0000081 |
10101032011 | 10101 | 20 | 2017 | 0.0018455 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 426 | 0.0017324 | 10101 | 114480021 | 0.0000813 |
10101032019 | 10101 | 32 | 2017 | 0.0029528 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 829 | 0.0033713 | 10101 | 222779196 | 0.0001301 |
10101041001 | 10101 | 70 | 2017 | 0.0064594 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4342 | 0.0176574 | 10101 | 1166836271 | 0.0002847 |
10101041002 | 10101 | 55 | 2017 | 0.0050752 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2169 | 0.0088206 | 10101 | 582880671 | 0.0002237 |
10101041003 | 10101 | 774 | 2017 | 0.0714220 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5202 | 0.0211548 | 10101 | 1397946172 | 0.0031476 |
10101051001 | 10101 | 246 | 2017 | 0.0227000 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2463 | 0.0100162 | 10101 | 661888009 | 0.0010004 |
10101051002 | 10101 | 33 | 2017 | 0.0030451 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1913 | 0.0077795 | 10101 | 514085165 | 0.0001342 |
10101051003 | 10101 | 65 | 2017 | 0.0059980 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3272 | 0.0133061 | 10101 | 879292556 | 0.0002643 |
10101051004 | 10101 | 307 | 2017 | 0.0283289 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3633 | 0.0147742 | 10101 | 976304968 | 0.0012485 |
10101061001 | 10101 | 1239 | 2017 | 0.1143305 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 6787 | 0.0276004 | 10101 | 1823887096 | 0.0050386 |
10101061002 | 10101 | 329 | 2017 | 0.0303590 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2729 | 0.0110979 | 10101 | 733370839 | 0.0013379 |
10101061003 | 10101 | 160 | 2017 | 0.0147642 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3668 | 0.0149165 | 10101 | 985710604 | 0.0006507 |
10101061004 | 10101 | 110 | 2017 | 0.0101504 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2995 | 0.0121796 | 10101 | 804853669 | 0.0004473 |
10101061005 | 10101 | 312 | 2017 | 0.0287903 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2571 | 0.0104554 | 10101 | 690911113 | 0.0012688 |
10101061006 | 10101 | 401 | 2017 | 0.0370029 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4130 | 0.0167953 | 10101 | 1109864993 | 0.0016307 |
10101061007 | 10101 | 12 | 2017 | 0.0011073 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 817 | 0.0033225 | 10101 | 219554407 | 0.0000488 |
10101061008 | 10101 | 388 | 2017 | 0.0358033 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2109 | 0.0085766 | 10101 | 566756724 | 0.0015779 |
10101061009 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 168 | 0.0006832 | 10101 | 45147051 | 0.0000041 |
10101061010 | 10101 | 6 | 2017 | 0.0005537 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1543 | 0.0062749 | 10101 | 414654161 | 0.0000244 |
10101062003 | 10101 | 10 | 2017 | 0.0009228 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 158 | 0.0006425 | 10101 | 42459726 | 0.0000407 |
10101062008 | 10101 | 72 | 2017 | 0.0066439 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 581 | 0.0023627 | 10101 | 156133550 | 0.0002928 |
10101062013 | 10101 | 61 | 2017 | 0.0056289 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 571 | 0.0023221 | 10101 | 153446225 | 0.0002481 |
10101062029 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 47 | 0.0001911 | 10101 | 12630425 | 0.0000041 |
10101062039 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 67 | 0.0002725 | 10101 | 18005074 | 0.0000163 |
10101071001 | 10101 | 20 | 2017 | 0.0018455 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2352 | 0.0095648 | 10101 | 632058708 | 0.0000813 |
10101071002 | 10101 | 54 | 2017 | 0.0049829 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3919 | 0.0159372 | 10101 | 1053162447 | 0.0002196 |
10101071003 | 10101 | 112 | 2017 | 0.0103350 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4978 | 0.0202438 | 10101 | 1337750105 | 0.0004555 |
10101071004 | 10101 | 75 | 2017 | 0.0069207 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3443 | 0.0140015 | 10101 | 925245804 | 0.0003050 |
10101071005 | 10101 | 61 | 2017 | 0.0056289 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2751 | 0.0111874 | 10101 | 739282953 | 0.0002481 |
10101071006 | 10101 | 60 | 2017 | 0.0055366 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4214 | 0.0171369 | 10101 | 1132438518 | 0.0002440 |
10101071007 | 10101 | 29 | 2017 | 0.0026760 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2345 | 0.0095363 | 10101 | 630177581 | 0.0001179 |
10101071008 | 10101 | 77 | 2017 | 0.0071053 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5480 | 0.0222853 | 10101 | 1472653792 | 0.0003131 |
10101071009 | 10101 | 49 | 2017 | 0.0045215 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3549 | 0.0144326 | 10101 | 953731443 | 0.0001993 |
10101071010 | 10101 | 48 | 2017 | 0.0044293 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3521 | 0.0143187 | 10101 | 946206935 | 0.0001952 |
10101071011 | 10101 | 43 | 2017 | 0.0039679 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3094 | 0.0125822 | 10101 | 831458181 | 0.0001749 |
