##Set working directory

setwd("C:/Users/ChanRW/OneDrive - Universiteit Twente/2020_MSCA_IF/2_Bachelor_thesis/Step_Emma/Data Analysis/Dataframes")

##Packages##

library(readxl)
## Warning: package 'readxl' was built under R version 3.6.3
library(haven)
## Warning: package 'haven' was built under R version 3.6.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.1.1     v dplyr   1.0.6
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 3.6.3
## Warning: package 'tibble' was built under R version 3.6.3
## Warning: package 'tidyr' was built under R version 3.6.3
## Warning: package 'readr' was built under R version 3.6.3
## Warning: package 'purrr' was built under R version 3.6.3
## Warning: package 'dplyr' was built under R version 3.6.3
## Warning: package 'stringr' was built under R version 3.6.3
## Warning: package 'forcats' was built under R version 3.6.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(lme4)
## Warning: package 'lme4' was built under R version 3.6.3
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(effects)
## Warning: package 'effects' was built under R version 3.6.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 3.6.3
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
library(lattice)
## Warning: package 'lattice' was built under R version 3.6.3
library(car)
## Warning: package 'car' was built under R version 3.6.3
## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
library(ggplot2)
library(knitr)
## Warning: package 'knitr' was built under R version 3.6.3
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.6.3
## 
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(dplyr)
library(forcats)
library(DHARMa)
## Warning: package 'DHARMa' was built under R version 3.6.3
## This is DHARMa 0.4.1. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa') Note: Syntax of plotResiduals has changed in 0.3.0, see ?plotResiduals for details
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 3.6.3
## Loading required package: survival
## Loading required package: Formula
## Warning: package 'Formula' was built under R version 3.6.3
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(phia)
## Warning: package 'phia' was built under R version 3.6.3
library(lsmeans)
## Warning: package 'lsmeans' was built under R version 3.6.3
## Loading required package: emmeans
## Warning: package 'emmeans' was built under R version 3.6.3
## The 'lsmeans' package is now basically a front end for 'emmeans'.
## Users are encouraged to switch the rest of the way.
## See help('transition') for more information, including how to
## convert old 'lsmeans' objects and scripts to work with 'emmeans'.
library(emmeans)
library(multcomp)
## Warning: package 'multcomp' was built under R version 3.6.3
## Loading required package: mvtnorm
## Warning: package 'mvtnorm' was built under R version 3.6.3
## Loading required package: TH.data
## Warning: package 'TH.data' was built under R version 3.6.3
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## Attaching package: 'TH.data'
## The following object is masked from 'package:MASS':
## 
##     geyser
library(nlme)
## Warning: package 'nlme' was built under R version 3.6.3
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:lme4':
## 
##     lmList
## The following object is masked from 'package:dplyr':
## 
##     collapse

##Import dataset from the directory

df <- readxl::read_excel("C://Users//ChanRW//OneDrive - Universiteit Twente//2020_MSCA_IF//2_Bachelor_thesis//Step_Emma//Data Analysis//Dataframes//df_keypresslevel2.xlsx")
#Creating factors
df$subject <- factor(df$subject)
df$Block <- factor(df$session)
df$key <- factor(df$key)
df$accuracy <- factor(df$accuracy)
#Fifth model: Feedback.RT - Finger position - Block 
m.footstep1 <- lmer(RT ~ key * Block + (accuracy|subject), data = df)
Anova(m.footstep1)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: RT
