## #refugeeswelcome

Outcome Variable: FRONTAL_wmlM2

#Fit the full model

## 
## Call:
## lm(formula = FRONTAL_wmlM2 ~ (Sex + Race + PovStat)^3 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -763.2 -266.9 -101.9  110.3 3277.5 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -896.058    208.083  -4.306 2.49e-05 ***
## Sex2                  20.845     95.445   0.218    0.827    
## Race2                -11.738    115.949  -0.101    0.919    
## PovStat2              29.526    121.131   0.244    0.808    
## Age.scan              21.797      3.596   6.061 5.73e-09 ***
## Sex2:Race2           242.816    162.796   1.492    0.137    
## Sex2:PovStat2         26.189    195.767   0.134    0.894    
## Race2:PovStat2       114.454    178.930   0.640    0.523    
## Sex2:Race2:PovStat2 -203.052    282.721  -0.718    0.473    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 479.3 on 222 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.1658, Adjusted R-squared:  0.1357 
## F-statistic: 5.515 on 8 and 222 DF,  p-value: 2.293e-06

#Stepwise regression model

## 
## Call:
## lm(formula = FRONTAL_wmlM2 ~ Race + Age.scan, data = mridat)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -687.3 -268.7 -100.0  105.9 3272.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -860.856    190.823  -4.511 1.03e-05 ***
## Race2        120.235     64.541   1.863   0.0638 .  
## Age.scan      21.507      3.463   6.211 2.47e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 478 on 228 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.148,  Adjusted R-squared:  0.1405 
## F-statistic:  19.8 on 2 and 228 DF,  p-value: 1.183e-08

Outcome Variable: WM_FA2

#Fit the full model

## 
## Call:
## lm(formula = WM_FA2 ~ (Sex + Race + PovStat)^2 + Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.054619 -0.012269  0.001286  0.011125  0.095061 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4903873  0.0235330  20.838  < 2e-16 ***
## Sex          -0.0089063  0.0112383  -0.792  0.42899    
## Race         -0.0236767  0.0135399  -1.749  0.08185 .  
## PovStat      -0.0106285  0.0127504  -0.834  0.40549    
## Age.scan     -0.0004335  0.0001591  -2.725  0.00698 ** 
## Sex:Race      0.0057085  0.0060226   0.948  0.34433    
## Sex:PovStat  -0.0022626  0.0063226  -0.358  0.72082    
## Race:PovStat  0.0070001  0.0062821   1.114  0.26647    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02081 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.0683, Adjusted R-squared:  0.03633 
## F-statistic: 2.137 on 7 and 204 DF,  p-value: 0.04137

#Stepwise regression model

## 
## Call:
## lm(formula = WM_FA2 ~ Race + Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.062533 -0.011970  0.000331  0.011151  0.093539 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4587308  0.0098125  46.750  < 2e-16 ***
## Race        -0.0062640  0.0029523  -2.122  0.03504 *  
## Age.scan    -0.0004200  0.0001554  -2.703  0.00743 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02079 on 209 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.0471, Adjusted R-squared:  0.03798 
## F-statistic: 5.165 on 2 and 209 DF,  p-value: 0.006463

Outcome Variable:DEEP_WM_FA2

#Fit the full model

## 
## Call:
## lm(formula = DEEP_WM_FA2 ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.139679 -0.012728  0.002443  0.015552  0.078112 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   6.084e-01  3.050e-02  19.949   <2e-16 ***
## Sex           3.569e-03  1.456e-02   0.245   0.8067    
## Race         -3.137e-02  1.755e-02  -1.788   0.0753 .  
## PovStat      -1.021e-02  1.652e-02  -0.618   0.5375    
## Age.scan      7.567e-05  2.061e-04   0.367   0.7139    
## Sex:Race      6.553e-04  7.805e-03   0.084   0.9332    
## Sex:PovStat  -4.510e-03  8.193e-03  -0.550   0.5826    
## Race:PovStat  1.045e-02  8.141e-03   1.284   0.2005    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02697 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.09523,    Adjusted R-squared:  0.06419 
## F-statistic: 3.068 on 7 and 204 DF,  p-value: 0.004301

#Stepwise regression model

## 
## Call:
## lm(formula = DEEP_WM_FA2 ~ Race, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.141974 -0.013346  0.002485  0.015829  0.075941 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.595890   0.005552 107.334  < 2e-16 ***
## Race        -0.016598   0.003753  -4.423 1.56e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02672 on 210 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.08521,    Adjusted R-squared:  0.08086 
## F-statistic: 19.56 on 1 and 210 DF,  p-value: 1.563e-05

Outcome Variable:FRONTAL_WM_L_FA2

#Fit the full model

## 
## Call:
## lm(formula = FRONTAL_WM_L_FA2 ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.069428 -0.013993  0.001734  0.010951  0.105567 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.5026232  0.0264887  18.975  < 2e-16 ***
## Sex          -0.0085724  0.0126497  -0.678   0.4987    
## Race         -0.0280473  0.0152405  -1.840   0.0672 .  
## PovStat      -0.0162972  0.0143518  -1.136   0.2575    
## Age.scan     -0.0008327  0.0001790  -4.651 5.93e-06 ***
## Sex:Race      0.0062634  0.0067790   0.924   0.3566    
## Sex:PovStat  -0.0029421  0.0071167  -0.413   0.6797    
## Race:PovStat  0.0105515  0.0070711   1.492   0.1372    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02342 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1218, Adjusted R-squared:  0.09171 
## F-statistic: 4.044 on 7 and 204 DF,  p-value: 0.0003582