10101071012 | 10101 | 47 | 2017 | 0.0043370 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2621 | 0.0106587 | 10101 | 704347735 | 0.0001911 |
10101071014 | 10101 | 26 | 2017 | 0.0023992 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 875 | 0.0035583 | 10101 | 235140888 | 0.0001057 |
10101072014 | 10101 | 36 | 2017 | 0.0033220 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 997 | 0.0040545 | 10101 | 267926246 | 0.0001464 |
10101072021 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 44 | 0.0001789 | 10101 | 11824228 | 0.0000163 |
10101072028 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 145 | 0.0005897 | 10101 | 38966204 | 0.0000163 |
10101072029 | 10101 | 36 | 2017 | 0.0033220 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1051 | 0.0042741 | 10101 | 282437798 | 0.0001464 |
10101072036 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 118 | 0.0004799 | 10101 | 31710428 | 0.0000041 |
10101072045 | 10101 | 7 | 2017 | 0.0006459 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 113 | 0.0004595 | 10101 | 30366766 | 0.0000285 |
10101082016 | 10101 | 13 | 2017 | 0.0011996 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 121 | 0.0004921 | 10101 | 32516626 | 0.0000529 |
10101082017 | 10101 | 5 | 2017 | 0.0004614 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 38 | 0.0001545 | 10101 | 10211833 | 0.0000203 |
10101082018 | 10101 | 13 | 2017 | 0.0011996 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 623 | 0.0025335 | 10101 | 167420312 | 0.0000529 |
10101082030 | 10101 | 3 | 2017 | 0.0002768 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 176 | 0.0007157 | 10101 | 47296910 | 0.0000122 |
10101082034 | 10101 | 5 | 2017 | 0.0004614 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 66 | 0.0002684 | 10101 | 17736341 | 0.0000203 |
10101082042 | 10101 | 12 | 2017 | 0.0011073 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 253 | 0.0010289 | 10101 | 67989308 | 0.0000488 |
10101082045 | 10101 | 6 | 2017 | 0.0005537 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 123 | 0.0005002 | 10101 | 33054091 | 0.0000244 |
10101092004 | 10101 | 6 | 2017 | 0.0005537 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 97 | 0.0003945 | 10101 | 26067047 | 0.0000244 |
10101092008 | 10101 | 83 | 2017 | 0.0076589 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 752 | 0.0030581 | 10101 | 202086798 | 0.0003375 |
10101092037 | 10101 | 11 | 2017 | 0.0010150 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 276 | 0.0011224 | 10101 | 74170154 | 0.0000447 |
10101092040 | 10101 | 33 | 2017 | 0.0030451 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 509 | 0.0020699 | 10101 | 136784814 | 0.0001342 |
10101092041 | 10101 | 44 | 2017 | 0.0040602 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1683 | 0.0068442 | 10101 | 452276703 | 0.0001789 |
10101092044 | 10101 | 21 | 2017 | 0.0019378 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 530 | 0.0021553 | 10101 | 142428195 | 0.0000854 |
10101102005 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 147 | 0.0005978 | 10101 | 39503669 | 0.0000041 |
10101102007 | 10101 | 12 | 2017 | 0.0011073 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 824 | 0.0033509 | 10101 | 221435534 | 0.0000488 |
10101102035 | 10101 | 22 | 2017 | 0.0020301 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 940 | 0.0038227 | 10101 | 252608497 | 0.0000895 |
10101102037 | 10101 | 3 | 2017 | 0.0002768 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 164 | 0.0006669 | 10101 | 44072121 | 0.0000122 |
10101102051 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 57 | 0.0002318 | 10101 | 15317749 | 0.0000041 |
10101112025 | 10101 | 13 | 2017 | 0.0011996 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1078 | 0.0043839 | 10101 | 289693574 | 0.0000529 |
10101122024 | 10101 | 6 | 2017 | 0.0005537 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 952 | 0.0038715 | 10101 | 255833286 | 0.0000244 |
10101131001 | 10101 | 88 | 2017 | 0.0081203 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 604 | 0.0024563 | 10101 | 162314396 | 0.0003579 |
10101132022 | 10101 | 15 | 2017 | 0.0013841 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 703 | 0.0028589 | 10101 | 188918908 | 0.0000610 |
10101132023 | 10101 | 12 | 2017 | 0.0011073 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 603 | 0.0024522 | 10101 | 162045664 | 0.0000488 |
10101132027 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 105 | 0.0004270 | 10101 | 28216907 | 0.0000041 |
10101132049 | 10101 | 77 | 2017 | 0.0071053 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1883 | 0.0076575 | 10101 | 506023192 | 0.0003131 |
10101142009 | 10101 | 2 | 2017 | 0.0001846 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 59 | 0.0002399 | 10101 | 15855214 | 0.0000081 |
10101142015 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 124 | 0.0005043 | 10101 | 33322823 | 0.0000163 |
10101142027 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 192 | 0.0007808 | 10101 | 51596629 | 0.0000163 |
10101142038 | 10101 | 3 | 2017 | 0.0002768 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 53 | 0.0002155 | 10101 | 14242820 | 0.0000122 |
