## 
## Attaching package: 'reghelper'
## The following object is masked from 'package:base':
## 
##     beta

Outcome Variable: FRONTAL_wmlM2

#Fit the full model

## 
## Call:
## lm(formula = FRONTAL_wmlM2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = mridat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -991.24 -255.32  -79.62  102.92 2895.52 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)   
## (Intercept)              -727.031    302.083  -2.407  0.01691 * 
## Age.scan                   17.897      5.449   3.284  0.00119 **
## Race2                     -64.977    458.506  -0.142  0.88743   
## PovStat2                  444.436    625.709   0.710  0.47827   
## Sex2                      104.932     63.444   1.654  0.09956 . 
## Age.scan:Race2              3.256      8.323   0.391  0.69600   
## Age.scan:PovStat2          -7.565     11.661  -0.649  0.51718   
## Race2:PovStat2          -1559.357    846.401  -1.842  0.06676 . 
## Age.scan:Race2:PovStat2    32.189     16.255   1.980  0.04891 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 473 on 222 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.1875, Adjusted R-squared:  0.1583 
## F-statistic: 6.405 on 8 and 222 DF,  p-value: 1.738e-07

#Stepwise regression model

## 
## Call:
## lm(formula = FRONTAL_wmlM2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = mridat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -991.24 -255.32  -79.62  102.92 2895.52 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)   
## (Intercept)              -727.031    302.083  -2.407  0.01691 * 
## Age.scan                   17.897      5.449   3.284  0.00119 **
## Race2                     -64.977    458.506  -0.142  0.88743   
## PovStat2                  444.436    625.709   0.710  0.47827   
## Sex2                      104.932     63.444   1.654  0.09956 . 
## Age.scan:Race2              3.256      8.323   0.391  0.69600   
## Age.scan:PovStat2          -7.565     11.661  -0.649  0.51718   
## Race2:PovStat2          -1559.357    846.401  -1.842  0.06676 . 
## Age.scan:Race2:PovStat2    32.189     16.255   1.980  0.04891 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 473 on 222 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.1875, Adjusted R-squared:  0.1583 
## F-statistic: 6.405 on 8 and 222 DF,  p-value: 1.738e-07

Outcome Variable: WM_FA2

#Fit the full model

## 
## Call:
## lm(formula = WM_FA2 ~ (Age.scan + Race + PovStat)^3 + Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.052535 -0.011433  0.000304  0.010841  0.100554 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.2889752  0.0804900   3.590 0.000414 ***
## Age.scan               0.0031447  0.0014815   2.123 0.034989 *  
## Race                   0.0946886  0.0512839   1.846 0.066295 .  
## PovStat                0.1272794  0.0589570   2.159 0.032035 *  
## Sex                   -0.0034525  0.0028887  -1.195 0.233420    
## Age.scan:Race         -0.0020375  0.0009602  -2.122 0.035057 *  
## Age.scan:PovStat      -0.0026209  0.0011056  -2.371 0.018693 *  
## Race:PovStat          -0.0715182  0.0367354  -1.947 0.052933 .  
## Age.scan:Race:PovStat  0.0014603  0.0007032   2.077 0.039088 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02059 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.09206,    Adjusted R-squared:  0.05627 
## F-statistic: 2.573 on 8 and 203 DF,  p-value: 0.01076

#Stepwise regression model

## 
## Call:
## lm(formula = WM_FA2 ~ Age.scan + Race + PovStat + Age.scan:Race + 
##     Age.scan:PovStat + Race:PovStat + Age.scan:Race:PovStat, 
##     data = dtidat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.05416 -0.01128  0.00001  0.01123  0.10177 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.2756618  0.0797991   3.454 0.000671 ***
## Age.scan               0.0032838  0.0014784   2.221 0.027441 *  
## Race                   0.1000686  0.0511395   1.957 0.051738 .  
## PovStat                0.1330429  0.0588211   2.262 0.024763 *  
## Age.scan:Race         -0.0021389  0.0009575  -2.234 0.026577 *  
## Age.scan:PovStat      -0.0027175  0.0011038  -2.462 0.014646 *  
## Race:PovStat          -0.0752612  0.0366401  -2.054 0.041244 *  
## Age.scan:Race:PovStat  0.0015314  0.0007014   2.183 0.030161 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02061 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.08567,    Adjusted R-squared:  0.05429 
## F-statistic:  2.73 on 7 and 204 DF,  p-value: 0.009938

Outcome Variable: DEEP_WM_FA2

#Fit the full model

## 
## Call:
## lm(formula = DEEP_WM_FA2 ~ (Age.scan + Race + PovStat)^2 + Sex, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.135517 -0.013782  0.002252  0.015659  0.081369 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       6.282e-01  5.037e-02  12.471   <2e-16 ***
## Age.scan         -1.471e-04  8.303e-04  -0.177   0.8596    
## Race             -5.393e-02  2.645e-02  -2.039   0.0427 *  
## PovStat           4.403e-05  2.888e-02   0.002   0.9988    
## Sex              -1.610e-03  3.759e-03  -0.428   0.6688    
## Age.scan:Race     4.349e-04  4.144e-04   1.050   0.2952    
## Age.scan:PovStat -3.166e-04  4.575e-04  -0.692   0.4898    
## Race:PovStat      1.063e-02  8.341e-03   1.275   0.2039    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02689 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1004, Adjusted R-squared:  0.06949 
## F-statistic: 3.251 on 7 and 204 DF,  p-value: 0.00271

#Stepwise regression model

## 
## Call:
## lm(formula = DEEP_WM_FA2 ~ Race, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.141974 -0.013346  0.002485  0.015829  0.075941 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.595890   0.005552 107.334  < 2e-16 ***
## Race        -0.016598   0.003753  -4.423 1.56e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02672 on 210 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.08521,    Adjusted R-squared:  0.08086 
## F-statistic: 19.56 on 1 and 210 DF,  p-value: 1.563e-05