#Stepwise regression model

## 
## Call:
## lm(formula = FRONTAL_WM_L_FA2 ~ Race + Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.069284 -0.014497  0.001802  0.011487  0.102118 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4627276  0.0110747  41.782  < 2e-16 ***
## Race        -0.0052044  0.0033321  -1.562     0.12    
## Age.scan    -0.0008165  0.0001754  -4.656 5.72e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02347 on 209 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.097,  Adjusted R-squared:  0.08836 
## F-statistic: 11.23 on 2 and 209 DF,  p-value: 2.341e-05

Outcome Variable:FRONTAL_WM_R_FA2

#Fit the full model

## 
## Call:
## lm(formula = FRONTAL_WM_R_FA2 ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.068800 -0.015859  0.001273  0.014206  0.111360 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.5028083  0.0280083  17.952  < 2e-16 ***
## Sex          -0.0055819  0.0133755  -0.417  0.67688    
## Race         -0.0312456  0.0161148  -1.939  0.05389 .  
## PovStat      -0.0088294  0.0151752  -0.582  0.56132    
## Age.scan     -0.0007019  0.0001893  -3.707  0.00027 ***
## Sex:Race      0.0079882  0.0071679   1.114  0.26640    
## Sex:PovStat  -0.0061548  0.0075250  -0.818  0.41436    
## Race:PovStat  0.0078059  0.0074767   1.044  0.29771    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02477 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.1029, Adjusted R-squared:  0.07211 
## F-statistic: 3.342 on 7 and 204 DF,  p-value: 0.002152

#Stepwise regression model

## 
## Call:
## lm(formula = FRONTAL_WM_R_FA2 ~ Race + PovStat + Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.071763 -0.014442 -0.000011  0.014466  0.112657 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4794981  0.0130840  36.648  < 2e-16 ***
## Race        -0.0090424  0.0035369  -2.557 0.011284 *  
## PovStat     -0.0057913  0.0036761  -1.575 0.116684    
## Age.scan    -0.0007130  0.0001872  -3.808 0.000184 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0247 on 208 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.08999,    Adjusted R-squared:  0.07687 
## F-statistic: 6.857 on 3 and 208 DF,  p-value: 0.0001995

Outcome Variable: TEMPORAL_WM_L_FA2

#Fit the full model

## 
## Call:
## lm(formula = TEMPORAL_WM_L_FA2 ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.050345 -0.013947 -0.000062  0.011701  0.099995 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4687644  0.0243480  19.253   <2e-16 ***
## Sex          -0.0109314  0.0116275  -0.940   0.3483    
## Race         -0.0155972  0.0140088  -1.113   0.2669    
## PovStat      -0.0074863  0.0131920  -0.567   0.5710    
## Age.scan     -0.0003729  0.0001646  -2.266   0.0245 *  
## Sex:Race      0.0046379  0.0062312   0.744   0.4576    
## Sex:PovStat  -0.0012821  0.0065416  -0.196   0.8448    
## Race:PovStat  0.0047388  0.0064996   0.729   0.4668    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02153 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.05004,    Adjusted R-squared:  0.01744 
## F-statistic: 1.535 on 7 and 204 DF,  p-value: 0.1571

#Stepwise regression model

## 
## Call:
## lm(formula = TEMPORAL_WM_L_FA2 ~ Sex + Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.054720 -0.013922 -0.000226  0.011552  0.098994 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4436240  0.0094279  47.054   <2e-16 ***
## Sex         -0.0057124  0.0029471  -1.938   0.0539 .  
## Age.scan    -0.0003403  0.0001581  -2.152   0.0325 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02139 on 209 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.03933,    Adjusted R-squared:  0.03014 
## F-statistic: 4.278 on 2 and 209 DF,  p-value: 0.0151

Outcome Variable: TEMPORAL_WM_R_FA2

#Fit the full model

## 
## Call:
## lm(formula = TEMPORAL_WM_L_FA2 ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.050345 -0.013947 -0.000062  0.011701  0.099995 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4687644  0.0243480  19.253   <2e-16 ***
## Sex          -0.0109314  0.0116275  -0.940   0.3483    
## Race         -0.0155972  0.0140088  -1.113   0.2669    
## PovStat      -0.0074863  0.0131920  -0.567   0.5710    
## Age.scan     -0.0003729  0.0001646  -2.266   0.0245 *  
## Sex:Race      0.0046379  0.0062312   0.744   0.4576    
## Sex:PovStat  -0.0012821  0.0065416  -0.196   0.8448    
## Race:PovStat  0.0047388  0.0064996   0.729   0.4668    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02153 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.05004,    Adjusted R-squared:  0.01744 
## F-statistic: 1.535 on 7 and 204 DF,  p-value: 0.1571

#Stepwise regression model

## 
## Call:
## lm(formula = TEMPORAL_WM_L_FA2 ~ Sex + Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.054720 -0.013922 -0.000226  0.011552  0.098994 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4436240  0.0094279  47.054   <2e-16 ***
## Sex         -0.0057124  0.0029471  -1.938   0.0539 .  
## Age.scan    -0.0003403  0.0001581  -2.152   0.0325 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02139 on 209 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.03933,    Adjusted R-squared:  0.03014 
## F-statistic: 4.278 on 2 and 209 DF,  p-value: 0.0151