10101142046 | 10101 | 9 | 2017 | 0.0008305 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 317 | 0.0012891 | 10101 | 85188185 | 0.0000366 |
10101142047 | 10101 | 11 | 2017 | 0.0010150 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 263 | 0.0010695 | 10101 | 70676633 | 0.0000447 |
10101142049 | 10101 | 61 | 2017 | 0.0056289 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 973 | 0.0039569 | 10101 | 261476668 | 0.0002481 |
nrow(tabla_001)
## [1] 12671
summary(tabla_001)
## zona código.x Freq.x anio
## 10101011001: 1 Length:12671 Min. : 1.00 Length:12671
## 10101011002: 1 Class :character 1st Qu.: 3.00 Class :character
## 10101021001: 1 Mode :character Median : 13.00 Mode :character
## 10101021002: 1 Mean : 88.55
## 10101021003: 1 3rd Qu.: 99.00
## 10101021004: 1 Max. :2209.00
## (Other) :12665
## p comuna.x promedio_i año
## Min. :0.0000161 Length:12671 Min. :156649 Length:12671
## 1st Qu.:0.0038380 Class :character 1st Qu.:221772 Class :character
## Median :0.0099865 Mode :character Median :258970 Mode :character
## Mean :0.0272275 Mean :263123
## 3rd Qu.:0.0259991 3rd Qu.:297912
## Max. :1.0000000 Max. :469344
## NA's :134
## comuna.y personas Ingresos_expandidos Freq.y
## Min. : 1101 Min. : 1250 Min. :2.925e+08 Min. : 1
## 1st Qu.: 6303 1st Qu.: 16394 1st Qu.:3.817e+09 1st Qu.: 100
## Median : 9104 Median : 38013 Median :8.862e+09 Median : 374
## Mean : 9346 Mean : 95867 Mean :2.922e+10 Mean : 1372
## 3rd Qu.:13117 3rd Qu.:147041 3rd Qu.:4.259e+10 3rd Qu.: 2556
## Max. :16305 Max. :568106 Max. :1.808e+11 Max. :11700
## NA's :134 NA's :134 NA's :134
## p_poblacional código.y multi_pob p_variable
## Min. :0.0000166 Length:12671 Min. :2.291e+05 Min. :0.00000
## 1st Qu.:0.0038052 Class :character 1st Qu.:2.338e+07 1st Qu.:0.00013
## Median :0.0103905 Mode :character Median :9.259e+07 Median :0.00038
## Mean :0.0259502 Mean :4.130e+08 Mean :0.00114
## 3rd Qu.:0.0252357 3rd Qu.:7.532e+08 3rd Qu.:0.00115
## Max. :0.9060475 Max. :4.695e+09 Max. :0.04290
## NA's :134 NA's :134
Descubramos si los campos multi_pob y p_variable poseen valores NA
any(is.na(tabla_001$multi_pob))
## [1] TRUE
any(is.na(tabla_001$p_variable))
## [1] TRUE
Reemplazaremos los valores NAs con los promedios de cada campo, generando dos nuevas columnas:
tabla_001$multi_pob_mean <- ifelse(is.na(tabla_001$multi_pob),
mean(tabla_001$multi_pob, na.rm = TRUE),
tabla_001$multi_pob
)
tabla_001$p_variable_mean <- ifelse(is.na(tabla_001$p_variable),
mean(tabla_001$p_variable, na.rm = TRUE),
tabla_001$p_variable
)
Verificamos:
any(is.na(tabla_001$multi_pob_mean))
## [1] FALSE
any(is.na(tabla_001$p_variable_mean))
## [1] FALSE
A veces los outliers pueden distorsionar mucho un modelo. La manera más fácil de identificarlos es por medio del análisis de diagramas de caja y bigotes.
Observemos cómo quedaron nuestros nuevos campos:
r3_100 <- tabla_001[c(1:100),]
kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | anio | p | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p_poblacional | código.y | multi_pob | p_variable | multi_pob_mean | p_variable_mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 60 | 2017 | 0.0055366 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 584 | 0.0023749 | 10101 | 156939747 | 0.0002440 | 156939747 | 0.0002440 |
10101011002 | 10101 | 177 | 2017 | 0.0163329 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2941 | 0.0119600 | 10101 | 790342117 | 0.0007198 | 790342117 | 0.0007198 |
10101021001 | 10101 | 82 | 2017 | 0.0075667 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3953 | 0.0160755 | 10101 | 1062299350 | 0.0003335 | 1062299350 | 0.0003335 |
10101021002 | 10101 | 77 | 2017 | 0.0071053 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1107 | 0.0045018 | 10101 | 297486815 | 0.0003131 | 297486815 | 0.0003131 |
10101021003 | 10101 | 70 | 2017 | 0.0064594 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2294 | 0.0093289 | 10101 | 616472226 | 0.0002847 | 616472226 | 0.0002847 |
10101021004 | 10101 | 99 | 2017 | 0.0091354 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3391 | 0.0137900 | 10101 | 911271717 | 0.0004026 | 911271717 | 0.0004026 |
10101021005 | 10101 | 171 | 2017 | 0.0157793 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2564 | 0.0104269 | 10101 | 689029986 | 0.0006954 | 689029986 | 0.0006954 |
10101031001 | 10101 | 133 | 2017 | 0.0122728 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4530 | 0.0184220 | 10101 | 1217357970 | 0.0005409 | 1217357970 | 0.0005409 |
10101031002 | 10101 | 115 | 2017 | 0.0106118 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4740 | 0.0192760 | 10101 | 1273791783 | 0.0004677 | 1273791783 | 0.0004677 |
10101031003 | 10101 | 94 | 2017 | 0.0086740 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4107 | 0.0167018 | 10101 | 1103684147 | 0.0003823 | 1103684147 | 0.0003823 |
10101031004 | 10101 | 88 | 2017 | 0.0081203 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2856 | 0.0116144 | 10101 | 767499859 | 0.0003579 | 767499859 | 0.0003579 |