##             Chisq Df Pr(>Chisq)    
## key       299.675  5  < 2.2e-16 ***
## Block     794.231  7  < 2.2e-16 ***
## key:Block  78.764 35  3.238e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.footstep1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: RT ~ key * Block + (accuracy | subject)
##    Data: df
## 
## REML criterion at convergence: 18749.4
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.104 -0.240 -0.067  0.120 53.995 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  subject  (Intercept) 0.8139   0.9022        
##           accuracy1   0.4783   0.6916   -0.99
##  Residual             0.2922   0.5406        
## Number of obs: 11520, groups:  subject, 5
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept)  7.890e-01  6.801e-02  11.601
## key2        -1.807e-01  4.936e-02  -3.661
## key3        -2.162e-01  4.936e-02  -4.381
## key4        -2.681e-01  4.941e-02  -5.425
## key5        -5.984e-02  4.939e-02  -1.212
## key6         2.204e-01  4.938e-02   4.464
## Block2      -2.385e-01  4.941e-02  -4.827
## Block3      -3.406e-01  4.942e-02  -6.892
## Block4      -3.668e-01  4.941e-02  -7.424
## Block5      -3.460e-01  4.940e-02  -7.003
## Block6      -3.513e-01  4.942e-02  -7.109
## Block7      -4.133e-01  4.942e-02  -8.363
## Block8      -4.891e-01  4.941e-02  -9.899
## key2:Block2 -4.578e-02  6.979e-02  -0.656
## key3:Block2 -5.925e-02  6.979e-02  -0.849
## key4:Block2 -7.632e-02  6.982e-02  -1.093
## key5:Block2 -2.334e-01  6.980e-02  -3.343
## key6:Block2 -4.053e-01  6.980e-02  -5.807
## key2:Block3  2.336e-02  6.979e-02   0.335
## key3:Block3 -6.659e-05  6.979e-02  -0.001
## key4:Block3 -3.624e-03  6.982e-02  -0.052
## key5:Block3 -1.306e-01  6.981e-02  -1.871
## key6:Block3 -3.041e-01  6.981e-02  -4.357
## key2:Block4  2.991e-02  6.979e-02   0.429
## key3:Block4  2.092e-02  6.979e-02   0.300
## key4:Block4  2.957e-02  6.983e-02   0.424
## key5:Block4 -1.021e-01  6.982e-02  -1.462
## key6:Block4 -3.183e-01  6.981e-02  -4.560
## key2:Block5 -1.899e-02  6.979e-02  -0.272
## key3:Block5  5.065e-04  6.979e-02   0.007
## key4:Block5  1.328e-02  6.983e-02   0.190
## key5:Block5 -1.233e-01  6.981e-02  -1.767
## key6:Block5 -3.333e-01  6.981e-02  -4.774
## key2:Block6 -2.683e-02  6.979e-02  -0.384
## key3:Block6 -2.289e-02  6.979e-02  -0.328
## key4:Block6 -5.103e-03  6.982e-02  -0.073
## key5:Block6 -1.628e-01  6.980e-02  -2.332
## key6:Block6 -3.168e-01  6.981e-02  -4.538
## key2:Block7  3.991e-02  6.979e-02   0.572
## key3:Block7  3.816e-02  6.980e-02   0.547
## key4:Block7  5.600e-02  6.982e-02   0.802
## key5:Block7 -8.693e-02  6.981e-02  -1.245
## key6:Block7 -2.970e-01  6.981e-02  -4.254
## key2:Block8  9.970e-02  6.979e-02   1.429
## key3:Block8  9.613e-02  6.979e-02   1.377
## key4:Block8  1.027e-01  6.982e-02   1.470
## key5:Block8 -3.140e-02  6.980e-02  -0.450
## key6:Block8 -2.175e-01  6.981e-02  -3.116
## 
## Correlation matrix not shown by default, as p = 48 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
##M1
#Need Effects lib
ae.m.footstep1<-allEffects(m.footstep1)
ae.m.df.footstep1<-as.data.frame(ae.m.footstep1[[1]])

#The main plot.
ae.position<-ggplot(ae.m.df.footstep1, aes(x=key,y=fit, group=Block))+
  geom_ribbon(aes(ymin=lower, ymax=upper, fill=Block), alpha=0.2) +
  geom_line(aes(size=0.5, color=Block)) +
  geom_point(aes(color=Block, size=2))+
  ylab("RT (ms)")+
  xlab("Position")+
  theme_classic()

#Printing Session effects facet
print(ae.position)

#Interaction post-hocs (Fifth model)
lsmeans(m.footstep1, pairwise ~ Block | key)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 11520' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 11520)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 11520' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 11520)' or larger];