Outcome Variable: PARIETAL_WM_L_FA2

#Fit the full model

## 
## Call:
## lm(formula = PARIETAL_WM_L_FA2 ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.062438 -0.013095  0.000394  0.013018  0.111973 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4869924  0.0257748  18.894   <2e-16 ***
## Sex          -0.0058554  0.0123088  -0.476    0.635    
## Race         -0.0218973  0.0148298  -1.477    0.141    
## PovStat      -0.0108921  0.0139650  -0.780    0.436    
## Age.scan     -0.0004320  0.0001742  -2.480    0.014 *  
## Sex:Race      0.0014101  0.0065963   0.214    0.831    
## Sex:PovStat  -0.0039918  0.0069249  -0.576    0.565    
## Race:PovStat  0.0087561  0.0068805   1.273    0.205    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02279 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.09701,    Adjusted R-squared:  0.06603 
## F-statistic: 3.131 on 7 and 204 DF,  p-value: 0.003669

#Stepwise regression model

## 
## Call:
## lm(formula = PARIETAL_WM_L_FA2 ~ Sex + Race + Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.062269 -0.013706  0.000708  0.013266  0.107875 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4689731  0.0116356  40.305  < 2e-16 ***
## Sex         -0.0085021  0.0031344  -2.712  0.00724 ** 
## Race        -0.0084644  0.0032304  -2.620  0.00944 ** 
## Age.scan    -0.0004237  0.0001700  -2.492  0.01348 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02275 on 208 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.08283,    Adjusted R-squared:  0.06961 
## F-statistic: 6.262 on 3 and 208 DF,  p-value: 0.000434

Outcome Variable: PARIETAL_WM_R_FA2

#Fit the full model

## 
## Call:
## lm(formula = PARIETAL_WM_R_FA2 ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.064845 -0.014457 -0.000719  0.013108  0.106453 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4936444  0.0274029  18.014   <2e-16 ***
## Sex          -0.0047619  0.0130863  -0.364   0.7163    
## Race         -0.0224454  0.0157665  -1.424   0.1561    
## PovStat      -0.0185792  0.0148471  -1.251   0.2122    
## Age.scan     -0.0003727  0.0001852  -2.012   0.0455 *  
## Sex:Race      0.0014013  0.0070130   0.200   0.8418    
## Sex:PovStat   0.0001444  0.0073624   0.020   0.9844    
## Race:PovStat  0.0099797  0.0073151   1.364   0.1740    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02423 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.05141,    Adjusted R-squared:  0.01886 
## F-statistic: 1.579 on 7 and 204 DF,  p-value: 0.1431

#Stepwise regression model

## 
## Call:
## lm(formula = PARIETAL_WM_R_FA2 ~ Race + Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.066727 -0.013534 -0.001029  0.015123  0.101875 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4627633  0.0113932  40.617   <2e-16 ***
## Race        -0.0073334  0.0034279  -2.139   0.0336 *  
## Age.scan    -0.0003712  0.0001804  -2.058   0.0409 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02414 on 209 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.0354, Adjusted R-squared:  0.02617 
## F-statistic: 3.835 on 2 and 209 DF,  p-value: 0.02314

Outcome Variable: OCCIPITAL_WM_L_FA2

#Fit the full model

## 
## Call:
## lm(formula = OCCIPITAL_WM_L_FA2 ~ (Sex + Race + PovStat)^2 + 
##     Age.scan, data = dtidat)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.08052 -0.01559 -0.00027  0.01567  0.11922 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4778721  0.0285173  16.757   <2e-16 ***
## Sex          -0.0188924  0.0136185  -1.387   0.1669    
## Race         -0.0403768  0.0164077  -2.461   0.0147 *  
## PovStat      -0.0225538  0.0154509  -1.460   0.1459    
## Age.scan     -0.0001732  0.0001928  -0.898   0.3701    
## Sex:Race      0.0086992  0.0072982   1.192   0.2347    
## Sex:PovStat   0.0021885  0.0076618   0.286   0.7754    
## Race:PovStat  0.0107997  0.0076126   1.419   0.1575    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02522 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.08674,    Adjusted R-squared:  0.05541 
## F-statistic: 2.768 on 7 and 204 DF,  p-value: 0.00906

#Stepwise regression model

## 
## Call:
## lm(formula = OCCIPITAL_WM_L_FA2 ~ Race, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.091645 -0.016365 -0.000445  0.016013  0.115125 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.415138   0.005238  79.257  < 2e-16 ***
## Race        -0.012969   0.003540  -3.663 0.000316 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02521 on 210 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.06006,    Adjusted R-squared:  0.05558 
## F-statistic: 13.42 on 1 and 210 DF,  p-value: 0.0003156