10101031005 | 10101 | 146 | 2017 | 0.0134724 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5690 | 0.0231393 | 10101 | 1529087605 | 0.0005937 | 1529087605 | 0.0005937 |
10101031006 | 10101 | 94 | 2017 | 0.0086740 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2460 | 0.0100040 | 10101 | 661081812 | 0.0003823 | 661081812 | 0.0003823 |
10101031007 | 10101 | 39 | 2017 | 0.0035988 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2292 | 0.0093208 | 10101 | 615934761 | 0.0001586 | 615934761 | 0.0001586 |
10101031008 | 10101 | 54 | 2017 | 0.0049829 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3585 | 0.0145790 | 10101 | 963405811 | 0.0002196 | 963405811 | 0.0002196 |
10101031009 | 10101 | 166 | 2017 | 0.0153179 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4436 | 0.0180397 | 10101 | 1192097121 | 0.0006751 | 1192097121 | 0.0006751 |
10101031010 | 10101 | 92 | 2017 | 0.0084894 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3566 | 0.0145017 | 10101 | 958299894 | 0.0003741 | 958299894 | 0.0003741 |
10101031011 | 10101 | 49 | 2017 | 0.0045215 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2757 | 0.0112118 | 10101 | 740895347 | 0.0001993 | 740895347 | 0.0001993 |
10101031012 | 10101 | 94 | 2017 | 0.0086740 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1849 | 0.0075193 | 10101 | 496886289 | 0.0003823 | 496886289 | 0.0003823 |
10101031013 | 10101 | 73 | 2017 | 0.0067362 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3945 | 0.0160430 | 10101 | 1060149491 | 0.0002969 | 1060149491 | 0.0002969 |
10101031014 | 10101 | 109 | 2017 | 0.0100581 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2265 | 0.0092110 | 10101 | 608678985 | 0.0004433 | 608678985 | 0.0004433 |
10101031015 | 10101 | 31 | 2017 | 0.0028606 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1930 | 0.0078487 | 10101 | 518653616 | 0.0001261 | 518653616 | 0.0001261 |
10101031016 | 10101 | 248 | 2017 | 0.0228846 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3071 | 0.0124887 | 10101 | 825277335 | 0.0010085 | 825277335 | 0.0010085 |
10101031017 | 10101 | 60 | 2017 | 0.0055366 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3885 | 0.0157990 | 10101 | 1044025544 | 0.0002440 | 1044025544 | 0.0002440 |
10101032002 | 10101 | 2 | 2017 | 0.0001846 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 129 | 0.0005246 | 10101 | 34666485 | 0.0000081 | 34666485 | 0.0000081 |
10101032011 | 10101 | 20 | 2017 | 0.0018455 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 426 | 0.0017324 | 10101 | 114480021 | 0.0000813 | 114480021 | 0.0000813 |
10101032019 | 10101 | 32 | 2017 | 0.0029528 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 829 | 0.0033713 | 10101 | 222779196 | 0.0001301 | 222779196 | 0.0001301 |
10101041001 | 10101 | 70 | 2017 | 0.0064594 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4342 | 0.0176574 | 10101 | 1166836271 | 0.0002847 | 1166836271 | 0.0002847 |
10101041002 | 10101 | 55 | 2017 | 0.0050752 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2169 | 0.0088206 | 10101 | 582880671 | 0.0002237 | 582880671 | 0.0002237 |
10101041003 | 10101 | 774 | 2017 | 0.0714220 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5202 | 0.0211548 | 10101 | 1397946172 | 0.0031476 | 1397946172 | 0.0031476 |
10101051001 | 10101 | 246 | 2017 | 0.0227000 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2463 | 0.0100162 | 10101 | 661888009 | 0.0010004 | 661888009 | 0.0010004 |
10101051002 | 10101 | 33 | 2017 | 0.0030451 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1913 | 0.0077795 | 10101 | 514085165 | 0.0001342 | 514085165 | 0.0001342 |
10101051003 | 10101 | 65 | 2017 | 0.0059980 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3272 | 0.0133061 | 10101 | 879292556 | 0.0002643 | 879292556 | 0.0002643 |
10101051004 | 10101 | 307 | 2017 | 0.0283289 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3633 | 0.0147742 | 10101 | 976304968 | 0.0012485 | 976304968 | 0.0012485 |
10101061001 | 10101 | 1239 | 2017 | 0.1143305 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 6787 | 0.0276004 | 10101 | 1823887096 | 0.0050386 | 1823887096 | 0.0050386 |
10101061002 | 10101 | 329 | 2017 | 0.0303590 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2729 | 0.0110979 | 10101 | 733370839 | 0.0013379 | 733370839 | 0.0013379 |
10101061003 | 10101 | 160 | 2017 | 0.0147642 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3668 | 0.0149165 | 10101 | 985710604 | 0.0006507 | 985710604 | 0.0006507 |
10101061004 | 10101 | 110 | 2017 | 0.0101504 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2995 | 0.0121796 | 10101 | 804853669 | 0.0004473 | 804853669 | 0.0004473 |
10101061005 | 10101 | 312 | 2017 | 0.0287903 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2571 | 0.0104554 | 10101 | 690911113 | 0.0012688 | 690911113 | 0.0012688 |
10101061006 | 10101 | 401 | 2017 | 0.0370029 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4130 | 0.0167953 | 10101 | 1109864993 | 0.0016307 | 1109864993 | 0.0016307 |
10101061007 | 10101 | 12 | 2017 | 0.0011073 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 817 | 0.0033225 | 10101 | 219554407 | 0.0000488 | 219554407 | 0.0000488 |