## but be warned that this may result in large computation time and memory use.
## $lsmeans
## key = 1:
##  Block lsmean     SE  df asymp.LCL asymp.UCL
##  1      0.789 0.0680 Inf   0.65566     0.922
##  2      0.550 0.0677 Inf   0.41774     0.683
##  3      0.448 0.0677 Inf   0.31556     0.581
##  4      0.422 0.0678 Inf   0.28934     0.555
##  5      0.443 0.0677 Inf   0.31023     0.576
##  6      0.438 0.0677 Inf   0.30492     0.570
##  7      0.376 0.0677 Inf   0.24293     0.508
##  8      0.300 0.0677 Inf   0.16709     0.433
## 
## key = 2:
##  Block lsmean     SE  df asymp.LCL asymp.UCL
##  1      0.608 0.0682 Inf   0.47459     0.742
##  2      0.324 0.0678 Inf   0.19114     0.457
##  3      0.291 0.0678 Inf   0.15814     0.424
##  4      0.271 0.0678 Inf   0.13854     0.404
##  5      0.243 0.0678 Inf   0.11046     0.376
##  6      0.230 0.0678 Inf   0.09730     0.363
##  7      0.235 0.0677 Inf   0.10204     0.368
##  8      0.219 0.0678 Inf   0.08598     0.352
## 
## key = 3:
##  Block lsmean     SE  df asymp.LCL asymp.UCL
##  1      0.573 0.0682 Inf   0.43911     0.706
##  2      0.275 0.0678 Inf   0.14209     0.408
##  3      0.232 0.0678 Inf   0.09923     0.365
##  4      0.227 0.0678 Inf   0.09399     0.360
##  5      0.227 0.0678 Inf   0.09440     0.360
##  6      0.199 0.0678 Inf   0.06567     0.331
##  7      0.198 0.0678 Inf   0.06472     0.330
##  8      0.180 0.0678 Inf   0.04687     0.313
## 
## key = 4:
##  Block lsmean     SE  df asymp.LCL asymp.UCL
##  1      0.521 0.0683 Inf   0.38693     0.655
##  2      0.206 0.0679 Inf   0.07306     0.339
##  3      0.177 0.0679 Inf   0.04359     0.310
##  4      0.184 0.0678 Inf   0.05075     0.317
##  5      0.188 0.0678 Inf   0.05530     0.321
##  6      0.164 0.0678 Inf   0.03156     0.297
##  7      0.164 0.0678 Inf   0.03062     0.296
##  8      0.134 0.0678 Inf   0.00151     0.267
## 
## key = 5:
##  Block lsmean     SE  df asymp.LCL asymp.UCL
##  1      0.729 0.0683 Inf   0.59528     0.863
##  2      0.257 0.0679 Inf   0.12420     0.390
##  3      0.258 0.0679 Inf   0.12486     0.391
##  4      0.260 0.0677 Inf   0.12747     0.393
##  5      0.260 0.0678 Inf   0.12701     0.393
##  6      0.215 0.0678 Inf   0.08213     0.348
##  7      0.229 0.0678 Inf   0.09592     0.362
##  8      0.209 0.0678 Inf   0.07568     0.341
## 
## key = 6:
##  Block lsmean     SE  df asymp.LCL asymp.UCL
##  1      1.009 0.0680 Inf   0.87618     1.143
##  2      0.366 0.0677 Inf   0.23286     0.498
##  3      0.365 0.0677 Inf   0.23199     0.497
##  4      0.324 0.0677 Inf   0.19150     0.457
##  5      0.330 0.0677 Inf   0.19745     0.463
##  6      0.341 0.0677 Inf   0.20863     0.474
##  7      0.299 0.0677 Inf   0.16633     0.432
##  8      0.303 0.0677 Inf   0.17013     0.435
## 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## key = 1:
##  contrast  estimate     SE  df z.ratio p.value
##  1 - 2     0.238494 0.0494 Inf  4.827  <.0001 
##  1 - 3     0.340617 0.0494 Inf  6.892  <.0001 
##  1 - 4     0.366797 0.0494 Inf  7.424  <.0001 
##  1 - 5     0.345983 0.0494 Inf  7.003  <.0001 
##  1 - 6     0.351302 0.0494 Inf  7.109  <.0001 
##  1 - 7     0.413335 0.0494 Inf  8.363  <.0001 
##  1 - 8     0.489145 0.0494 Inf  9.899  <.0001 
##  2 - 3     0.102123 0.0493 Inf  2.069  0.4349 
##  2 - 4     0.128303 0.0493 Inf  2.600  0.1557 
##  2 - 5     0.107489 0.0493 Inf  2.178  0.3650 
##  2 - 6     0.112808 0.0493 Inf  2.286  0.3012 
##  2 - 7     0.174841 0.0493 Inf  3.543  0.0094 
##  2 - 8     0.250651 0.0493 Inf  5.079  <.0001 
##  3 - 4     0.026180 0.0493 Inf  0.531  0.9995 
##  3 - 5     0.005366 0.0494 Inf  0.109  1.0000 
##  3 - 6     0.010685 0.0493 Inf  0.217  1.0000 
##  3 - 7     0.072718 0.0493 Inf  1.474  0.8218 
##  3 - 8     0.148529 0.0493 Inf  3.010  0.0532 
##  4 - 5    -0.020814 0.0494 Inf -0.422  0.9999 
##  4 - 6    -0.015495 0.0494 Inf -0.314  1.0000 
##  4 - 7     0.046538 0.0493 Inf  0.943  0.9818 
##  4 - 8     0.122348 0.0493 Inf  2.479  0.2042 
##  5 - 6     0.005319 0.0494 Inf  0.108  1.0000 
##  5 - 7     0.067352 0.0494 Inf  1.365  0.8733 
##  5 - 8     0.143163 0.0494 Inf  2.901  0.0724 