Outcome Variable: OCCIPITAL_WM_R_FA2

#Fit the full model

## 
## Call:
## lm(formula = OCCIPITAL_WM_R_FA2 ~ (Sex + Race + PovStat)^2 + 
##     Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.060739 -0.015736 -0.000344  0.012892  0.132120 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4460825  0.0283459  15.737   <2e-16 ***
## Sex          -0.0315796  0.0135367  -2.333   0.0206 *  
## Race         -0.0239853  0.0163091  -1.471   0.1429    
## PovStat      -0.0123794  0.0153581  -0.806   0.4211    
## Age.scan     -0.0002364  0.0001916  -1.234   0.2187    
## Sex:Race      0.0113631  0.0072543   1.566   0.1188    
## Sex:PovStat   0.0048476  0.0076157   0.637   0.5251    
## Race:PovStat  0.0021745  0.0075669   0.287   0.7741    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02506 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.06011,    Adjusted R-squared:  0.02786 
## F-statistic: 1.864 on 7 and 204 DF,  p-value: 0.07715

#Stepwise regression model

## 
## Call:
## lm(formula = OCCIPITAL_WM_R_FA2 ~ Sex + Race + Sex:Race, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.063888 -0.016819  0.001375  0.013129  0.127644 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.416012   0.016088  25.858   <2e-16 ***
## Sex         -0.024850   0.010401  -2.389   0.0178 *  
## Race        -0.020650   0.010847  -1.904   0.0583 .  
## Sex:Race     0.011347   0.007036   1.613   0.1083    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02497 on 208 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.04913,    Adjusted R-squared:  0.03541 
## F-statistic: 3.582 on 3 and 208 DF,  p-value: 0.01474

Outcome Variable: CORPUS_CALLOSUM_FA2

#Fit the full model

## 
## Call:
## lm(formula = CORPUS_CALLOSUM_FA2 ~ (Sex + Race + PovStat)^2 + 
##     Age.scan, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.111865 -0.014949  0.003682  0.020037  0.057822 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   6.544e-01  3.228e-02  20.271   <2e-16 ***
## Sex           3.557e-03  1.542e-02   0.231    0.818    
## Race         -1.188e-02  1.857e-02  -0.639    0.523    
## PovStat      -9.132e-03  1.749e-02  -0.522    0.602    
## Age.scan     -9.082e-05  2.182e-04  -0.416    0.678    
## Sex:Race     -1.185e-03  8.261e-03  -0.143    0.886    
## Sex:PovStat  -5.953e-03  8.673e-03  -0.686    0.493    
## Race:PovStat  6.399e-03  8.617e-03   0.743    0.459    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02854 on 204 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.03933,    Adjusted R-squared:  0.006366 
## F-statistic: 1.193 on 7 and 204 DF,  p-value: 0.3081

#Stepwise regression model

## 
## Call:
## lm(formula = CORPUS_CALLOSUM_FA2 ~ Sex + PovStat, data = dtidat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.115230 -0.013220  0.003857  0.019632  0.055828 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.644605   0.008912  72.330   <2e-16 ***
## Sex         -0.005928   0.003965  -1.495   0.1364    
## PovStat     -0.008680   0.004174  -2.079   0.0388 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02839 on 209 degrees of freedom
##   (26 observations deleted due to missingness)
## Multiple R-squared:  0.02648,    Adjusted R-squared:  0.01717 
## F-statistic: 2.843 on 2 and 209 DF,  p-value: 0.06052

Outcome Variable:Fx_L_FA

#Fit the full model

## 
## Call:
## lm(formula = Fx_L_FA ~ (Sex + Race + PovStat)^3 + Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.205993 -0.036960  0.005487  0.043302  0.251066 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.3460505  0.0307526  11.253  < 2e-16 ***
## Sex2                -0.0287663  0.0143033  -2.011 0.045502 *  
## Race2               -0.0217869  0.0170452  -1.278 0.202504    
## PovStat2            -0.0127174  0.0179472  -0.709 0.479305    
## Age.scan            -0.0018558  0.0005308  -3.496 0.000569 ***
## Sex2:Race2           0.0375676  0.0241856   1.553 0.121756    
## Sex2:PovStat2        0.0036535  0.0292645   0.125 0.900759    
## Race2:PovStat2       0.0389518  0.0265046   1.470 0.143061    
## Sex2:Race2:PovStat2 -0.0900612  0.0425346  -2.117 0.035327 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07215 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1065, Adjusted R-squared:  0.07474 
## F-statistic: 3.353 on 8 and 225 DF,  p-value: 0.001195

#Stepwise regression model

## 
## Call:
## lm(formula = Fx_L_FA ~ (Sex + Race + PovStat)^3 + Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.205993 -0.036960  0.005487  0.043302  0.251066 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.3460505  0.0307526  11.253  < 2e-16 ***
## Sex2                -0.0287663  0.0143033  -2.011 0.045502 *  
## Race2               -0.0217869  0.0170452  -1.278 0.202504    
## PovStat2            -0.0127174  0.0179472  -0.709 0.479305    
## Age.scan            -0.0018558  0.0005308  -3.496 0.000569 ***
## Sex2:Race2           0.0375676  0.0241856   1.553 0.121756    
## Sex2:PovStat2        0.0036535  0.0292645   0.125 0.900759    
## Race2:PovStat2       0.0389518  0.0265046   1.470 0.143061    
## Sex2:Race2:PovStat2 -0.0900612  0.0425346  -2.117 0.035327 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07215 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1065, Adjusted R-squared:  0.07474 
## F-statistic: 3.353 on 8 and 225 DF,  p-value: 0.001195