10101061008 | 10101 | 388 | 2017 | 0.0358033 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2109 | 0.0085766 | 10101 | 566756724 | 0.0015779 | 566756724 | 0.0015779 |
10101061009 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 168 | 0.0006832 | 10101 | 45147051 | 0.0000041 | 45147051 | 0.0000041 |
10101061010 | 10101 | 6 | 2017 | 0.0005537 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1543 | 0.0062749 | 10101 | 414654161 | 0.0000244 | 414654161 | 0.0000244 |
10101062003 | 10101 | 10 | 2017 | 0.0009228 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 158 | 0.0006425 | 10101 | 42459726 | 0.0000407 | 42459726 | 0.0000407 |
10101062008 | 10101 | 72 | 2017 | 0.0066439 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 581 | 0.0023627 | 10101 | 156133550 | 0.0002928 | 156133550 | 0.0002928 |
10101062013 | 10101 | 61 | 2017 | 0.0056289 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 571 | 0.0023221 | 10101 | 153446225 | 0.0002481 | 153446225 | 0.0002481 |
10101062029 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 47 | 0.0001911 | 10101 | 12630425 | 0.0000041 | 12630425 | 0.0000041 |
10101062039 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 67 | 0.0002725 | 10101 | 18005074 | 0.0000163 | 18005074 | 0.0000163 |
10101071001 | 10101 | 20 | 2017 | 0.0018455 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2352 | 0.0095648 | 10101 | 632058708 | 0.0000813 | 632058708 | 0.0000813 |
10101071002 | 10101 | 54 | 2017 | 0.0049829 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3919 | 0.0159372 | 10101 | 1053162447 | 0.0002196 | 1053162447 | 0.0002196 |
10101071003 | 10101 | 112 | 2017 | 0.0103350 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4978 | 0.0202438 | 10101 | 1337750105 | 0.0004555 | 1337750105 | 0.0004555 |
10101071004 | 10101 | 75 | 2017 | 0.0069207 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3443 | 0.0140015 | 10101 | 925245804 | 0.0003050 | 925245804 | 0.0003050 |
10101071005 | 10101 | 61 | 2017 | 0.0056289 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2751 | 0.0111874 | 10101 | 739282953 | 0.0002481 | 739282953 | 0.0002481 |
10101071006 | 10101 | 60 | 2017 | 0.0055366 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 4214 | 0.0171369 | 10101 | 1132438518 | 0.0002440 | 1132438518 | 0.0002440 |
10101071007 | 10101 | 29 | 2017 | 0.0026760 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2345 | 0.0095363 | 10101 | 630177581 | 0.0001179 | 630177581 | 0.0001179 |
10101071008 | 10101 | 77 | 2017 | 0.0071053 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 5480 | 0.0222853 | 10101 | 1472653792 | 0.0003131 | 1472653792 | 0.0003131 |
10101071009 | 10101 | 49 | 2017 | 0.0045215 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3549 | 0.0144326 | 10101 | 953731443 | 0.0001993 | 953731443 | 0.0001993 |
10101071010 | 10101 | 48 | 2017 | 0.0044293 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3521 | 0.0143187 | 10101 | 946206935 | 0.0001952 | 946206935 | 0.0001952 |
10101071011 | 10101 | 43 | 2017 | 0.0039679 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 3094 | 0.0125822 | 10101 | 831458181 | 0.0001749 | 831458181 | 0.0001749 |
10101071012 | 10101 | 47 | 2017 | 0.0043370 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 2621 | 0.0106587 | 10101 | 704347735 | 0.0001911 | 704347735 | 0.0001911 |
10101071014 | 10101 | 26 | 2017 | 0.0023992 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 875 | 0.0035583 | 10101 | 235140888 | 0.0001057 | 235140888 | 0.0001057 |
10101072014 | 10101 | 36 | 2017 | 0.0033220 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 997 | 0.0040545 | 10101 | 267926246 | 0.0001464 | 267926246 | 0.0001464 |
10101072021 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 44 | 0.0001789 | 10101 | 11824228 | 0.0000163 | 11824228 | 0.0000163 |
10101072028 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 145 | 0.0005897 | 10101 | 38966204 | 0.0000163 | 38966204 | 0.0000163 |
10101072029 | 10101 | 36 | 2017 | 0.0033220 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1051 | 0.0042741 | 10101 | 282437798 | 0.0001464 | 282437798 | 0.0001464 |
10101072036 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 118 | 0.0004799 | 10101 | 31710428 | 0.0000041 | 31710428 | 0.0000041 |
10101072045 | 10101 | 7 | 2017 | 0.0006459 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 113 | 0.0004595 | 10101 | 30366766 | 0.0000285 | 30366766 | 0.0000285 |
10101082016 | 10101 | 13 | 2017 | 0.0011996 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 121 | 0.0004921 | 10101 | 32516626 | 0.0000529 | 32516626 | 0.0000529 |
10101082017 | 10101 | 5 | 2017 | 0.0004614 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 38 | 0.0001545 | 10101 | 10211833 | 0.0000203 | 10211833 | 0.0000203 |
10101082018 | 10101 | 13 | 2017 | 0.0011996 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 623 | 0.0025335 | 10101 | 167420312 | 0.0000529 | 167420312 | 0.0000529 |
10101082030 | 10101 | 3 | 2017 | 0.0002768 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 176 | 0.0007157 | 10101 | 47296910 | 0.0000122 | 47296910 | 0.0000122 |