##  6 - 7     0.062033 0.0493 Inf  1.257  0.9144 
##  6 - 8     0.137843 0.0493 Inf  2.793  0.0966 
##  7 - 8     0.075810 0.0493 Inf  1.536  0.7878 
## 
## key = 2:
##  contrast  estimate     SE  df z.ratio p.value
##  1 - 2     0.284269 0.0494 Inf  5.750  <.0001 
##  1 - 3     0.317257 0.0495 Inf  6.413  <.0001 
##  1 - 4     0.336887 0.0495 Inf  6.811  <.0001 
##  1 - 5     0.364973 0.0495 Inf  7.379  <.0001 
##  1 - 6     0.378132 0.0495 Inf  7.644  <.0001 
##  1 - 7     0.373422 0.0495 Inf  7.547  <.0001 
##  1 - 8     0.389448 0.0495 Inf  7.873  <.0001 
##  2 - 3     0.032988 0.0494 Inf  0.668  0.9978 
##  2 - 4     0.052617 0.0494 Inf  1.066  0.9637 
##  2 - 5     0.080703 0.0494 Inf  1.635  0.7290 
##  2 - 6     0.093863 0.0493 Inf  1.902  0.5494 
##  2 - 7     0.089153 0.0494 Inf  1.806  0.6156 
##  2 - 8     0.105178 0.0494 Inf  2.131  0.3946 
##  3 - 4     0.019630 0.0494 Inf  0.398  0.9999 
##  3 - 5     0.047716 0.0494 Inf  0.967  0.9790 
##  3 - 6     0.060875 0.0494 Inf  1.234  0.9221 
##  3 - 7     0.056165 0.0494 Inf  1.138  0.9485 
##  3 - 8     0.072191 0.0494 Inf  1.463  0.8273 
##  4 - 5     0.028086 0.0494 Inf  0.569  0.9992 
##  4 - 6     0.041245 0.0494 Inf  0.836  0.9911 
##  4 - 7     0.036535 0.0494 Inf  0.740  0.9958 
##  4 - 8     0.052561 0.0494 Inf  1.065  0.9639 
##  5 - 6     0.013159 0.0494 Inf  0.267  1.0000 
##  5 - 7     0.008449 0.0494 Inf  0.171  1.0000 
##  5 - 8     0.024475 0.0494 Inf  0.496  0.9997 
##  6 - 7    -0.004710 0.0493 Inf -0.095  1.0000 
##  6 - 8     0.011315 0.0493 Inf  0.229  1.0000 
##  7 - 8     0.016026 0.0493 Inf  0.325  1.0000 
## 
## key = 3:
##  contrast  estimate     SE  df z.ratio p.value
##  1 - 2     0.297749 0.0495 Inf  6.020  <.0001 
##  1 - 3     0.340683 0.0495 Inf  6.884  <.0001 
##  1 - 4     0.345874 0.0495 Inf  6.992  <.0001 
##  1 - 5     0.345476 0.0495 Inf  6.985  <.0001 
##  1 - 6     0.374194 0.0495 Inf  7.563  <.0001 
##  1 - 7     0.375179 0.0495 Inf  7.580  <.0001 
##  1 - 8     0.393011 0.0495 Inf  7.944  <.0001 
##  2 - 3     0.042934 0.0493 Inf  0.870  0.9887 
##  2 - 4     0.048125 0.0494 Inf  0.975  0.9780 
##  2 - 5     0.047727 0.0494 Inf  0.967  0.9790 
##  2 - 6     0.076445 0.0493 Inf  1.549  0.7805 
##  2 - 7     0.077429 0.0493 Inf  1.569  0.7690 
##  2 - 8     0.095262 0.0493 Inf  1.930  0.5297 
##  3 - 4     0.005191 0.0494 Inf  0.105  1.0000 
##  3 - 5     0.004793 0.0494 Inf  0.097  1.0000 
##  3 - 6     0.033511 0.0493 Inf  0.679  0.9975 
##  3 - 7     0.034495 0.0494 Inf  0.699  0.9970 
##  3 - 8     0.052327 0.0493 Inf  1.060  0.9648 
##  4 - 5    -0.000398 0.0494 Inf -0.008  1.0000 
##  4 - 6     0.028320 0.0494 Inf  0.574  0.9992 
##  4 - 7     0.029305 0.0494 Inf  0.594  0.9990 
##  4 - 8     0.047137 0.0494 Inf  0.955  0.9804 
##  5 - 6     0.028718 0.0494 Inf  0.582  0.9991 
##  5 - 7     0.029702 0.0494 Inf  0.602  0.9989 
##  5 - 8     0.047535 0.0494 Inf  0.963  0.9795 
##  6 - 7     0.000984 0.0494 Inf  0.020  1.0000 
##  6 - 8     0.018816 0.0493 Inf  0.381  0.9999 
##  7 - 8     0.017832 0.0493 Inf  0.361  1.0000 
## 
## key = 4:
##  contrast  estimate     SE  df z.ratio p.value
##  1 - 2     0.314815 0.0495 Inf  6.357  <.0001 
##  1 - 3     0.344241 0.0495 Inf  6.949  <.0001 
##  1 - 4     0.337223 0.0495 Inf  6.808  <.0001 
##  1 - 5     0.332705 0.0495 Inf  6.716  <.0001 
##  1 - 6     0.356405 0.0495 Inf  7.196  <.0001 
##  1 - 7     0.357340 0.0495 Inf  7.214  <.0001 
##  1 - 8     0.386478 0.0495 Inf  7.802  <.0001 
##  2 - 3     0.029426 0.0494 Inf  0.596  0.9989 
##  2 - 4     0.022408 0.0494 Inf  0.454  0.9998 
##  2 - 5     0.017890 0.0494 Inf  0.362  1.0000 
##  2 - 6     0.041590 0.0493 Inf  0.843  0.9906 
##  2 - 7     0.042525 0.0494 Inf  0.862  0.9893 
##  2 - 8     0.071663 0.0493 Inf  1.452  0.8326 
##  3 - 4    -0.007018 0.0494 Inf -0.142  1.0000 
##  3 - 5    -0.011536 0.0494 Inf -0.234  1.0000 
##  3 - 6     0.012164 0.0494 Inf  0.246  1.0000 