Outcome Variable:Fx_R_FA

#Fit the full model

## 
## Call:
## lm(formula = Fx_R_FA ~ (Sex + Race + PovStat)^2 + Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.219448 -0.034760  0.001016  0.034853  0.125554 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.4130593  0.0216607  19.070  < 2e-16 ***
## Sex2           -0.0099815  0.0095905  -1.041    0.299    
## Race2          -0.0083648  0.0111165  -0.752    0.453    
## PovStat2       -0.0012493  0.0115781  -0.108    0.914    
## Age.scan       -0.0019965  0.0003772  -5.293 2.84e-07 ***
## Sex2:Race2     -0.0031113  0.0141483  -0.220    0.826    
## Sex2:PovStat2  -0.0179802  0.0150956  -1.191    0.235    
## Race2:PovStat2  0.0068212  0.0148812   0.458    0.647    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05142 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.141,  Adjusted R-squared:  0.1144 
## F-statistic: 5.302 on 7 and 226 DF,  p-value: 1.254e-05

#Stepwise regression model

## 
## Call:
## lm(formula = Fx_R_FA ~ Sex + Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.222854 -0.032001  0.002356  0.032440  0.125053 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.4059766  0.0196110  20.702  < 2e-16 ***
## Sex2        -0.0157007  0.0067406  -2.329   0.0207 *  
## Age.scan    -0.0019120  0.0003623  -5.277 3.02e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05128 on 231 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1269, Adjusted R-squared:  0.1193 
## F-statistic: 16.78 on 2 and 231 DF,  p-value: 1.564e-07

Outcome Variable:ALIC_L_FA

#Fit the full model

## 
## Call:
## lm(formula = ALIC_L_FA ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.165983 -0.015349  0.000679  0.018357  0.060420 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.3954921  0.0119932  32.976   <2e-16 ***
## Sex2            0.0006612  0.0053101   0.125   0.9010    
## Race2          -0.0121518  0.0061550  -1.974   0.0496 *  
## PovStat2       -0.0114076  0.0064106  -1.779   0.0765 .  
## Age.scan       -0.0003536  0.0002088  -1.693   0.0918 .  
## Sex2:Race2      0.0048363  0.0078337   0.617   0.5376    
## Sex2:PovStat2  -0.0024168  0.0083582  -0.289   0.7727    
## Race2:PovStat2  0.0089466  0.0082395   1.086   0.2787    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02847 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.05109,    Adjusted R-squared:  0.02169 
## F-statistic: 1.738 on 7 and 226 DF,  p-value: 0.1012

#Stepwise regression model

## 
## Call:
## lm(formula = ALIC_L_FA ~ Race + PovStat + Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.164600 -0.015471  0.001474  0.018771  0.061085 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.3964512  0.0115595  34.297   <2e-16 ***
## Race2       -0.0069778  0.0038444  -1.815   0.0708 .  
## PovStat2    -0.0085828  0.0040713  -2.108   0.0361 *  
## Age.scan    -0.0003833  0.0002055  -1.865   0.0634 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02833 on 230 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04401,    Adjusted R-squared:  0.03154 
## F-statistic:  3.53 on 3 and 230 DF,  p-value: 0.01563

Outcome Variable:ALIC_R_FA

#Fit the full model

## 
## Call:
## lm(formula = ALIC_R_FA ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.144202 -0.012976  0.003258  0.015311  0.062646 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.4487105  0.0117774  38.099  < 2e-16 ***
## Sex2            0.0042817  0.0052146   0.821 0.412458    
## Race2          -0.0203437  0.0060443  -3.366 0.000897 ***
## PovStat2       -0.0139240  0.0062953  -2.212 0.027981 *  
## Age.scan       -0.0006157  0.0002051  -3.002 0.002983 ** 
## Sex2:Race2      0.0050374  0.0076928   0.655 0.513252    
## Sex2:PovStat2  -0.0065700  0.0082078  -0.800 0.424284    
## Race2:PovStat2  0.0241794  0.0080912   2.988 0.003115 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02796 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1164, Adjusted R-squared:  0.08908 
## F-statistic: 4.255 on 7 and 226 DF,  p-value: 0.0001953

#Stepwise regression model

## 
## Call:
## lm(formula = ALIC_R_FA ~ Race + PovStat + Age.scan + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.148777 -0.011690  0.002866  0.015831  0.060464 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.4509161  0.0114087  39.524  < 2e-16 ***
## Race2          -0.0179517  0.0046698  -3.844 0.000157 ***
## PovStat2       -0.0168700  0.0054154  -3.115 0.002073 ** 
## Age.scan       -0.0006161  0.0002047  -3.010 0.002902 ** 
## Race2:PovStat2  0.0234865  0.0079864   2.941 0.003609 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02791 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1076, Adjusted R-squared:  0.09199 
## F-statistic: 6.901 on 4 and 229 DF,  p-value: 2.915e-05

Outcome Variable:EC_L_FA

#Fit the full model

## 
## Call:
## lm(formula = EC_L_FA ~ (Sex + Race + PovStat)^2 + Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.106376 -0.012649  0.000729  0.013770  0.060603 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2889899  0.0086355  33.465  < 2e-16 ***
## Sex2           -0.0001966  0.0038235  -0.051 0.959045    
## Race2          -0.0106958  0.0044318  -2.413 0.016601 *  
## PovStat2       -0.0082917  0.0046159  -1.796 0.073775 .  
## Age.scan       -0.0005554  0.0001504  -3.693 0.000278 ***
## Sex2:Race2     -0.0008080  0.0056406  -0.143 0.886218    
## Sex2:PovStat2  -0.0011899  0.0060182  -0.198 0.843449    
## Race2:PovStat2  0.0092617  0.0059327   1.561 0.119894    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0205 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1024, Adjusted R-squared:  0.07465 
## F-statistic: 3.685 on 7 and 226 DF,  p-value: 0.0008597