10101082034 | 10101 | 5 | 2017 | 0.0004614 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 66 | 0.0002684 | 10101 | 17736341 | 0.0000203 | 17736341 | 0.0000203 |
10101082042 | 10101 | 12 | 2017 | 0.0011073 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 253 | 0.0010289 | 10101 | 67989308 | 0.0000488 | 67989308 | 0.0000488 |
10101082045 | 10101 | 6 | 2017 | 0.0005537 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 123 | 0.0005002 | 10101 | 33054091 | 0.0000244 | 33054091 | 0.0000244 |
10101092004 | 10101 | 6 | 2017 | 0.0005537 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 97 | 0.0003945 | 10101 | 26067047 | 0.0000244 | 26067047 | 0.0000244 |
10101092008 | 10101 | 83 | 2017 | 0.0076589 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 752 | 0.0030581 | 10101 | 202086798 | 0.0003375 | 202086798 | 0.0003375 |
10101092037 | 10101 | 11 | 2017 | 0.0010150 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 276 | 0.0011224 | 10101 | 74170154 | 0.0000447 | 74170154 | 0.0000447 |
10101092040 | 10101 | 33 | 2017 | 0.0030451 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 509 | 0.0020699 | 10101 | 136784814 | 0.0001342 | 136784814 | 0.0001342 |
10101092041 | 10101 | 44 | 2017 | 0.0040602 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1683 | 0.0068442 | 10101 | 452276703 | 0.0001789 | 452276703 | 0.0001789 |
10101092044 | 10101 | 21 | 2017 | 0.0019378 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 530 | 0.0021553 | 10101 | 142428195 | 0.0000854 | 142428195 | 0.0000854 |
10101102005 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 147 | 0.0005978 | 10101 | 39503669 | 0.0000041 | 39503669 | 0.0000041 |
10101102007 | 10101 | 12 | 2017 | 0.0011073 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 824 | 0.0033509 | 10101 | 221435534 | 0.0000488 | 221435534 | 0.0000488 |
10101102035 | 10101 | 22 | 2017 | 0.0020301 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 940 | 0.0038227 | 10101 | 252608497 | 0.0000895 | 252608497 | 0.0000895 |
10101102037 | 10101 | 3 | 2017 | 0.0002768 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 164 | 0.0006669 | 10101 | 44072121 | 0.0000122 | 44072121 | 0.0000122 |
10101102051 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 57 | 0.0002318 | 10101 | 15317749 | 0.0000041 | 15317749 | 0.0000041 |
10101112025 | 10101 | 13 | 2017 | 0.0011996 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1078 | 0.0043839 | 10101 | 289693574 | 0.0000529 | 289693574 | 0.0000529 |
10101122024 | 10101 | 6 | 2017 | 0.0005537 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 952 | 0.0038715 | 10101 | 255833286 | 0.0000244 | 255833286 | 0.0000244 |
10101131001 | 10101 | 88 | 2017 | 0.0081203 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 604 | 0.0024563 | 10101 | 162314396 | 0.0003579 | 162314396 | 0.0003579 |
10101132022 | 10101 | 15 | 2017 | 0.0013841 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 703 | 0.0028589 | 10101 | 188918908 | 0.0000610 | 188918908 | 0.0000610 |
10101132023 | 10101 | 12 | 2017 | 0.0011073 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 603 | 0.0024522 | 10101 | 162045664 | 0.0000488 | 162045664 | 0.0000488 |
10101132027 | 10101 | 1 | 2017 | 0.0000923 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 105 | 0.0004270 | 10101 | 28216907 | 0.0000041 | 28216907 | 0.0000041 |
10101132049 | 10101 | 77 | 2017 | 0.0071053 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 1883 | 0.0076575 | 10101 | 506023192 | 0.0003131 | 506023192 | 0.0003131 |
10101142009 | 10101 | 2 | 2017 | 0.0001846 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 59 | 0.0002399 | 10101 | 15855214 | 0.0000081 | 15855214 | 0.0000081 |
10101142015 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 124 | 0.0005043 | 10101 | 33322823 | 0.0000163 | 33322823 | 0.0000163 |
10101142027 | 10101 | 4 | 2017 | 0.0003691 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 192 | 0.0007808 | 10101 | 51596629 | 0.0000163 | 51596629 | 0.0000163 |
10101142038 | 10101 | 3 | 2017 | 0.0002768 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 53 | 0.0002155 | 10101 | 14242820 | 0.0000122 | 14242820 | 0.0000122 |
10101142046 | 10101 | 9 | 2017 | 0.0008305 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 317 | 0.0012891 | 10101 | 85188185 | 0.0000366 | 85188185 | 0.0000366 |
10101142047 | 10101 | 11 | 2017 | 0.0010150 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 263 | 0.0010695 | 10101 | 70676633 | 0.0000447 | 70676633 | 0.0000447 |
10101142049 | 10101 | 61 | 2017 | 0.0056289 | Puerto Montt | 268732.4 | 2017 | 10101 | 245902 | 66081845388 | 973 | 0.0039569 | 10101 | 261476668 | 0.0002481 | 261476668 | 0.0002481 |
par(mfrow = c(1,2))
boxplot(tabla_001$multi_pob_mean, col="#FF6B00" , xlab="bottom & left box",
main = "multi_pob_mean",
boxwex = 0.9)
boxplot(tabla_001$p_variable_mean , col="#2398AB" , xlab="bottom & left box",
main = "p_variable_mean",
boxwex = 0.9)
La línea central es la mediana y los extremos de la caja el primer y el tercer cuartil (rango intercuartílico), en el que cae el 50% de las observaciones.