Outcome Variable: FRONTAL_WM_L_FA2

#Fit the full model

## 
## Call:
## lm(formula = FRONTAL_WM_L_FA2 ~ (Age.scan + Race + PovStat)^2 + 
##     Sex, data = dtidat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.06710 -0.01374  0.00135  0.01144  0.10661 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.4352145  0.0437472   9.948   <2e-16 ***
## Age.scan          0.0001879  0.0007211   0.261    0.795    
## Race              0.0025995  0.0229727   0.113    0.910    
## PovStat           0.0074956  0.0250833   0.299    0.765    
## Sex              -0.0037100  0.0032643  -1.137    0.257    
## Age.scan:Race    -0.0003152  0.0003599  -0.876    0.382    
## Age.scan:PovStat -0.0004344  0.0003974  -1.093    0.276    
## Race:PovStat      0.0064857  0.0072438   0.895    0.372    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02335 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.127,  Adjusted R-squared:  0.09706 
## F-statistic:  4.24 on 7 and 204 DF,  p-value: 0.0002159

#Stepwise regression model

## 
## Call:
## lm(formula = FRONTAL_WM_L_FA2 ~ Age.scan + Race + PovStat + Age.scan:PovStat, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.070835 -0.013848  0.000327  0.012604  0.104930 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.4340363  0.0282839  15.346   <2e-16 ***
## Age.scan         -0.0001444  0.0005307  -0.272    0.786    
## Race             -0.0053421  0.0033824  -1.579    0.116    
## PovStat           0.0237014  0.0202220   1.172    0.243    
## Age.scan:PovStat -0.0005486  0.0003858  -1.422    0.157    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02337 on 207 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1133, Adjusted R-squared:  0.09612 
## F-statistic: 6.609 on 4 and 207 DF,  p-value: 5.034e-05

Outcome Variable: FRONTAL_WM_R_FA2

#Fit the full model

## 
## Call:
## lm(formula = FRONTAL_WM_R_FA2 ~ (Age.scan + Race + PovStat)^2 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.065961 -0.014002  0.000283  0.013037  0.113296 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.4197520  0.0462191   9.082   <2e-16 ***
## Age.scan          0.0006270  0.0007618   0.823    0.411    
## Race              0.0094567  0.0242707   0.390    0.697    
## PovStat           0.0176586  0.0265006   0.666    0.506    
## Sex              -0.0025391  0.0034487  -0.736    0.462    
## Age.scan:Race    -0.0004302  0.0003802  -1.131    0.259    
## Age.scan:PovStat -0.0005423  0.0004198  -1.292    0.198    
## Race:PovStat      0.0025220  0.0076531   0.330    0.742    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02467 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1096, Adjusted R-squared:  0.07908 
## F-statistic: 3.588 on 7 and 204 DF,  p-value: 0.001151

#Stepwise regression model

## 
## Call:
## lm(formula = FRONTAL_WM_R_FA2 ~ Age.scan + Race + PovStat + Age.scan:PovStat, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.067924 -0.013968 -0.000235  0.013707  0.112231 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       4.383e-01  2.980e-02  14.705  < 2e-16 ***
## Age.scan          9.819e-05  5.592e-04   0.176  0.86078    
## Race             -9.850e-03  3.564e-03  -2.764  0.00623 ** 
## PovStat           2.651e-02  2.131e-02   1.244  0.21489    
## Age.scan:PovStat -6.256e-04  4.065e-04  -1.539  0.12540    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02462 on 207 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1003, Adjusted R-squared:  0.0829 
## F-statistic: 5.768 on 4 and 207 DF,  p-value: 0.0002023

Outcome Variable: TEMPORAL_WM_L_FA2

#Fit the full model

## 
## Call:
## lm(formula = TEMPORAL_WM_L_FA2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.047989 -0.014655 -0.000037  0.013166  0.105225 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.2714353  0.0833190   3.258  0.00132 **
## Age.scan               0.0031626  0.0015335   2.062  0.04045 * 
## Race                   0.1029552  0.0530864   1.939  0.05384 . 
## PovStat                0.1346404  0.0610292   2.206  0.02849 * 
## Sex                   -0.0056428  0.0029903  -1.887  0.06058 . 
## Age.scan:Race         -0.0020950  0.0009940  -2.108  0.03628 * 
## Age.scan:PovStat      -0.0026992  0.0011444  -2.359  0.01929 * 
## Race:PovStat          -0.0789720  0.0380266  -2.077  0.03908 * 
## Age.scan:Race:PovStat  0.0015802  0.0007279   2.171  0.03111 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02132 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.07333,    Adjusted R-squared:  0.03681 
## F-statistic: 2.008 on 8 and 203 DF,  p-value: 0.0471

#Stepwise regression model

## 
## Call:
## lm(formula = TEMPORAL_WM_L_FA2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.047989 -0.014655 -0.000037  0.013166  0.105225 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.2714353  0.0833190   3.258  0.00132 **
## Age.scan               0.0031626  0.0015335   2.062  0.04045 * 
## Race                   0.1029552  0.0530864   1.939  0.05384 . 
## PovStat                0.1346404  0.0610292   2.206  0.02849 * 
## Sex                   -0.0056428  0.0029903  -1.887  0.06058 . 
## Age.scan:Race         -0.0020950  0.0009940  -2.108  0.03628 * 
## Age.scan:PovStat      -0.0026992  0.0011444  -2.359  0.01929 * 
## Race:PovStat          -0.0789720  0.0380266  -2.077  0.03908 * 
## Age.scan:Race:PovStat  0.0015802  0.0007279   2.171  0.03111 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02132 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.07333,    Adjusted R-squared:  0.03681 
## F-statistic: 2.008 on 8 and 203 DF,  p-value: 0.0471

## █████████████████████ While Race (2nd moderator) = 1.00 (1) ████████████████████ 
## 
## JOHNSON-NEYMAN INTERVAL 
## 
## When PovStat is OUTSIDE the interval [-1.89, 1.35], the slope of Age.scan
## is p < .05.
## 
## Note: The range of observed values of PovStat is [1.00, 2.00]
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of Age.scan when PovStat = 1.00 (1): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.00   0.00    -0.20   0.84
## 
## Slope of Age.scan when PovStat = 2.00 (2): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.00   0.00    -2.65   0.01
## 
## █████████████████████ While Race (2nd moderator) = 2.00 (2) ████████████████████ 
## 
## JOHNSON-NEYMAN INTERVAL 
## 
## The Johnson-Neyman interval could not be found. Is the p value for your
## interaction term below the specified alpha?
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of Age.scan when PovStat = 1.00 (1): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.00   0.00    -1.92   0.06
## 
## Slope of Age.scan when PovStat = 2.00 (2): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.00   0.00    -0.25   0.80

Outcome Variable: TEMPORAL_WM_R_FA2

#Fit the full model

## 
## Call:
## lm(formula = TEMPORAL_WM_R_FA2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.057682 -0.014044  0.000046  0.011757  0.096960 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.2847783  0.0897697   3.172  0.00175 **
## Age.scan               0.0029957  0.0016523   1.813  0.07130 . 
## Race                   0.0875031  0.0571964   1.530  0.12761   
## PovStat                0.1314569  0.0657542   1.999  0.04692 * 
## Sex                   -0.0044494  0.0032218  -1.381  0.16878   
## Age.scan:Race         -0.0018702  0.0010709  -1.746  0.08226 . 
## Age.scan:PovStat      -0.0026738  0.0012330  -2.169  0.03128 * 
## Race:PovStat          -0.0696113  0.0409706  -1.699  0.09084 . 
## Age.scan:Race:PovStat  0.0014545  0.0007843   1.855  0.06510 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02297 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.06957,    Adjusted R-squared:  0.0329 
## F-statistic: 1.897 on 8 and 203 DF,  p-value: 0.06209

#Stepwise regression model

## 
## Call:
## lm(formula = TEMPORAL_WM_R_FA2 ~ Age.scan + Race + PovStat + 
##     Age.scan:Race + Age.scan:PovStat + Race:PovStat + Age.scan:Race:PovStat, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.055569 -0.013985 -0.000533  0.011952  0.098533 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            0.2676205  0.0891033   3.003   0.0030 **
## Age.scan               0.0031749  0.0016508   1.923   0.0558 . 
## Race                   0.0944367  0.0571022   1.654   0.0997 . 
## PovStat                0.1388847  0.0656794   2.115   0.0357 * 
## Age.scan:Race         -0.0020008  0.0010691  -1.871   0.0627 . 
## Age.scan:PovStat      -0.0027983  0.0012325  -2.270   0.0242 * 
## Race:PovStat          -0.0744352  0.0409121  -1.819   0.0703 . 
## Age.scan:Race:PovStat  0.0015460  0.0007832   1.974   0.0497 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02302 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.06083,    Adjusted R-squared:  0.0286 
## F-statistic: 1.887 on 7 and 204 DF,  p-value: 0.07315

Outcome Variable: PARIETAL_WM_L_FA2

#Fit the full model

## 
## Call:
## lm(formula = PARIETAL_WM_L_FA2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.058859 -0.011886  0.000404  0.013074  0.116413 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.326869   0.088590   3.690 0.000288 ***
## Age.scan               0.002631   0.001631   1.614 0.108139    
## Race                   0.077089   0.056445   1.366 0.173532    
## PovStat                0.101830   0.064890   1.569 0.118143    
## Sex                   -0.008717   0.003179  -2.742 0.006657 ** 
## Age.scan:Race         -0.001816   0.001057  -1.718 0.087353 .  
## Age.scan:PovStat      -0.002218   0.001217  -1.823 0.069805 .  
## Race:PovStat          -0.059565   0.040432  -1.473 0.142241    
## Age.scan:Race:PovStat  0.001287   0.000774   1.663 0.097899 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02266 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1114, Adjusted R-squared:  0.07636 
## F-statistic:  3.18 on 8 and 203 DF,  p-value: 0.002025

#Stepwise regression model

## 
## Call:
## lm(formula = PARIETAL_WM_L_FA2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.058859 -0.011886  0.000404  0.013074  0.116413 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.326869   0.088590   3.690 0.000288 ***
## Age.scan               0.002631   0.001631   1.614 0.108139    
## Race                   0.077089   0.056445   1.366 0.173532    
## PovStat                0.101830   0.064890   1.569 0.118143    
## Sex                   -0.008717   0.003179  -2.742 0.006657 ** 
## Age.scan:Race         -0.001816   0.001057  -1.718 0.087353 .  
## Age.scan:PovStat      -0.002218   0.001217  -1.823 0.069805 .  
## Race:PovStat          -0.059565   0.040432  -1.473 0.142241    
## Age.scan:Race:PovStat  0.001287   0.000774   1.663 0.097899 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02266 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1114, Adjusted R-squared:  0.07636 
## F-statistic:  3.18 on 8 and 203 DF,  p-value: 0.002025

Outcome Variable: PARIETAL_WM_R_FA2

#Fit the full model

## 
## Call:
## lm(formula = PARIETAL_WM_R_FA2 ~ (Age.scan + Race + PovStat)^2 + 
##     Sex, data = dtidat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.06509 -0.01481 -0.00035  0.01258  0.10612 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       4.660e-01  4.534e-02  10.276   <2e-16 ***
## Age.scan          5.211e-05  7.474e-04   0.070    0.944    
## Race             -1.591e-02  2.381e-02  -0.668    0.505    
## PovStat          -2.237e-03  2.600e-02  -0.086    0.932    
## Sex              -2.649e-03  3.383e-03  -0.783    0.435    
## Age.scan:Race    -5.234e-05  3.730e-04  -0.140    0.889    
## Age.scan:PovStat -2.712e-04  4.119e-04  -0.658    0.511    
## Race:PovStat      8.443e-03  7.508e-03   1.125    0.262    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02421 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.0534, Adjusted R-squared:  0.02092 
## F-statistic: 1.644 on 7 and 204 DF,  p-value: 0.1248

#Stepwise regression model

## 
## Call:
## lm(formula = PARIETAL_WM_R_FA2 ~ Age.scan + Race, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.066727 -0.013534 -0.001029  0.015123  0.101875 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4627633  0.0113932  40.617   <2e-16 ***
## Age.scan    -0.0003712  0.0001804  -2.058   0.0409 *  
## Race        -0.0073334  0.0034279  -2.139   0.0336 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02414 on 209 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.0354, Adjusted R-squared:  0.02617 
## F-statistic: 3.835 on 2 and 209 DF,  p-value: 0.02314

Outcome Variable: OCCIPITAL_WM_L_FA2

#Fit the full model

## 
## Call:
## lm(formula = OCCIPITAL_WM_L_FA2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.070434 -0.014847 -0.000655  0.015311  0.125044 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            0.2277629  0.0977239   2.331   0.0208 *
## Age.scan               0.0040156  0.0017987   2.233   0.0267 *
## Race                   0.0972500  0.0622644   1.562   0.1199  
## PovStat                0.1462892  0.0715805   2.044   0.0423 *
## Sex                   -0.0033594  0.0035072  -0.958   0.3393  
## Age.scan:Race         -0.0022939  0.0011658  -1.968   0.0505 .
## Age.scan:PovStat      -0.0030617  0.0013423  -2.281   0.0236 *
## Race:PovStat          -0.0779559  0.0446009  -1.748   0.0820 .
## Age.scan:Race:PovStat  0.0016342  0.0008538   1.914   0.0570 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.025 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1066, Adjusted R-squared:  0.07142 
## F-statistic: 3.028 on 8 and 203 DF,  p-value: 0.003092

#Stepwise regression model

## 
## Call:
## lm(formula = OCCIPITAL_WM_L_FA2 ~ Age.scan + Race + PovStat + 
##     Age.scan:Race + Age.scan:PovStat + Race:PovStat + Age.scan:Race:PovStat, 
##     data = dtidat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.07251 -0.01444 -0.00106  0.01459  0.12623 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            0.2148084  0.0967639   2.220   0.0275 *
## Age.scan               0.0041509  0.0017927   2.315   0.0216 *
## Race                   0.1024850  0.0620115   1.653   0.0999 .
## PovStat                0.1518973  0.0713262   2.130   0.0344 *
## Age.scan:Race         -0.0023925  0.0011610  -2.061   0.0406 *
## Age.scan:PovStat      -0.0031557  0.0013384  -2.358   0.0193 *
## Race:PovStat          -0.0815980  0.0444295  -1.837   0.0677 .
## Age.scan:Race:PovStat  0.0017033  0.0008505   2.003   0.0465 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.025 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1026, Adjusted R-squared:  0.07179 
## F-statistic: 3.331 on 7 and 204 DF,  p-value: 0.002213

Outcome Variable: OCCIPITAL_WM_R_FA2

#Fit the full model

## 
## Call:
## lm(formula = OCCIPITAL_WM_L_FA2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.070434 -0.014847 -0.000655  0.015311  0.125044 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            0.2277629  0.0977239   2.331   0.0208 *
## Age.scan               0.0040156  0.0017987   2.233   0.0267 *
## Race                   0.0972500  0.0622644   1.562   0.1199  
## PovStat                0.1462892  0.0715805   2.044   0.0423 *
## Sex                   -0.0033594  0.0035072  -0.958   0.3393  
## Age.scan:Race         -0.0022939  0.0011658  -1.968   0.0505 .
## Age.scan:PovStat      -0.0030617  0.0013423  -2.281   0.0236 *
## Race:PovStat          -0.0779559  0.0446009  -1.748   0.0820 .
## Age.scan:Race:PovStat  0.0016342  0.0008538   1.914   0.0570 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.025 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1066, Adjusted R-squared:  0.07142 
## F-statistic: 3.028 on 8 and 203 DF,  p-value: 0.003092

#Stepwise regression model

## 
## Call:
## lm(formula = OCCIPITAL_WM_L_FA2 ~ Age.scan + Race + PovStat + 
##     Age.scan:Race + Age.scan:PovStat + Race:PovStat + Age.scan:Race:PovStat, 
##     data = dtidat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.07251 -0.01444 -0.00106  0.01459  0.12623 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            0.2148084  0.0967639   2.220   0.0275 *
## Age.scan               0.0041509  0.0017927   2.315   0.0216 *
## Race                   0.1024850  0.0620115   1.653   0.0999 .
## PovStat                0.1518973  0.0713262   2.130   0.0344 *
## Age.scan:Race         -0.0023925  0.0011610  -2.061   0.0406 *
## Age.scan:PovStat      -0.0031557  0.0013384  -2.358   0.0193 *
## Race:PovStat          -0.0815980  0.0444295  -1.837   0.0677 .
## Age.scan:Race:PovStat  0.0017033  0.0008505   2.003   0.0465 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.025 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1026, Adjusted R-squared:  0.07179 
## F-statistic: 3.331 on 7 and 204 DF,  p-value: 0.002213

Outcome Variable: CORPUS_CALLOSUM_FA2

#Fit the full model

## 
## Call:
## lm(formula = CORPUS_CALLOSUM_FA2 ~ (Age.scan + Race + PovStat)^3 + 
##     Sex, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.096226 -0.014525  0.004835  0.019002  0.064445 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.3921155  0.1095745   3.579 0.000432 ***
## Age.scan               0.0050551  0.0020168   2.507 0.012977 *  
## Race                   0.1264459  0.0698149   1.811 0.071595 .  
## PovStat                0.2012326  0.0802607   2.507 0.012952 *  
## Sex                   -0.0053976  0.0039325  -1.373 0.171404    
## Age.scan:Race         -0.0026245  0.0013072  -2.008 0.045993 *  
## Age.scan:PovStat      -0.0041038  0.0015050  -2.727 0.006956 ** 
## Race:PovStat          -0.1047821  0.0500095  -2.095 0.037389 *  
## Age.scan:Race:PovStat  0.0020901  0.0009573   2.183 0.030160 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02803 on 203 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.07792,    Adjusted R-squared:  0.04158 
## F-statistic: 2.144 on 8 and 203 DF,  p-value: 0.0333

#Stepwise regression model

## 
## Call:
## lm(formula = CORPUS_CALLOSUM_FA2 ~ Age.scan + Race + PovStat + 
##     Age.scan:Race + Age.scan:PovStat + Race:PovStat + Age.scan:Race:PovStat, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.099569 -0.015116  0.004834  0.018742  0.061018 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.3713012  0.1087549   3.414 0.000772 ***
## Age.scan               0.0052725  0.0020149   2.617 0.009541 ** 
## Race                   0.1348570  0.0696960   1.935 0.054381 .  
## PovStat                0.2102434  0.0801649   2.623 0.009384 ** 
## Age.scan:Race         -0.0027830  0.0013049  -2.133 0.034141 *  
## Age.scan:PovStat      -0.0042548  0.0015043  -2.829 0.005143 ** 
## Race:PovStat          -0.1106340  0.0499352  -2.216 0.027828 *  
## Age.scan:Race:PovStat  0.0022011  0.0009559   2.303 0.022312 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02809 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.06936,    Adjusted R-squared:  0.03742 
## F-statistic: 2.172 on 7 and 204 DF,  p-value: 0.03808

Outcome Variable:Fx_L_FA

#Fit the full model

## 
## Call:
## lm(formula = Fx_L_FA ~ (Age.scan + Race + PovStat)^2 + Sex, data = mridat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.19902 -0.04179  0.00476  0.03998  0.26415 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.3140029  0.0433036   7.251 6.51e-12 ***
## Age.scan          -0.0012767  0.0007826  -1.631  0.10421    
## Race2             -0.0102294  0.0593043  -0.172  0.86321    
## PovStat2           0.0970629  0.0663086   1.464  0.14464    
## Sex2              -0.0273378  0.0096937  -2.820  0.00523 ** 
## Age.scan:Race2     0.0001278  0.0010731   0.119  0.90529    
## Age.scan:PovStat2 -0.0020294  0.0012152  -1.670  0.09630 .  
## Race2:PovStat2    -0.0047373  0.0217868  -0.217  0.82806    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0728 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.0864, Adjusted R-squared:  0.05811 
## F-statistic: 3.053 on 7 and 226 DF,  p-value: 0.00433

#Stepwise regression model

## 
## Call:
## lm(formula = Fx_L_FA ~ Age.scan + PovStat + Sex + Age.scan:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.197208 -0.043558  0.003096  0.041505  0.262492 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.3097377  0.0343130   9.027  < 2e-16 ***
## Age.scan          -0.0012200  0.0006182  -1.974  0.04963 *  
## PovStat2           0.0848411  0.0600611   1.413  0.15914    
## Sex2              -0.0272598  0.0096342  -2.829  0.00508 ** 
## Age.scan:PovStat2 -0.0018520  0.0011551  -1.603  0.11022    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07237 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.0851, Adjusted R-squared:  0.06912 
## F-statistic: 5.325 on 4 and 229 DF,  p-value: 0.0004058

Outcome Variable:Fx_R_FA

#Fit the full model

## 
## Call:
## lm(formula = Fx_R_FA ~ (Age.scan + Race + PovStat)^2 + Sex, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.217408 -0.035446  0.000137  0.033014  0.133646 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.4047062  0.0306779  13.192  < 2e-16 ***
## Age.scan          -0.0017786  0.0005544  -3.208  0.00153 ** 
## Race2              0.0072887  0.0420134   0.173  0.86243    
## PovStat2           0.0046925  0.0469756   0.100  0.92052    
## Sex2              -0.0167158  0.0068674  -2.434  0.01570 *  
## Age.scan:Race2    -0.0003200  0.0007602  -0.421  0.67419    
## Age.scan:PovStat2 -0.0002431  0.0008609  -0.282  0.77789    
## Race2:PovStat2     0.0050609  0.0154346   0.328  0.74330    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05157 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.136,  Adjusted R-squared:  0.1092 
## F-statistic: 5.082 on 7 and 226 DF,  p-value: 2.234e-05

#Stepwise regression model

## 
## Call:
## lm(formula = Fx_R_FA ~ Age.scan + Sex, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.222854 -0.032001  0.002356  0.032440  0.125053 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4059766  0.0196110  20.702  < 2e-16 ***
## Age.scan    -0.0019120  0.0003623  -5.277 3.02e-07 ***
## Sex2        -0.0157007  0.0067406  -2.329   0.0207 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05128 on 231 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1269, Adjusted R-squared:  0.1193 
## F-statistic: 16.78 on 2 and 231 DF,  p-value: 1.564e-07

Outcome Variable:ALIC_L_FA

#Fit the full model

## 
## Call:
## lm(formula = ALIC_L_FA ~ (Age.scan + Race + PovStat)^2 + Sex, 
##     data = mridat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.16656 -0.01544  0.00145  0.01835  0.06116 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.3841831  0.0169234  22.701   <2e-16 ***
## Age.scan          -0.0001562  0.0003059  -0.511    0.610    
## Race2              0.0066215  0.0231766   0.286    0.775    
## PovStat2          -0.0008750  0.0259139  -0.034    0.973    
## Sex2               0.0019084  0.0037884   0.504    0.615    
## Age.scan:Race2    -0.0003028  0.0004194  -0.722    0.471    
## Age.scan:PovStat2 -0.0002057  0.0004749  -0.433    0.665    
## Race2:PovStat2     0.0061181  0.0085144   0.719    0.473    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02845 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.05252,    Adjusted R-squared:  0.02317 
## F-statistic: 1.789 on 7 and 226 DF,  p-value: 0.09035

#Stepwise regression model

## 
## Call:
## lm(formula = ALIC_L_FA ~ Age.scan + Race + PovStat, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.164600 -0.015471  0.001474  0.018771  0.061085 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.3964512  0.0115595  34.297   <2e-16 ***
## Age.scan    -0.0003833  0.0002055  -1.865   0.0634 .  
## Race2       -0.0069778  0.0038444  -1.815   0.0708 .  
## PovStat2    -0.0085828  0.0040713  -2.108   0.0361 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02833 on 230 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04401,    Adjusted R-squared:  0.03154 
## F-statistic:  3.53 on 3 and 230 DF,  p-value: 0.01563

Outcome Variable:ALIC_R_FA

#Fit the full model

## 
## Call:
## lm(formula = ALIC_R_FA ~ (Age.scan + Race + PovStat)^2 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.146550 -0.012973  0.003371  0.014738  0.062521 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.4400261  0.0166163  26.482   <2e-16 ***
## Age.scan          -0.0004549  0.0003003  -1.515   0.1312    
## Race2             -0.0159455  0.0227561  -0.701   0.4842    
## PovStat2           0.0122705  0.0254437   0.482   0.6301    
## Sex2               0.0042604  0.0037196   1.145   0.2533    
## Age.scan:Race2    -0.0000356  0.0004118  -0.086   0.9312    
## Age.scan:PovStat2 -0.0005317  0.0004663  -1.140   0.2553    
## Race2:PovStat2     0.0210509  0.0083600   2.518   0.0125 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02793 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1181, Adjusted R-squared:  0.09073 
## F-statistic: 4.322 on 7 and 226 DF,  p-value: 0.0001641

#Stepwise regression model

## 
## Call:
## lm(formula = ALIC_R_FA ~ Age.scan + Race + PovStat + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.148777 -0.011690  0.002866  0.015831  0.060464 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.4509161  0.0114087  39.524  < 2e-16 ***
## Age.scan       -0.0006161  0.0002047  -3.010 0.002902 ** 
## Race2          -0.0179517  0.0046698  -3.844 0.000157 ***
## PovStat2       -0.0168700  0.0054154  -3.115 0.002073 ** 
## Race2:PovStat2  0.0234865  0.0079864   2.941 0.003609 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02791 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1076, Adjusted R-squared:  0.09199 
## F-statistic: 6.901 on 4 and 229 DF,  p-value: 2.915e-05

Outcome Variable:EC_L_FA

#Fit the full model

## 
## Call:
## lm(formula = EC_L_FA ~ (Age.scan + Race + PovStat)^3 + Sex, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.106380 -0.011930  0.000519  0.013639  0.052713 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.2741931  0.0129033  21.250   <2e-16 ***
## Age.scan                -0.0002792  0.0002331  -1.197   0.2324    
## Race2                    0.0171206  0.0192677   0.889   0.3752    
## PovStat2                 0.0346569  0.0260075   1.333   0.1840    
## Sex2                    -0.0004726  0.0027191  -0.174   0.8622    
## Age.scan:Race2          -0.0005218  0.0003506  -1.488   0.1381    
## Age.scan:PovStat2       -0.0008122  0.0004816  -1.686   0.0931 .  
## Race2:PovStat2          -0.0592476  0.0355503  -1.667   0.0970 .  
## Age.scan:Race2:PovStat2  0.0013097  0.0006816   1.921   0.0559 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02036 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1189, Adjusted R-squared:  0.08759 
## F-statistic: 3.796 on 8 and 225 DF,  p-value: 0.0003356

#Stepwise regression model

## 
## Call:
## lm(formula = EC_L_FA ~ Age.scan + Race + PovStat + Age.scan:Race + 
##     Age.scan:PovStat + Race:PovStat + Age.scan:Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.106150 -0.012141  0.000713  0.013804  0.052843 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.2738571  0.0127303  21.512   <2e-16 ***
## Age.scan                -0.0002774  0.0002324  -1.194   0.2339    
## Race2                    0.0173129  0.0191946   0.902   0.3680    
## PovStat2                 0.0349326  0.0259034   1.349   0.1788    
## Age.scan:Race2          -0.0005251  0.0003493  -1.503   0.1341    
## Age.scan:PovStat2       -0.0008158  0.0004801  -1.699   0.0907 .  
## Race2:PovStat2          -0.0597361  0.0353629  -1.689   0.0926 .  
## Age.scan:Race2:PovStat2  0.0013190  0.0006780   1.945   0.0530 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02031 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1188, Adjusted R-squared:  0.0915 
## F-statistic: 4.353 on 7 and 226 DF,  p-value: 0.0001513

Outcome Variable:EC_R_FA

#Fit the full model

## 
## Call:
## lm(formula = EC_R_FA ~ (Age.scan + Race + PovStat)^3 + Sex, data = mridat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.09239 -0.01343  0.00006  0.01812  0.06187 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.3164475  0.0156538  20.215   <2e-16 ***
## Age.scan                -0.0002515  0.0002828  -0.889   0.3749    
## Race2                    0.0014895  0.0233750   0.064   0.9492    
## PovStat2                 0.0477752  0.0315515   1.514   0.1314    
## Sex2                     0.0027273  0.0032987   0.827   0.4092    
## Age.scan:Race2          -0.0002837  0.0004253  -0.667   0.5054    
## Age.scan:PovStat2       -0.0010676  0.0005843  -1.827   0.0690 .  
## Race2:PovStat2          -0.0827842  0.0431286  -1.919   0.0562 .  
## Age.scan:Race2:PovStat2  0.0017850  0.0008269   2.159   0.0319 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0247 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1007, Adjusted R-squared:  0.06873 
## F-statistic:  3.15 on 8 and 225 DF,  p-value: 0.002123

#Stepwise regression model

## 
## Call:
## lm(formula = EC_R_FA ~ Age.scan + Race + PovStat + Age.scan:Race + 
##     Age.scan:PovStat + Race:PovStat + Age.scan:Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.093670 -0.013683  0.000078  0.018006  0.060486 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.3183860  0.0154664  20.586   <2e-16 ***
## Age.scan                -0.0002616  0.0002824  -0.927   0.3552    
## Race2                    0.0003797  0.0233201   0.016   0.9870    
## PovStat2                 0.0461842  0.0314707   1.468   0.1436    
## Age.scan:Race2          -0.0002641  0.0004244  -0.622   0.5343    
## Age.scan:PovStat2       -0.0010469  0.0005833  -1.795   0.0740 .  
## Race2:PovStat2          -0.0799652  0.0429635  -1.861   0.0640 .  
## Age.scan:Race2:PovStat2  0.0017312  0.0008238   2.102   0.0367 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02468 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.09798,    Adjusted R-squared:  0.07004 
## F-statistic: 3.507 on 7 and 226 DF,  p-value: 0.001362

Outcome Variable:CGC_L_FA

#Fit the full model

## 
## Call:
## lm(formula = CGC_L_FA ~ (Age.scan + Race + PovStat)^3 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.073020 -0.016488  0.000559  0.017840  0.065342 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.3016438  0.0167491  18.010   <2e-16 ***
## Age.scan                -0.0002948  0.0003026  -0.974    0.331    
## Race2                    0.0070351  0.0250104   0.281    0.779    
## PovStat2                 0.0077747  0.0337590   0.230    0.818    
## Sex2                     0.0023726  0.0035295   0.672    0.502    
## Age.scan:Race2          -0.0002764  0.0004551  -0.607    0.544    
## Age.scan:PovStat2       -0.0003661  0.0006252  -0.586    0.559    
## Race2:PovStat2          -0.0470591  0.0461461  -1.020    0.309    
## Age.scan:Race2:PovStat2  0.0012230  0.0008848   1.382    0.168    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02642 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.05309,    Adjusted R-squared:  0.01942 
## F-statistic: 1.577 on 8 and 225 DF,  p-value: 0.1328

#Stepwise regression model

## 
## Call:
## lm(formula = CGC_L_FA ~ Age.scan + Race + PovStat + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.073949 -0.017634  0.001306  0.018513  0.064401 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.3060402  0.0107655  28.428   <2e-16 ***
## Age.scan       -0.0003537  0.0001931  -1.831   0.0683 .  
## Race2          -0.0079590  0.0044065  -1.806   0.0722 .  
## PovStat2       -0.0121376  0.0051101  -2.375   0.0184 *  
## Race2:PovStat2  0.0146079  0.0075361   1.938   0.0538 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02634 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04231,    Adjusted R-squared:  0.02558 
## F-statistic: 2.529 on 4 and 229 DF,  p-value: 0.0414

#Re-run with only 2-way interactions

## 
## Call:
## lm(formula = CGC_L_FA ~ (Age.scan + Race + PovStat)^2 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.073013 -0.017318  0.001329  0.019652  0.063686 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        3.096e-01  1.575e-02  19.660   <2e-16 ***
## Age.scan          -4.390e-04  2.846e-04  -1.542   0.1244    
## Race2             -1.057e-02  2.157e-02  -0.490   0.6247    
## PovStat2          -2.495e-02  2.412e-02  -1.034   0.3020    
## Sex2               1.988e-03  3.526e-03   0.564   0.5734    
## Age.scan:Race2     4.891e-05  3.903e-04   0.125   0.9004    
## Age.scan:PovStat2  2.463e-04  4.420e-04   0.557   0.5779    
## Race2:PovStat2     1.578e-02  7.924e-03   1.992   0.0476 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02648 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04505,    Adjusted R-squared:  0.01547 
## F-statistic: 1.523 on 7 and 226 DF,  p-value: 0.1604
## 
## Call:
## lm(formula = CGC_L_FA ~ Age.scan + Race + PovStat + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.073949 -0.017634  0.001306  0.018513  0.064401 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.3060402  0.0107655  28.428   <2e-16 ***
## Age.scan       -0.0003537  0.0001931  -1.831   0.0683 .  
## Race2          -0.0079590  0.0044065  -1.806   0.0722 .  
## PovStat2       -0.0121376  0.0051101  -2.375   0.0184 *  
## Race2:PovStat2  0.0146079  0.0075361   1.938   0.0538 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02634 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04231,    Adjusted R-squared:  0.02558 
## F-statistic: 2.529 on 4 and 229 DF,  p-value: 0.0414

Outcome Variable:CGC_R_FA

#Fit the full model

## 
## Call:
## lm(formula = CGC_R_FA ~ (Age.scan + Race + PovStat)^3 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.121031 -0.016273  0.003231  0.017718  0.074064 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              2.971e-01  1.753e-02  16.945   <2e-16 ***
## Age.scan                -3.667e-04  3.167e-04  -1.158    0.248    
## Race2                    1.428e-02  2.618e-02   0.545    0.586    
## PovStat2                -1.660e-02  3.533e-02  -0.470    0.639    
## Sex2                    -8.572e-04  3.694e-03  -0.232    0.817    
## Age.scan:Race2          -3.737e-04  4.763e-04  -0.784    0.434    
## Age.scan:PovStat2        8.853e-05  6.544e-04   0.135    0.893    
## Race2:PovStat2          -1.991e-02  4.830e-02  -0.412    0.681    
## Age.scan:Race2:PovStat2  6.705e-04  9.261e-04   0.724    0.470    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02766 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04749,    Adjusted R-squared:  0.01362 
## F-statistic: 1.402 on 8 and 225 DF,  p-value: 0.1965

#Stepwise regression model

## 
## Call:
## lm(formula = CGC_R_FA ~ Age.scan + Race + PovStat + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.120267 -0.015757  0.003801  0.017831  0.074684 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2996896  0.0112451  26.651   <2e-16 ***
## Age.scan       -0.0004235  0.0002017  -2.100   0.0369 *  
## Race2          -0.0059142  0.0046028  -1.285   0.2001    
## PovStat2       -0.0118036  0.0053377  -2.211   0.0280 *  
## Race2:PovStat2  0.0135494  0.0078718   1.721   0.0866 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02751 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04055,    Adjusted R-squared:  0.02379 
## F-statistic:  2.42 on 4 and 229 DF,  p-value: 0.04933

#Re-run with only 2-way interactions

## 
## Call:
## lm(formula = CGC_R_FA ~ (Age.scan + Race + PovStat)^2 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.121027 -0.015621  0.003505  0.018604  0.074211 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.3014401  0.0164344  18.342   <2e-16 ***
## Age.scan          -0.0004458  0.0002970  -1.501   0.1347    
## Race2              0.0046269  0.0225069   0.206   0.8373    
## PovStat2          -0.0345383  0.0251652  -1.372   0.1713    
## Sex2              -0.0010679  0.0036789  -0.290   0.7719    
## Age.scan:Race2    -0.0001953  0.0004073  -0.480   0.6320    
## Age.scan:PovStat2  0.0004243  0.0004612   0.920   0.3586    
## Race2:PovStat2     0.0145466  0.0082684   1.759   0.0799 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02763 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04527,    Adjusted R-squared:  0.0157 
## F-statistic: 1.531 on 7 and 226 DF,  p-value: 0.1578
## 
## Call:
## lm(formula = CGC_R_FA ~ Age.scan + Race + PovStat + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.120267 -0.015757  0.003801  0.017831  0.074684 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2996896  0.0112451  26.651   <2e-16 ***
## Age.scan       -0.0004235  0.0002017  -2.100   0.0369 *  
## Race2          -0.0059142  0.0046028  -1.285   0.2001    
## PovStat2       -0.0118036  0.0053377  -2.211   0.0280 *  
## Race2:PovStat2  0.0135494  0.0078718   1.721   0.0866 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02751 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04055,    Adjusted R-squared:  0.02379 
## F-statistic:  2.42 on 4 and 229 DF,  p-value: 0.04933

Outcome Variable:CGH_L_FA

#Fit the full model

## 
## Call:
## lm(formula = CGH_L_FA ~ (Age.scan + Race + PovStat)^3 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.092978 -0.014347  0.001256  0.018037  0.060122 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.2859156  0.0171478  16.674   <2e-16 ***
## Age.scan                -0.0004641  0.0003098  -1.498    0.136    
## Race2                    0.0347083  0.0256058   1.355    0.177    
## PovStat2                 0.0198598  0.0345627   0.575    0.566    
## Sex2                     0.0006311  0.0036135   0.175    0.862    
## Age.scan:Race2          -0.0006780  0.0004659  -1.455    0.147    
## Age.scan:PovStat2       -0.0004224  0.0006401  -0.660    0.510    
## Race2:PovStat2          -0.0506201  0.0472446  -1.071    0.285    
## Age.scan:Race2:PovStat2  0.0009835  0.0009058   1.086    0.279    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02705 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.07144,    Adjusted R-squared:  0.03843 
## F-statistic: 2.164 on 8 and 225 DF,  p-value: 0.03119

#Stepwise regression model

## 
## Call:
## lm(formula = CGH_L_FA ~ Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.094140 -0.014010  0.002205  0.019594  0.057792 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.2988017  0.0101500  29.439  < 2e-16 ***
## Age.scan    -0.0007245  0.0001895  -3.824 0.000169 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02682 on 232 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.05929,    Adjusted R-squared:  0.05524 
## F-statistic: 14.62 on 1 and 232 DF,  p-value: 0.0001688

#Re-run with only 2-way interactions

## 
## Call:
## lm(formula = CGH_L_FA ~ (Age.scan + Race + PovStat)^2 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.091994 -0.015121  0.001464  0.018740  0.057788 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.923e-01  1.610e-02  18.160   <2e-16 ***
## Age.scan          -5.801e-04  2.909e-04  -1.994   0.0474 *  
## Race2              2.055e-02  2.205e-02   0.932   0.3522    
## PovStat2          -6.455e-03  2.465e-02  -0.262   0.7937    
## Sex2               3.220e-04  3.604e-03   0.089   0.9289    
## Age.scan:Race2    -4.164e-04  3.989e-04  -1.044   0.2978    
## Age.scan:PovStat2  7.009e-05  4.518e-04   0.155   0.8769    
## Race2:PovStat2    -8.271e-05  8.100e-03  -0.010   0.9919    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02706 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.06658,    Adjusted R-squared:  0.03767 
## F-statistic: 2.303 on 7 and 226 DF,  p-value: 0.02759
## 
## Call:
## lm(formula = CGH_L_FA ~ Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.094140 -0.014010  0.002205  0.019594  0.057792 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.2988017  0.0101500  29.439  < 2e-16 ***
## Age.scan    -0.0007245  0.0001895  -3.824 0.000169 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02682 on 232 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.05929,    Adjusted R-squared:  0.05524 
## F-statistic: 14.62 on 1 and 232 DF,  p-value: 0.0001688

Outcome Variable:CGH_R_FA

#Fit the full model

## 
## Call:
## lm(formula = CGH_R_FA ~ (Age.scan + Race + PovStat)^3 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.094919 -0.016196  0.001752  0.018160  0.067863 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              3.210e-01  1.802e-02  17.807   <2e-16 ***
## Age.scan                -6.930e-04  3.257e-04  -2.128   0.0344 *  
## Race2                    3.334e-02  2.691e-02   1.239   0.2168    
## PovStat2                -1.338e-03  3.633e-02  -0.037   0.9707    
## Sex2                    -1.790e-03  3.798e-03  -0.471   0.6379    
## Age.scan:Race2          -5.988e-04  4.897e-04  -1.223   0.2227    
## Age.scan:PovStat2       -9.171e-05  6.728e-04  -0.136   0.8917    
## Race2:PovStat2          -5.575e-02  4.966e-02  -1.123   0.2628    
## Age.scan:Race2:PovStat2  1.194e-03  9.521e-04   1.254   0.2110    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02844 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.0882, Adjusted R-squared:  0.05578 
## F-statistic:  2.72 on 8 and 225 DF,  p-value: 0.007021

#Stepwise regression model

## 
## Call:
## lm(formula = CGH_R_FA ~ Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.091785 -0.017328  0.001918  0.018241  0.069987 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.3263559  0.0107156  30.456  < 2e-16 ***
## Age.scan    -0.0008238  0.0002000  -4.119  5.3e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02831 on 232 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.06814,    Adjusted R-squared:  0.06413 
## F-statistic: 16.97 on 1 and 232 DF,  p-value: 5.298e-05

#Re-run with only 2-way interactions

## 
## Call:
## lm(formula = CGH_R_FA ~ (Age.scan + Race + PovStat)^2 + Sex, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.094912 -0.017259  0.002782  0.018292  0.068153 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        0.3287702  0.0169364  19.412  < 2e-16 ***
## Age.scan          -0.0008339  0.0003061  -2.724  0.00694 ** 
## Race2              0.0161453  0.0231944   0.696  0.48709    
## PovStat2          -0.0332953  0.0259338  -1.284  0.20051    
## Sex2              -0.0021654  0.0037913  -0.571  0.56846    
## Age.scan:Race2    -0.0002811  0.0004197  -0.670  0.50371    
## Age.scan:PovStat2  0.0005064  0.0004753   1.065  0.28780    
## Race2:PovStat2     0.0056295  0.0085210   0.661  0.50950    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02847 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.08182,    Adjusted R-squared:  0.05338 
## F-statistic: 2.877 on 7 and 226 DF,  p-value: 0.00675
## 
## Call:
## lm(formula = CGH_R_FA ~ Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.091785 -0.017328  0.001918  0.018241  0.069987 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.3263559  0.0107156  30.456  < 2e-16 ***
## Age.scan    -0.0008238  0.0002000  -4.119  5.3e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02831 on 232 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.06814,    Adjusted R-squared:  0.06413 
## F-statistic: 16.97 on 1 and 232 DF,  p-value: 5.298e-05