#Stepwise regression model

## 
## Call:
## lm(formula = EC_L_FA ~ Race + PovStat + Age.scan + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.105881 -0.012649  0.000732  0.013559  0.061082 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2888293  0.0083268  34.687  < 2e-16 ***
## Race2          -0.0110888  0.0034083  -3.253  0.00131 ** 
## PovStat2       -0.0086525  0.0039525  -2.189  0.02960 *  
## Age.scan       -0.0005542  0.0001494  -3.710  0.00026 ***
## Race2:PovStat2  0.0093737  0.0058289   1.608  0.10918    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02037 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1017, Adjusted R-squared:  0.08605 
## F-statistic: 6.484 on 4 and 229 DF,  p-value: 5.841e-05

Outcome Variable:EC_R_FA

#Fit the full model

## 
## Call:
## lm(formula = EC_R_FA ~ (Sex + Race + PovStat)^2 + Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.089045 -0.014948  0.000143  0.016541  0.063535 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.3238882  0.0104677  30.942   <2e-16 ***
## Sex2            0.0057610  0.0046347   1.243   0.2152    
## Race2          -0.0105963  0.0053721  -1.972   0.0498 *  
## PovStat2       -0.0075588  0.0055952  -1.351   0.1781    
## Age.scan       -0.0004177  0.0001823  -2.291   0.0229 *  
## Sex2:Race2     -0.0065197  0.0068373  -0.954   0.3413    
## Sex2:PovStat2  -0.0029184  0.0072951  -0.400   0.6895    
## Race2:PovStat2  0.0078522  0.0071915   1.092   0.2760    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02485 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.0854, Adjusted R-squared:  0.05707 
## F-statistic: 3.015 on 7 and 226 DF,  p-value: 0.004775

#Stepwise regression model

## 
## Call:
## lm(formula = EC_R_FA ~ Race + PovStat + Age.scan, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.090513 -0.014912 -0.000441  0.017688  0.061695 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.3277483  0.0101243  32.373  < 2e-16 ***
## Race2       -0.0108503  0.0033671  -3.222  0.00146 ** 
## PovStat2    -0.0054818  0.0035658  -1.537  0.12559    
## Age.scan    -0.0004545  0.0001800  -2.525  0.01224 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02481 on 230 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.07217,    Adjusted R-squared:  0.06007 
## F-statistic: 5.964 on 3 and 230 DF,  p-value: 0.0006229

Outcome Variable:CGC_L_FA

#Fit the full model

## 
## Call:
## lm(formula = CGC_L_FA ~ (Sex + Race + PovStat)^3 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.072033 -0.016965  0.001182  0.019352  0.063677 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.3052982  0.0112969  27.025   <2e-16 ***
## Sex2                 0.0024480  0.0052543   0.466   0.6417    
## Race2               -0.0086372  0.0062615  -1.379   0.1691    
## PovStat2            -0.0126269  0.0065929  -1.915   0.0567 .  
## Age.scan            -0.0003631  0.0001950  -1.862   0.0639 .  
## Sex2:Race2           0.0014757  0.0088846   0.166   0.8682    
## Sex2:PovStat2        0.0027358  0.0107503   0.254   0.7994    
## Race2:PovStat2       0.0187134  0.0097364   1.922   0.0559 .  
## Sex2:Race2:PovStat2 -0.0117902  0.0156250  -0.755   0.4513    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02651 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04725,    Adjusted R-squared:  0.01338 
## F-statistic: 1.395 on 8 and 225 DF,  p-value: 0.1997

#Stepwise regression model

## 
## Call:
## lm(formula = CGC_L_FA ~ Race + PovStat + Age.scan + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.073949 -0.017634  0.001306  0.018513  0.064401 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.3060402  0.0107655  28.428   <2e-16 ***
## Race2          -0.0079590  0.0044065  -1.806   0.0722 .  
## PovStat2       -0.0121376  0.0051101  -2.375   0.0184 *  
## Age.scan       -0.0003537  0.0001931  -1.831   0.0683 .  
## Race2:PovStat2  0.0146079  0.0075361   1.938   0.0538 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02634 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04231,    Adjusted R-squared:  0.02558 
## F-statistic: 2.529 on 4 and 229 DF,  p-value: 0.0414