Podemos enmascarar outliers con transformaciones. Por ejemplo, podemos reemplazar los valores que estén debajo del quinto percentil y los que estén por sobre el 95 avo percentil con los valores medios, tal como lo hicimos previamente sobre los NAs o con las medianas.
sobre multi_pob_mean:
outliers <- function(x, removeNA = TRUE){
quantiles <- quantile(x, c(0.05, 0.95), na.rm = removeNA)
x[x < quantiles[1]] <- mean(x, na.rm = removeNA)
x[x > quantiles[2]] <- mean(x, na.rm = removeNA)
x
}
outliers_data <- outliers(tabla_001$multi_pob_mean)
par(mfrow = c(1,2))
boxplot(tabla_001$multi_pob, col="#FF6B00" , xlab="multi_pob_mean", main = "con outliers")
boxplot(outliers_data, col="#FF6B00" , xlab="multi_pob_mean", main = "sin outliers")
sobre multi_pob_mean:
outliers <- function(x, removeNA = TRUE){
quantiles <- quantile(x, c(0.05, 0.95), na.rm = removeNA)
x[x < quantiles[1]] <- median(x, na.rm = removeNA)
x[x > quantiles[2]] <- median(x, na.rm = removeNA)
x
}
outliers_data <- outliers(tabla_001$multi_pob_mean)
par(mfrow = c(1,2))
boxplot(tabla_001$multi_pob_mean, col="#FF6B00" , xlab="multi_pob_mean medianas", main = "con outliers")
boxplot(outliers_data, col="#FF6B00" , xlab="multi_pob_mean medianas", main = "sin outliers")
Sustituímos los valores que están fuera de los bigotes con los valores del percentil 5 y el 95 respectivamente.
sobre multi_pob_mean:
replace_outliers <- function(x, removeNA = TRUE){
qrts <- quantile(x, probs = c(0.25, 0.75), na.rm =removeNA)
caps <- quantile(x, probs = c(0.05, 0.95), na.rm =removeNA)
iqr <- qrts[2] - qrts[1]
h <- 1.5*iqr
x[x < qrts[1] - h] <- caps[1]
x[x > qrts[2] + h] <- caps[2]
x
}
multi_pob_capped <- replace_outliers(tabla_001$multi_pob_mean)
par(mfrow = c(1,2))
boxplot(tabla_001$multi_pob_mean, col="#FF6B00" , xlab="multi_pob_mean", main = "con outliers")
boxplot(multi_pob_capped, col="#FF6B00" , xlab="multi_pob_mean", main = "sin outliers")
length(multi_pob_capped)
## [1] 12671
Vemos que resulta mucho mejor ésta última técnica, por lo que lo aplicamos para los campos multi_pob_mean y p_variable_mean.
p_variable_capped_multi_pob_mean <- replace_outliers(tabla_001$multi_pob_mean)
p_variable_capped_p_variable_mean <- replace_outliers(tabla_001$p_variable_mean)
par(mfrow = c(1,2))
boxplot(p_variable_capped_multi_pob_mean, col="#FF6B00" , xlab="multi_pob_mean", main = "multi_pob_mean sin outliers")
boxplot(p_variable_capped_p_variable_mean, col="#2398AB" , xlab="p_variable_mean", main = "p_variable_mean sin outliers")
Histograma y densidad para multi_pob_mean sin outliers
par(mfrow = c(1,2))
hist(p_variable_capped_multi_pob_mean, col="#FF6B00", main="Histograma")
plot(density(p_variable_capped_multi_pob_mean), main="Densidad", col="red")
Histograma y densidad para p_variable_mean sin outliers
par(mfrow = c(1,2))
hist(p_variable_capped_p_variable_mean, col="#2398AB" ,main="Histograma")
plot(density(p_variable_capped_p_variable_mean), main="Densidad", col="red")
x <- quantile(tabla_001$multi_pob_mean,c(0.05,0.95))
data_clean <- tabla_001[tabla_001$multi_pob_mean >= x[1] & tabla_001$multi_pob_mean <= x[2],]
y <- quantile(data_clean$p_variable_mean,c(0.05,0.95))
data_clean <- data_clean[data_clean$p_variable_mean >= y[1] & data_clean$p_variable_mean <= y[2],]
head(data_clean,10)
## zona código.x Freq.x anio p comuna.x promedio_i año
## 1 10101011001 10101 60 2017 0.005536588 Puerto Montt 268732.4 2017
## 2 10101011002 10101 177 2017 0.016332933 Puerto Montt 268732.4 2017
## 3 10101021001 10101 82 2017 0.007566670 Puerto Montt 268732.4 2017
## 4 10101021002 10101 77 2017 0.007105287 Puerto Montt 268732.4 2017
## 5 10101021003 10101 70 2017 0.006459352 Puerto Montt 268732.4 2017
## 6 10101021004 10101 99 2017 0.009135370 Puerto Montt 268732.4 2017
## 7 10101021005 10101 171 2017 0.015779275 Puerto Montt 268732.4 2017
## 8 10101031001 10101 133 2017 0.012272769 Puerto Montt 268732.4 2017
## 9 10101031002 10101 115 2017 0.010611793 Puerto Montt 268732.4 2017
## 10 10101031003 10101 94 2017 0.008673987 Puerto Montt 268732.4 2017
## comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y
## 1 10101 245902 66081845388 584 0.002374930 10101
## 2 10101 245902 66081845388 2941 0.011960049 10101
## 3 10101 245902 66081845388 3953 0.016075510 10101
## 4 10101 245902 66081845388 1107 0.004501793 10101
## 5 10101 245902 66081845388 2294 0.009328920 10101
## 6 10101 245902 66081845388 3391 0.013790046 10101
## 7 10101 245902 66081845388 2564 0.010426918 10101
## 8 10101 245902 66081845388 4530 0.018421973 10101
## 9 10101 245902 66081845388 4740 0.019275972 10101
## 10 10101 245902 66081845388 4107 0.016701776 10101
## multi_pob p_variable multi_pob_mean p_variable_mean
## 1 156939747 0.0002439996 156939747 0.0002439996
## 2 790342117 0.0007197989 790342117 0.0007197989
## 3 1062299350 0.0003334662 1062299350 0.0003334662
## 4 297486815 0.0003131329 297486815 0.0003131329
## 5 616472226 0.0002846662 616472226 0.0002846662
## 6 911271717 0.0004025994 911271717 0.0004025994
## 7 689029986 0.0006953990 689029986 0.0006953990
## 8 1217357970 0.0005408659 1217357970 0.0005408659
## 9 1273791783 0.0004676660 1273791783 0.0004676660
## 10 1103684147 0.0003822661 1103684147 0.0003822661
scatter.smooth(x=data_clean$p_variable_mean, y=data_clean$multi_pob_mean, main="p_variable ~ multi_pob")
