#=====================================================
# Simulation model of a sequence of two queues.
# Email: ebertbrea@gmail.com
#=====================================================
rm(list=ls())
library("simmer")
## Warning: package 'simmer' was built under R version 4.1.2
library(parallel)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.2
library(simmer.plot)
## Warning: package 'simmer.plot' was built under R version 4.1.2
##
## Attaching package: 'simmer.plot'
## The following objects are masked from 'package:simmer':
##
## get_mon_arrivals, get_mon_attributes, get_mon_resources
library(knitr)
## Warning: package 'knitr' was built under R version 4.1.3
env <- simmer()
###################################################################
# Parameters of the Simulation
####################################################################
OneRepl=FALSE # TRUE: for running just one simulation replication;
# FALSE: it will run NoReplic simulation replication
NoReplic <- 10 # Number of replications (Samples)
ElapsedTime <-400 # Elapsed time of simulation
set.seed(1234)
#########################################################
# Parameters of the Queues
#########################################################
lambda <- 2 # Arrival rate to the network
#========|mu1|mu2|mu3|mu4|mu5|mu6|mu7|
muRate<-c( 4 , 4 , 4 , 4 , 4, 4, 4) # Service rate of kth service
#========| Q1| Q2| Q3| Q4| Q5| Q6| Q7|
CapQ <- c(Inf,Inf,Inf,Inf,Inf, Inf, Inf) # Capacity of each kth queue
#========| S1| S2| S3| S4| S5| S6| S7|
NServ <-c( 1, 1, 1, 1, 1, 1, 1) # Number of servers at each kth queue
Resource <-c("Q1Res","Q2Res","Q3Res","Q4Res","Q5Res","Q6Res","Q7Res")
Queue<-c("Queue1","Queue2","Queue3","Queue4","Queue5","Queue6","Queue7")
Nq <- integer(7)# c( 0, 0, 0, 0, 0, 0, 0)
N <- integer(7)
#########################################################
# Time Functions
#########################################################
BetweenArrival<- function() rexp(1,lambda)
ServiceTime<- function(k){rexp(1,muRate[k])}
############################################
Q1<-trajectory() %>%
seize(Resource[1], amount=1) %>%
timeout(function() ServiceTime(1)) %>%
release(Resource[1], amount=1)
Q2<-trajectory() %>%
seize(Resource[2], amount=1) %>%
timeout(function() ServiceTime(2)) %>%
release(Resource[2], amount=1)
Q3<-trajectory() %>%
seize(Resource[3], amount=1) %>%
timeout(function() ServiceTime(3)) %>%
release(Resource[3], amount=1)
Q4<-trajectory() %>%
seize(Resource[4], amount=1) %>%
timeout(function() ServiceTime(4)) %>%
release(Resource[4], amount=1)
Q5<-trajectory() %>%
seize(Resource[5], amount=1) %>%
timeout(function() ServiceTime(5)) %>%
release(Resource[5], amount=1)
Q6<-trajectory() %>%
seize(Resource[6], amount=1) %>%
timeout(function() ServiceTime(6)) %>%
release(Resource[6], amount=1)
Q7<-trajectory() %>%
seize(Resource[7], amount=1) %>%
timeout(function() ServiceTime(7)) %>%
release(Resource[7], amount=1)
# A Sequence of two Queues, namely: Q1 & Q2
Network<-trajectory()%>%
join(Q1)%>%
join(Q2)
plot(Network)
if(OneRepl){
#########################################################
# For running just one simulation sample
#########################################################
Network.env<-simmer("QueueNetwork") %>%
add_resource(Resource[1],capacity=NServ[1],queue_size=CapQ[1]) %>%
add_resource(Resource[2],capacity=NServ[2],queue_size=CapQ[2]) %>%
add_generator("arrival", Network, BetweenArrival) %>%
run(ElapsedTime)
resources <- get_mon_resources(Network.env)
plot(resources, metric = "utilization")
plot(resources, metric = "usage")
QNr.data <-
get_mon_arrivals(Network.env) %>%
dplyr::summarise(mean = mean(end_time - start_time))
}
#########################################################
# For running "NoReplic" simulation replications
#########################################################
envs <- mclapply(1:NoReplic, function(i) {
simmer("QueueNetwork") %>%
add_resource(Resource[1],capacity=NServ[1],queue_size=CapQ[1]) %>%
add_resource(Resource[2],capacity=NServ[2],queue_size=CapQ[2]) %>%
add_generator("arrival", Network, BetweenArrival) %>%
run(ElapsedTime) %>%
wrap()
})
resources <- get_mon_resources(envs)
plot(resources, metric = "utilization")

plot(resources, metric = "usage")

#
QN.data <-
get_mon_arrivals(envs) %>%
dplyr::group_by(replication) %>%
dplyr::summarise(mean = mean(end_time - start_time))
t.test(QN.data[["mean"]])
##
## One Sample t-test
##
## data: QN.data[["mean"]]
## t = 41.645, df = 9, p-value = 1.323e-11
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.9291452 1.0358852
## sample estimates:
## mean of x
## 0.9825152
summary(QN.data[["mean"]])
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8371 0.9451 0.9839 0.9825 1.0231 1.0873
hist(QN.data[["mean"]],
include.lowest = TRUE, right = TRUE,
breaks="Sturges", col = rgb(0, 1, 1),
main = paste("Histogram of Mean"),
xlab = "Mean",
density = NULL)

plot.ecdf(QN.data[["mean"]],
main= "Empirical cumulative distribution",
ylab="CDF",xlab="Mean",adj=0.5,
verticals=TRUE,col.01line=2,cex=0,pch=".")