#Re-run with only 2-way interactions

## 
## Call:
## lm(formula = CGC_L_FA ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.073241 -0.017797  0.001362  0.018595  0.064325 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.3039987  0.0111543  27.254   <2e-16 ***
## Sex2            0.0037916  0.0049387   0.768   0.4434    
## Race2          -0.0067320  0.0057245  -1.176   0.2408    
## PovStat2       -0.0105127  0.0059622  -1.763   0.0792 .  
## Age.scan       -0.0003517  0.0001942  -1.811   0.0715 .  
## Sex2:Race2     -0.0023535  0.0072857  -0.323   0.7470    
## Sex2:PovStat2  -0.0028616  0.0077735  -0.368   0.7131    
## Race2:PovStat2  0.0141883  0.0076631   1.852   0.0654 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02648 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04484,    Adjusted R-squared:  0.01526 
## F-statistic: 1.516 on 7 and 226 DF,  p-value: 0.1628
## 
## Call:
## lm(formula = CGC_L_FA ~ Race + PovStat + Age.scan + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.073949 -0.017634  0.001306  0.018513  0.064401 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.3060402  0.0107655  28.428   <2e-16 ***
## Race2          -0.0079590  0.0044065  -1.806   0.0722 .  
## PovStat2       -0.0121376  0.0051101  -2.375   0.0184 *  
## Age.scan       -0.0003537  0.0001931  -1.831   0.0683 .  
## Race2:PovStat2  0.0146079  0.0075361   1.938   0.0538 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02634 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04231,    Adjusted R-squared:  0.02558 
## F-statistic: 2.529 on 4 and 229 DF,  p-value: 0.0414

Outcome Variable:CGC_R_FA

#Fit the full model

## 
## Call:
## lm(formula = CGC_R_FA ~ (Sex + Race + PovStat)^3 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.123479 -0.015383  0.002064  0.017432  0.074485 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.2996817  0.0118035  25.389   <2e-16 ***
## Sex2                -0.0003671  0.0054899  -0.067   0.9467    
## Race2               -0.0028857  0.0065423  -0.441   0.6596    
## PovStat2            -0.0136641  0.0068885  -1.984   0.0485 *  
## Age.scan            -0.0004199  0.0002037  -2.061   0.0404 *  
## Sex2:Race2          -0.0061833  0.0092830  -0.666   0.5060    
## Sex2:PovStat2        0.0053978  0.0112323   0.481   0.6313    
## Race2:PovStat2       0.0124386  0.0101730   1.223   0.2227    
## Sex2:Race2:PovStat2  0.0005068  0.0163257   0.031   0.9753    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02769 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04497,    Adjusted R-squared:  0.01102 
## F-statistic: 1.324 on 8 and 225 DF,  p-value: 0.2323

#Stepwise regression model

## 
## Call:
## lm(formula = CGC_R_FA ~ Race + PovStat + Age.scan + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.120267 -0.015757  0.003801  0.017831  0.074684 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2996896  0.0112451  26.651   <2e-16 ***
## Race2          -0.0059142  0.0046028  -1.285   0.2001    
## PovStat2       -0.0118036  0.0053377  -2.211   0.0280 *  
## Age.scan       -0.0004235  0.0002017  -2.100   0.0369 *  
## Race2:PovStat2  0.0135494  0.0078718   1.721   0.0866 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02751 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04055,    Adjusted R-squared:  0.02379 
## F-statistic:  2.42 on 4 and 229 DF,  p-value: 0.04933

#Re-run with only 2-way interactions

## 
## Call:
## lm(formula = CGC_R_FA ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.123427 -0.015350  0.002092  0.017496  0.074457 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2997376  0.0116397  25.751   <2e-16 ***
## Sex2           -0.0004249  0.0051536  -0.082   0.9344    
## Race2          -0.0029676  0.0059736  -0.497   0.6198    
## PovStat2       -0.0137550  0.0062217  -2.211   0.0281 *  
## Age.scan       -0.0004204  0.0002027  -2.074   0.0392 *  
## Sex2:Race2     -0.0060187  0.0076028  -0.792   0.4294    
## Sex2:PovStat2   0.0056384  0.0081119   0.695   0.4877    
## Race2:PovStat2  0.0126331  0.0079966   1.580   0.1156    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02763 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04497,    Adjusted R-squared:  0.01539 
## F-statistic:  1.52 on 7 and 226 DF,  p-value: 0.1613
## 
## Call:
## lm(formula = CGC_R_FA ~ Race + PovStat + Age.scan + Race:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.120267 -0.015757  0.003801  0.017831  0.074684 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2996896  0.0112451  26.651   <2e-16 ***
## Race2          -0.0059142  0.0046028  -1.285   0.2001    
## PovStat2       -0.0118036  0.0053377  -2.211   0.0280 *  
## Age.scan       -0.0004235  0.0002017  -2.100   0.0369 *  
## Race2:PovStat2  0.0135494  0.0078718   1.721   0.0866 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02751 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.04055,    Adjusted R-squared:  0.02379 
## F-statistic:  2.42 on 4 and 229 DF,  p-value: 0.04933

Outcome Variable:CGH_L_FA

#Fit the full model

## 
## Call:
## lm(formula = CGH_L_FA ~ (Sex + Race + PovStat)^3 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.091005 -0.015374  0.001031  0.019236  0.057582 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.3003308  0.0114484  26.234  < 2e-16 ***
## Sex2                 0.0050907  0.0053247   0.956 0.340076    
## Race2                0.0003207  0.0063455   0.051 0.959736    
## PovStat2            -0.0022424  0.0066813  -0.336 0.737465    
## Age.scan            -0.0007727  0.0001976  -3.910 0.000122 ***
## Sex2:Race2          -0.0044716  0.0090037  -0.497 0.619924    
## Sex2:PovStat2        0.0004729  0.0108944   0.043 0.965413    
## Race2:PovStat2       0.0070267  0.0098670   0.712 0.477113    
## Sex2:Race2:PovStat2 -0.0194187  0.0158345  -1.226 0.221348    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02686 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.08461,    Adjusted R-squared:  0.05206 
## F-statistic:   2.6 on 8 and 225 DF,  p-value: 0.009769