##  3 - 7     0.013099 0.0494 Inf  0.265  1.0000 
##  3 - 8     0.042237 0.0494 Inf  0.856  0.9897 
##  4 - 5    -0.004518 0.0494 Inf -0.092  1.0000 
##  4 - 6     0.019182 0.0494 Inf  0.389  0.9999 
##  4 - 7     0.020117 0.0494 Inf  0.408  0.9999 
##  4 - 8     0.049254 0.0494 Inf  0.998  0.9749 
##  5 - 6     0.023700 0.0494 Inf  0.480  0.9997 
##  5 - 7     0.024635 0.0494 Inf  0.499  0.9997 
##  5 - 8     0.053773 0.0494 Inf  1.089  0.9592 
##  6 - 7     0.000935 0.0494 Inf  0.019  1.0000 
##  6 - 8     0.030073 0.0493 Inf  0.609  0.9988 
##  7 - 8     0.029138 0.0494 Inf  0.590  0.9990 
## 
## key = 5:
##  contrast  estimate     SE  df z.ratio p.value
##  1 - 2     0.471873 0.0495 Inf  9.533  <.0001 
##  1 - 3     0.471214 0.0495 Inf  9.513  <.0001 
##  1 - 4     0.468882 0.0495 Inf  9.465  <.0001 
##  1 - 5     0.469304 0.0495 Inf  9.476  <.0001 
##  1 - 6     0.514084 0.0495 Inf 10.382  <.0001 
##  1 - 7     0.500260 0.0495 Inf 10.100  <.0001 
##  1 - 8     0.520544 0.0495 Inf 10.512  <.0001 
##  2 - 3    -0.000658 0.0494 Inf -0.013  1.0000 
##  2 - 4    -0.002990 0.0494 Inf -0.061  1.0000 
##  2 - 5    -0.002569 0.0494 Inf -0.052  1.0000 
##  2 - 6     0.042211 0.0493 Inf  0.855  0.9898 
##  2 - 7     0.028387 0.0493 Inf  0.575  0.9992 
##  2 - 8     0.048672 0.0493 Inf  0.986  0.9765 
##  3 - 4    -0.002332 0.0494 Inf -0.047  1.0000 
##  3 - 5    -0.001910 0.0494 Inf -0.039  1.0000 
##  3 - 6     0.042869 0.0494 Inf  0.869  0.9888 
##  3 - 7     0.029046 0.0494 Inf  0.589  0.9990 
##  3 - 8     0.049330 0.0494 Inf  0.999  0.9747 
##  4 - 5     0.000421 0.0493 Inf  0.009  1.0000 
##  4 - 6     0.045201 0.0494 Inf  0.916  0.9847 
##  4 - 7     0.031378 0.0494 Inf  0.636  0.9984 
##  4 - 8     0.051662 0.0494 Inf  1.047  0.9672 
##  5 - 6     0.044780 0.0494 Inf  0.907  0.9855 
##  5 - 7     0.030956 0.0494 Inf  0.627  0.9985 
##  5 - 8     0.051240 0.0494 Inf  1.038  0.9687 
##  6 - 7    -0.013824 0.0493 Inf -0.280  1.0000 
##  6 - 8     0.006461 0.0493 Inf  0.131  1.0000 
##  7 - 8     0.020284 0.0493 Inf  0.411  0.9999 
## 
## key = 6:
##  contrast  estimate     SE  df z.ratio p.value
##  1 - 2     0.643790 0.0494 Inf 13.032  <.0001 
##  1 - 3     0.644734 0.0494 Inf 13.043  <.0001 
##  1 - 4     0.685117 0.0494 Inf 13.861  <.0001 
##  1 - 5     0.679245 0.0494 Inf 13.743  <.0001 
##  1 - 6     0.668086 0.0494 Inf 13.516  <.0001 
##  1 - 7     0.710332 0.0494 Inf 14.369  <.0001 
##  1 - 8     0.706633 0.0494 Inf 14.295  <.0001 
##  2 - 3     0.000944 0.0493 Inf  0.019  1.0000 
##  2 - 4     0.041326 0.0494 Inf  0.837  0.9910 
##  2 - 5     0.035454 0.0493 Inf  0.718  0.9965 
##  2 - 6     0.024296 0.0493 Inf  0.492  0.9997 
##  2 - 7     0.066541 0.0494 Inf  1.348  0.8802 
##  2 - 8     0.062843 0.0494 Inf  1.273  0.9088 
##  3 - 4     0.040382 0.0493 Inf  0.818  0.9922 
##  3 - 5     0.034510 0.0493 Inf  0.699  0.9970 
##  3 - 6     0.023352 0.0493 Inf  0.473  0.9998 
##  3 - 7     0.065597 0.0493 Inf  1.329  0.8879 
##  3 - 8     0.061899 0.0493 Inf  1.254  0.9153 
##  4 - 5    -0.005872 0.0493 Inf -0.119  1.0000 
##  4 - 6    -0.017030 0.0493 Inf -0.345  1.0000 
##  4 - 7     0.025215 0.0493 Inf  0.511  0.9996 
##  4 - 8     0.021517 0.0493 Inf  0.436  0.9999 
##  5 - 6    -0.011158 0.0493 Inf -0.226  1.0000 
##  5 - 7     0.031087 0.0493 Inf  0.630  0.9985 
##  5 - 8     0.027389 0.0493 Inf  0.555  0.9993 
##  6 - 7     0.042245 0.0493 Inf  0.856  0.9897 
##  6 - 8     0.038547 0.0493 Inf  0.781  0.9941 
##  7 - 8    -0.003698 0.0493 Inf -0.075  1.0000 
## 
## Degrees-of-freedom method: asymptotic 
## P value adjustment: tukey method for comparing a family of 8 estimates
lsmeans(m.footstep1, pairwise ~ key | Block)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 11520' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 11520)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 11520' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 11520)' or larger];
## but be warned that this may result in large computation time and memory use.
## $lsmeans
## Block = 1:
##  key lsmean     SE  df asymp.LCL asymp.UCL
##  1    0.789 0.0680 Inf   0.65566     0.922
##  2    0.608 0.0682 Inf   0.47459     0.742
##  3    0.573 0.0682 Inf   0.43911     0.706
##  4    0.521 0.0683 Inf   0.38693     0.655
##  5    0.729 0.0683 Inf   0.59528     0.863
##  6    1.009 0.0680 Inf   0.87618     1.143
## 
## Block = 2:
##  key lsmean     SE  df asymp.LCL asymp.UCL
##  1    0.550 0.0677 Inf   0.41774     0.683
##  2    0.324 0.0678 Inf   0.19114     0.457
##  3    0.275 0.0678 Inf   0.14209     0.408
##  4    0.206 0.0679 Inf   0.07306     0.339
##  5    0.257 0.0679 Inf   0.12420     0.390
##  6    0.366 0.0677 Inf   0.23286     0.498
## 
## Block = 3:
##  key lsmean     SE  df asymp.LCL asymp.UCL
##  1    0.448 0.0677 Inf   0.31556     0.581
##  2    0.291 0.0678 Inf   0.15814     0.424
##  3    0.232 0.0678 Inf   0.09923     0.365
##  4    0.177 0.0679 Inf   0.04359     0.310
##  5    0.258 0.0679 Inf   0.12486     0.391
##  6    0.365 0.0677 Inf   0.23199     0.497
## 
## Block = 4:
##  key lsmean     SE  df asymp.LCL asymp.UCL
##  1    0.422 0.0678 Inf   0.28934     0.555
##  2    0.271 0.0678 Inf   0.13854     0.404
##  3    0.227 0.0678 Inf   0.09399     0.360
##  4    0.184 0.0678 Inf   0.05075     0.317
##  5    0.260 0.0677 Inf   0.12747     0.393
##  6    0.324 0.0677 Inf   0.19150     0.457
## 
## Block = 5:
##  key lsmean     SE  df asymp.LCL asymp.UCL
##  1    0.443 0.0677 Inf   0.31023     0.576
##  2    0.243 0.0678 Inf   0.11046     0.376
##  3    0.227 0.0678 Inf   0.09440     0.360
##  4    0.188 0.0678 Inf   0.05530     0.321
##  5    0.260 0.0678 Inf   0.12701     0.393
##  6    0.330 0.0677 Inf   0.19745     0.463
## 
## Block = 6:
##  key lsmean     SE  df asymp.LCL asymp.UCL
##  1    0.438 0.0677 Inf   0.30492     0.570
##  2    0.230 0.0678 Inf   0.09730     0.363
##  3    0.199 0.0678 Inf   0.06567     0.331
##  4    0.164 0.0678 Inf   0.03156     0.297
##  5    0.215 0.0678 Inf   0.08213     0.348
##  6    0.341 0.0677 Inf   0.20863     0.474
## 
## Block = 7:
##  key lsmean     SE  df asymp.LCL asymp.UCL
##  1    0.376 0.0677 Inf   0.24293     0.508
##  2    0.235 0.0677 Inf   0.10204     0.368
##  3    0.198 0.0678 Inf   0.06472     0.330
##  4    0.164 0.0678 Inf   0.03062     0.296
##  5    0.229 0.0678 Inf   0.09592     0.362
##  6    0.299 0.0677 Inf   0.16633     0.432
## 
## Block = 8:
##  key lsmean     SE  df asymp.LCL asymp.UCL
##  1    0.300 0.0677 Inf   0.16709     0.433
##  2    0.219 0.0678 Inf   0.08598     0.352
##  3    0.180 0.0678 Inf   0.04687     0.313
##  4    0.134 0.0678 Inf   0.00151     0.267
##  5    0.209 0.0678 Inf   0.07568     0.341
##  6    0.303 0.0677 Inf   0.17013     0.435
## 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95 
## 
## $contrasts
## Block = 1:
##  contrast estimate     SE  df z.ratio p.value
##  1 - 2     0.18072 0.0494 Inf  3.661  0.0034 
##  1 - 3     0.21624 0.0494 Inf  4.381  0.0002 
##  1 - 4     0.26809 0.0494 Inf  5.425  <.0001 
##  1 - 5     0.05984 0.0494 Inf  1.212  0.8314 
##  1 - 6    -0.22044 0.0494 Inf -4.464  0.0001 
##  2 - 3     0.03552 0.0494 Inf  0.720  0.9796 
##  2 - 4     0.08737 0.0494 Inf  1.769  0.4859 
##  2 - 5    -0.12088 0.0494 Inf -2.449  0.1397 
##  2 - 6    -0.40116 0.0494 Inf -8.121  <.0001 
##  3 - 4     0.05184 0.0494 Inf  1.050  0.9010 
##  3 - 5    -0.15640 0.0494 Inf -3.169  0.0191 
##  3 - 6    -0.43668 0.0494 Inf -8.840  <.0001 
##  4 - 5    -0.20825 0.0494 Inf -4.218  0.0004 
##  4 - 6    -0.48853 0.0494 Inf -9.890  <.0001 
##  5 - 6    -0.28028 0.0494 Inf -5.673  <.0001 
## 
## Block = 2:
##  contrast estimate     SE  df z.ratio p.value
##  1 - 2     0.22649 0.0493 Inf  4.590  0.0001 
##  1 - 3     0.27550 0.0494 Inf  5.582  <.0001 
##  1 - 4     0.34441 0.0494 Inf  6.975  <.0001 
##  1 - 5     0.29322 0.0494 Inf  5.939  <.0001 
##  1 - 6     0.18485 0.0494 Inf  3.746  0.0025 
##  2 - 3     0.04900 0.0494 Inf  0.993  0.9204 
##  2 - 4     0.11791 0.0494 Inf  2.388  0.1602 
##  2 - 5     0.06672 0.0494 Inf  1.352  0.7559 
##  2 - 6    -0.04164 0.0494 Inf -0.844  0.9593 
##  3 - 4     0.06891 0.0494 Inf  1.396  0.7294 
##  3 - 5     0.01772 0.0494 Inf  0.359  0.9992 
##  3 - 6    -0.09064 0.0494 Inf -1.836  0.4422 
##  4 - 5    -0.05119 0.0493 Inf -1.037  0.9054 
##  4 - 6    -0.15955 0.0494 Inf -3.231  0.0156 
##  5 - 6    -0.10836 0.0494 Inf -2.195  0.2401 
## 
## Block = 3:
##  contrast estimate     SE  df z.ratio p.value
##  1 - 2     0.15736 0.0494 Inf  3.189  0.0179 
##  1 - 3     0.21631 0.0494 Inf  4.382  0.0002 
##  1 - 4     0.27171 0.0494 Inf  5.504  <.0001 
##  1 - 5     0.19044 0.0494 Inf  3.857  0.0016 
##  1 - 6     0.08367 0.0493 Inf  1.696  0.5347 
##  2 - 3     0.05895 0.0493 Inf  1.195  0.8397 
##  2 - 4     0.11435 0.0494 Inf  2.317  0.1871 
##  2 - 5     0.03308 0.0494 Inf  0.670  0.9852 
##  2 - 6    -0.07368 0.0494 Inf -1.493  0.6688 
##  3 - 4     0.05540 0.0494 Inf  1.123  0.8722 
##  3 - 5    -0.02587 0.0494 Inf -0.524  0.9952 
##  3 - 6    -0.13263 0.0494 Inf -2.687  0.0777 
##  4 - 5    -0.08128 0.0493 Inf -1.647  0.5671 
##  4 - 6    -0.18804 0.0494 Inf -3.808  0.0019 
##  5 - 6    -0.10676 0.0494 Inf -2.162  0.2556 
## 
## Block = 4:
##  contrast estimate     SE  df z.ratio p.value
##  1 - 2     0.15081 0.0493 Inf  3.056  0.0272 
##  1 - 3     0.19532 0.0493 Inf  3.958  0.0011 
##  1 - 4     0.23851 0.0494 Inf  4.833  <.0001 
##  1 - 5     0.16192 0.0494 Inf  3.281  0.0133 
##  1 - 6     0.09788 0.0493 Inf  1.983  0.3518 
##  2 - 3     0.04451 0.0493 Inf  0.902  0.9461 
##  2 - 4     0.08770 0.0494 Inf  1.777  0.4807 
##  2 - 5     0.01111 0.0494 Inf  0.225  0.9999 
##  2 - 6    -0.05293 0.0493 Inf -1.073  0.8924 
##  3 - 4     0.04319 0.0493 Inf  0.875  0.9525 
##  3 - 5    -0.03340 0.0494 Inf -0.677  0.9845 
##  3 - 6    -0.09744 0.0493 Inf -1.975  0.3570 
##  4 - 5    -0.07659 0.0493 Inf -1.552  0.6304 
##  4 - 6    -0.14064 0.0494 Inf -2.849  0.0500 
##  5 - 6    -0.06405 0.0494 Inf -1.298  0.7865 
## 
## Block = 5:
##  contrast estimate     SE  df z.ratio p.value
##  1 - 2     0.19971 0.0494 Inf  4.047  0.0007 
##  1 - 3     0.21573 0.0494 Inf  4.371  0.0002 
##  1 - 4     0.25481 