ggplot(data_clean, aes(x = p_variable_mean, y = multi_pob_mean)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
## `geom_smooth()` using formula 'y ~ x'
linearMod <- lm( multi_pob_mean~p_variable_mean , data=data_clean)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob_mean ~ p_variable_mean, data = data_clean)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.161e+09 -2.168e+08 -1.712e+08 1.945e+08 1.279e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.862e+08 5.119e+06 36.38 <2e-16 ***
## p_variable_mean 2.271e+11 4.537e+09 50.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 394700000 on 10271 degrees of freedom
## Multiple R-squared: 0.1961, Adjusted R-squared: 0.196
## F-statistic: 2505 on 1 and 10271 DF, p-value: < 2.2e-16
El \(R^2\) es una medida estadística de qué tan cerca están los datos de la línea de regresión ajustada.
Es el porcentaje de la variación en la variable de respuesta que es explicado por un modelo lineal. Es decir:
\[ R^2 = \frac{Variación\ explicada}{variación\ total} \]
Cuanto mayor sea la varianza explicada por el modelo de regresión, más cerca estarán los puntos de los datos de la línea de regresión ajustada.
Un valor bajo de \(R^2\) no es inherentemente malo. Si el valor del \(R^2\) es bajo pero se tienen predictores estadísticamente significativos, aún se puede obtener conclusiones importantes acerca de la asociación entre los cambios en los valores de los predictores y los cambios en el valor de respuesta. Independientemente del \(R^2\), los coeficientes significativos aún representan el cambio medio en la respuesta para una unidad de cambio en el predictor mientras se mantienen constantes los otros predictores del modelo.
Los residuos son los errores que se cometen en la estimación.
boxplot(linearMod$residuals)
par(mfrow = c (2,2))
plot(linearMod)
Corroboramos que los residuos sigan un patrón lineal. La línea es recta y horizontal, por lo que deducimos que la relación es efectivamente lineal. Se busca verificar la linealidad entre las variables de entrada y salida. Un modelo lineal nunca podrá capturar una relación no lineal.
Aquí verificamos que los errores del modelo estén normalmente distribuídos. Parece cumplirse pues los valores están muy próximos a la línea recta punteada.
Verificamos las condiciones de homocedasticidad, es decir que todos los residuos posean la misma varianza, que es uno de los supuestos al realizar un análisis de regresión. El supuesto parace cumplirse pues la línea roja no parece seguir ningún patrón.
Acá podemos identificar los outliers influyentes en el análisis de regresión, que pueden sesgar el modelo. Parece haber dos valores influyentes (caen fuera de la distancia de Cook).
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
linearMod <- lm( multi_pob_mean~p_variable_mean^2 , data=data_clean)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob_mean ~ p_variable_mean^2, data = data_clean)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.161e+09 -2.168e+08 -1.712e+08 1.945e+08 1.279e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.862e+08 5.119e+06 36.38 <2e-16 ***
## p_variable_mean 2.271e+11 4.537e+09 50.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 394700000 on 10271 degrees of freedom
## Multiple R-squared: 0.1961, Adjusted R-squared: 0.196
## F-statistic: 2505 on 1 and 10271 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 logX \]
linearMod <- lm( multi_pob_mean~log(p_variable_mean) , data=data_clean)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob_mean ~ log(p_variable_mean), data = data_clean)
##
## Residuals:
## Min 1Q Median 3Q Max
## -787823248 -263759357 -83185338 176681879 1249525349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.828e+09 2.452e+07 74.54 <2e-16 ***
## log(p_variable_mean) 1.873e+08 3.076e+06 60.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 377400000 on 10271 degrees of freedom
## Multiple R-squared: 0.2651, Adjusted R-squared: 0.265
## F-statistic: 3705 on 1 and 10271 DF, p-value: < 2.2e-16
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
linearMod <- lm( multi_pob_mean~p_variable_mean^3 , data=data_clean)
summary(linearMod)
##
## Call:
## lm(formula = multi_pob_mean ~ p_variable_mean^3, data = data_clean)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.161e+09 -2.168e+08 -1.712e+08 1.945e+08 1.279e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.862e+08 5.119e+06 36.38 <2e-16 ***
## p_variable_mean 2.271e+11 4.537e+09 50.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 394700000 on 10271 degrees of freedom
## Multiple R-squared: 0.1961, Adjusted R-squared: 0.196
## F-statistic: 2505 on 1 and 10271 DF, p-value: < 2.2e-16
Vemos que el ajuste logarítmico nos ofrece el mayor \(R^2\).
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda