Chapter 03 (page 120): 2, 9, 10, 12

2. Carefully explain the differences between the KNN classifier and KNN regression methods.

  • The KNN Classifier is typically used to to solve classification problems (qualitative) while KNN regression method is used to solve regression problems (quantitative).

9. This question involves the use of multiple linear regression on the Auto data set.

(a) Produce a scatterplot matrix which includes all of the variables in the data set.
require(ISLR)
## Loading required package: ISLR
## Warning: package 'ISLR' was built under R version 4.0.5
pairs(Auto)

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, cor() which is qualitative.
names(Auto)
## [1] "mpg"          "cylinders"    "displacement" "horsepower"   "weight"      
## [6] "acceleration" "year"         "origin"       "name"
cor(Auto[1:8])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000
(c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output. For instance:
mpg1 <- lm(mpg ~ . - name, data = Auto)
summary(mpg1)
## 
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16
  1. Is there a relationship between the predictors and the response?
  • Ho: There is a relationship between the predictors and the response.

  • Ha: There is not a relationship between the predictors and the response.

  • When looking at the p-values Since some of the p values are smaller then the significance level of .05 we can say that mpg does have a relationship with the other predictors. We keep the null hypothesis.

  1. Which predictors appear to have a statistically significant relationship to the response?
  • Again, looking at the p-values. The predictors with a p-value less than the .05 significance level are displacement, weight, year, and origin.
  1. What does the coefficient for the year variable suggest?
  • For every 1 year increase there is an increase of 0.750773 in mpg while all other predictors remain constant.
(d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?
par(mfrow = c(2, 2))
plot(mpg1)

  • Looking at the residuals vs. fitted plot you can see that there a few outliers and that the graph is not very linear.
(e) Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?
rm1 <- lm(mpg ~ cylinders * displacement+displacement * weight, data = Auto[, 1:8])
summary(rm1)
## 
## Call:
## lm(formula = mpg ~ cylinders * displacement + displacement * 
##     weight, data = Auto[, 1:8])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.2934  -2.5184  -0.3476   1.8399  17.7723 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             5.262e+01  2.237e+00  23.519  < 2e-16 ***
## cylinders               7.606e-01  7.669e-01   0.992    0.322    
## displacement           -7.351e-02  1.669e-02  -4.403 1.38e-05 ***
## weight                 -9.888e-03  1.329e-03  -7.438 6.69e-13 ***
## cylinders:displacement -2.986e-03  3.426e-03  -0.872    0.384    
## displacement:weight     2.128e-05  5.002e-06   4.254 2.64e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.103 on 386 degrees of freedom
## Multiple R-squared:  0.7272, Adjusted R-squared:  0.7237 
## F-statistic: 205.8 on 5 and 386 DF,  p-value: < 2.2e-16
  • When looking at the p-values of the interactions using .05 significance level:
  • cylinders:displacement - Not statistically significant.
  • displacement:weight - Statically significant.
(f) Try a few different transformations of the variables, such as log(X), √ X, X2. Comment on your findings.
lm_trans = lm(mpg ~ . - name + log(weight) + sqrt(horsepower) + I(displacement^2) +
I(cylinders^2),data=Auto)
summary(lm_trans)
## 
## Call:
## lm(formula = mpg ~ . - name + log(weight) + sqrt(horsepower) + 
##     I(displacement^2) + I(cylinders^2), data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.2216 -1.4972 -0.1142  1.4184 11.9541 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.228e+02  4.381e+01   2.803  0.00532 ** 
## cylinders          3.360e-01  1.451e+00   0.232  0.81697    
## displacement      -3.765e-02  2.175e-02  -1.731  0.08421 .  
## horsepower         2.197e-01  6.684e-02   3.287  0.00111 ** 
## weight             1.181e-03  2.074e-03   0.569  0.56949    
## acceleration      -2.036e-01  1.004e-01  -2.028  0.04323 *  
## year               7.654e-01  4.526e-02  16.911  < 2e-16 ***
## origin             5.497e-01  2.679e-01   2.052  0.04088 *  
## log(weight)       -1.493e+01  6.714e+00  -2.223  0.02678 *  
## sqrt(horsepower)  -5.998e+00  1.493e+00  -4.018 7.06e-05 ***
## I(displacement^2)  6.788e-05  3.773e-05   1.799  0.07279 .  
## I(cylinders^2)    -1.067e-02  1.164e-01  -0.092  0.92702    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.904 on 380 degrees of freedom
## Multiple R-squared:  0.8654, Adjusted R-squared:  0.8615 
## F-statistic: 222.2 on 11 and 380 DF,  p-value: < 2.2e-16
  • The relationship between mpg and the sqrt of horsepower show to have a significant relationship.

10. This question should be answered using the Carseats data set.

require(ISLR)
data(Carseats)
(a) Fit a multiple regression model to predict Sales using Price, Urban, and US.
sales.lm <- lm(Sales ~ Price + Urban + US, data=Carseats)
summary(sales.lm)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16
(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!
  • Price: Sales have decreased -0.054459 for each dollar increase in Price. Looking at the p-value it is below the significance level of .05 so this variable is statistically significant.

  • UrbanYes: Sales have decreased -0.021916 for each dollar increase in Urban. Looking at the p-value it is above the significance level of .05 so this variable is not statistically significant.

  • USYes: Qualitative: Sales are higher in the US by 1.200573. Looking at the p-value it is below the significance level of .05 so this variable is statistically significant.

(c) Write out the model in equation form, being careful to handle the qualitative variables properly.
  • Sales = 13.043469 - 0.054459 x (Price) - 0.021916 x (UrbanYes) + 1.200573 x (USYes)
(d) For which of the predictors can you reject the null hypothesis H0 : βj = 0?
  • We can reject both Price and USYes since both of the p-values are below the signifigance level of .05.
(e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.
sales.lm2 <- lm(Sales ~ Price + US, data=Carseats)
summary(sales.lm2)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16
(f) How well do the models in (a) and (e) fit the data?

sales.lm (Price + Urban + US) - Residual standard error = 2.472 - R-Squared = 0.2393

sales.lm2 (Price + US) - Residual standard error = 2.469 - R-Squared = 0.2393

  • Sales.lm has lower Residual standard error then sales.lm2.
(g) Using the model from (e), obtain 95 % confidence intervals for the coefficient(s).
confint(sales.lm2)
##                   2.5 %      97.5 %
## (Intercept) 11.79032020 14.27126531
## Price       -0.06475984 -0.04419543
## USYes        0.69151957  1.70776632
(h) Is there evidence of outliers or high leverage observations in the model from (e)?
par(mfrow=c(2,2))
plot(sales.lm2) 

  • There is no clear evidence showing any outliers from the plots above.

12. This problem involves simple linear regression without an intercept.

(a) Recall that the coefficient estimate βˆ for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?
  • When x_{i}=y_{i}
(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.
set.seed(1)
x <- 1:100
sum(x^2)
## [1] 338350
y = 2 * x + rnorm(100, sd = 0.1)
sum(y^2)
## [1] 1353606
fit.Y = lm(y ~ x + 0)
fit.X = lm(x ~ y + 0)
summary(fit.Y)
## 
## Call:
## lm(formula = y ~ x + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.223590 -0.062560  0.004426  0.058507  0.230926 
## 
## Coefficients:
##    Estimate Std. Error t value Pr(>|t|)    
## x 2.0001514  0.0001548   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.09005 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16
summary(fit.X)
## 
## Call:
## lm(formula = x ~ y + 0)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.115418 -0.029231 -0.002186  0.031322  0.111795 
## 
## Coefficients:
##   Estimate Std. Error t value Pr(>|t|)    
## y 5.00e-01   3.87e-05   12920   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04502 on 99 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:      1 
## F-statistic: 1.669e+08 on 1 and 99 DF,  p-value: < 2.2e-16
(c) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.
x2 <- 1:100
sum(x2^2)
## [1] 338350
y2 <- 100:1
sum(y2^2)
## [1] 338350
fit.Y2 <- lm(y2 ~ x2 + 0)
fit.X2 <- lm(x2 ~ y2 + 0)
summary(fit.Y2)
## 
## Call:
## lm(formula = y2 ~ x2 + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##    Estimate Std. Error t value Pr(>|t|)    
## x2   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08
summary(fit.X2)
## 
## Call:
## lm(formula = x2 ~ y2 + 0)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -49.75 -12.44  24.87  62.18  99.49 
## 
## Coefficients:
##    Estimate Std. Error t value Pr(>|t|)    
## y2   0.5075     0.0866    5.86 6.09e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.37 on 99 degrees of freedom
## Multiple R-squared:  0.2575, Adjusted R-squared:   0.25 
## F-statistic: 34.34 on 1 and 99 DF,  p-value: 6.094e-08