0.0494 Inf  5.162  <.0001 
##  1 - 5     0.18316 0.0494 Inf  3.711  0.0028 
##  1 - 6     0.11282 0.0493 Inf  2.286  0.1995 
##  2 - 3     0.01603 0.0493 Inf  0.325  0.9995 
##  2 - 4     0.05510 0.0493 Inf  1.117  0.8747 
##  2 - 5    -0.01655 0.0493 Inf -0.335  0.9994 
##  2 - 6    -0.08689 0.0494 Inf -1.761  0.4915 
##  3 - 4     0.03907 0.0493 Inf  0.792  0.9690 
##  3 - 5    -0.03258 0.0493 Inf -0.660  0.9862 
##  3 - 6    -0.10292 0.0494 Inf -2.085  0.2950 
##  4 - 5    -0.07165 0.0493 Inf -1.452  0.6950 
##  4 - 6    -0.14199 0.0494 Inf -2.877  0.0463 
##  5 - 6    -0.07034 0.0494 Inf -1.425  0.7116 
## 
## Block = 6:
##  contrast estimate     SE  df z.ratio p.value
##  1 - 2     0.20755 0.0493 Inf  4.206  0.0004 
##  1 - 3     0.23913 0.0494 Inf  4.845  <.0001 
##  1 - 4     0.27319 0.0494 Inf  5.534  <.0001 
##  1 - 5     0.22262 0.0494 Inf  4.510  0.0001 
##  1 - 6     0.09634 0.0493 Inf  1.952  0.3702 
##  2 - 3     0.03159 0.0493 Inf  0.640  0.9880 
##  2 - 4     0.06564 0.0494 Inf  1.330  0.7684 
##  2 - 5     0.01507 0.0494 Inf  0.305  0.9996 
##  2 - 6    -0.11121 0.0494 Inf -2.253  0.2135 
##  3 - 4     0.03406 0.0493 Inf  0.690  0.9831 
##  3 - 5    -0.01651 0.0493 Inf -0.335  0.9994 
##  3 - 6    -0.14279 0.0494 Inf -2.893  0.0442 
##  4 - 5    -0.05057 0.0493 Inf -1.025  0.9098 
##  4 - 6    -0.17685 0.0494 Inf -3.582  0.0046 
##  5 - 6    -0.12628 0.0494 Inf -2.558  0.1079 
## 
## Block = 7:
##  contrast estimate     SE  df z.ratio p.value
##  1 - 2     0.14081 0.0494 Inf  2.853  0.0495 
##  1 - 3     0.17808 0.0494 Inf  3.608  0.0042 
##  1 - 4     0.21209 0.0494 Inf  4.297  0.0003 
##  1 - 5     0.14676 0.0494 Inf  2.973  0.0350 
##  1 - 6     0.07655 0.0494 Inf  1.551  0.6310 
##  2 - 3     0.03728 0.0493 Inf  0.755  0.9747 
##  2 - 4     0.07129 0.0493 Inf  1.445  0.6996 
##  2 - 5     0.00596 0.0494 Inf  0.121  1.0000 
##  2 - 6    -0.06425 0.0494 Inf -1.302  0.7844 
##  3 - 4     0.03401 0.0493 Inf  0.689  0.9832 
##  3 - 5    -0.03132 0.0493 Inf -0.635  0.9884 
##  3 - 6    -0.10153 0.0494 Inf -2.056  0.3106 
##  4 - 5    -0.06533 0.0493 Inf -1.324  0.7719 
##  4 - 6    -0.13554 0.0494 Inf -2.745  0.0667 
##  5 - 6    -0.07021 0.0494 Inf -1.422  0.7137 
## 
## Block = 8:
##  contrast estimate     SE  df z.ratio p.value
##  1 - 2     0.08102 0.0494 Inf  1.642  0.5707 
##  1 - 3     0.12011 0.0494 Inf  2.433  0.1447 
##  1 - 4     0.16542 0.0494 Inf  3.351  0.0104 
##  1 - 5     0.09124 0.0494 Inf  1.848  0.4346 
##  1 - 6    -0.00296 0.0494 Inf -0.060  1.0000 
##  2 - 3     0.03909 0.0493 Inf  0.792  0.9690 
##  2 - 4     0.08440 0.0493 Inf  1.710  0.5249 
##  2 - 5     0.01022 0.0493 Inf  0.207  0.9999 
##  2 - 6    -0.08398 0.0494 Inf -1.701  0.5310 
##  3 - 4     0.04531 0.0493 Inf  0.918  0.9420 
##  3 - 5    -0.02887 0.0493 Inf -0.585  0.9920 
##  3 - 6    -0.12306 0.0494 Inf -2.493  0.1262 
##  4 - 5    -0.07418 0.0493 Inf -1.503  0.6622 
##  4 - 6    -0.16837 0.0494 Inf -3.410  0.0085 
##  5 - 6    -0.09419 0.0494 Inf -1.907  0.3976 
## 
## Degrees-of-freedom method: asymptotic 
## P value adjustment: tukey method for comparing a family of 6 estimates