#Stepwise regression model

## 
## Call:
## lm(formula = CGH_L_FA ~ Sex + Race + Age.scan + Sex:Race, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.092344 -0.014556  0.000524  0.019408  0.056322 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.2971078  0.0107950  27.523  < 2e-16 ***
## Sex2         0.0055059  0.0045768   1.203 0.230216    
## Race2        0.0035429  0.0048109   0.736 0.462215    
## Age.scan    -0.0007265  0.0001913  -3.797 0.000187 ***
## Sex2:Race2  -0.0121143  0.0071834  -1.686 0.093077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02681 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.07202,    Adjusted R-squared:  0.05581 
## F-statistic: 4.443 on 4 and 229 DF,  p-value: 0.001776

#Re-run with only 2-way interactions

## 
## Call:
## lm(formula = CGH_L_FA ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.093287 -0.014960  0.002744  0.018361  0.060416 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.2981905  0.0113272  26.325  < 2e-16 ***
## Sex2            0.0073037  0.0050152   1.456 0.146699    
## Race2           0.0034586  0.0058132   0.595 0.552467    
## PovStat2        0.0012398  0.0060546   0.205 0.837940    
## Age.scan       -0.0007540  0.0001972  -3.823 0.000171 ***
## Sex2:Race2     -0.0107784  0.0073987  -1.457 0.146561    
## Sex2:PovStat2  -0.0087460  0.0078940  -1.108 0.269072    
## Race2:PovStat2 -0.0004262  0.0077819  -0.055 0.956369    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02689 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.07849,    Adjusted R-squared:  0.04995 
## F-statistic:  2.75 on 7 and 226 DF,  p-value: 0.009263
## 
## Call:
## lm(formula = CGH_L_FA ~ Sex + Race + Age.scan + Sex:Race, data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.092344 -0.014556  0.000524  0.019408  0.056322 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.2971078  0.0107950  27.523  < 2e-16 ***
## Sex2         0.0055059  0.0045768   1.203 0.230216    
## Race2        0.0035429  0.0048109   0.736 0.462215    
## Age.scan    -0.0007265  0.0001913  -3.797 0.000187 ***
## Sex2:Race2  -0.0121143  0.0071834  -1.686 0.093077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02681 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.07202,    Adjusted R-squared:  0.05581 
## F-statistic: 4.443 on 4 and 229 DF,  p-value: 0.001776

Outcome Variable:CGH_R_FA

#Fit the full model

## 
## Call:
## lm(formula = CGH_R_FA ~ (Sex + Race + PovStat)^3 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.093127 -0.018029  0.001784  0.017271  0.070229 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.3270000  0.0121355  26.946  < 2e-16 ***
## Sex2                 0.0018706  0.0056443   0.331    0.741    
## Race2                0.0015148  0.0067264   0.225    0.822    
## PovStat2            -0.0024829  0.0070823  -0.351    0.726    
## Age.scan            -0.0008392  0.0002095  -4.006 8.38e-05 ***
## Sex2:Race2          -0.0010083  0.0095441  -0.106    0.916    
## Sex2:PovStat2       -0.0096700  0.0115483  -0.837    0.403    
## Race2:PovStat2       0.0060835  0.0104592   0.582    0.561    
## Sex2:Race2:PovStat2 -0.0048396  0.0167849  -0.288    0.773    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02847 on 225 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.08583,    Adjusted R-squared:  0.05333 
## F-statistic: 2.641 on 8 and 225 DF,  p-value: 0.008736

#Stepwise regression model

## 
## Call:
## lm(formula = CGH_R_FA ~ Sex + PovStat + Age.scan + Sex:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.092190 -0.017932  0.001368  0.017013  0.069779 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.3290710  0.0115139  28.580  < 2e-16 ***
## Sex2           0.0014947  0.0045148   0.331    0.741    
## PovStat2       0.0008885  0.0051524   0.172    0.863    
## Age.scan      -0.0008674  0.0002041  -4.249 3.12e-05 ***
## Sex2:PovStat2 -0.0123972  0.0081763  -1.516    0.131    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02828 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.0819, Adjusted R-squared:  0.06587 
## F-statistic: 5.107 on 4 and 229 DF,  p-value: 0.0005846

#Re-run with only 2-way interactions

## 
## Call:
## lm(formula = CGH_R_FA ~ (Sex + Race + PovStat)^2 + Age.scan, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.093623 -0.017646  0.001793  0.017483  0.070494 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.3264666  0.0119693  27.275  < 2e-16 ***
## Sex2            0.0024222  0.0052996   0.457    0.648    
## Race2           0.0022968  0.0061428   0.374    0.709    
## PovStat2       -0.0016151  0.0063979  -0.252    0.801    
## Age.scan       -0.0008346  0.0002084  -4.004 8.44e-05 ***
## Sex2:Race2     -0.0025801  0.0078181  -0.330    0.742    
## Sex2:PovStat2  -0.0119676  0.0083416  -1.435    0.153    
## Race2:PovStat2  0.0042261  0.0082231   0.514    0.608    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02841 on 226 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.08549,    Adjusted R-squared:  0.05717 
## F-statistic: 3.018 on 7 and 226 DF,  p-value: 0.004733
## 
## Call:
## lm(formula = CGH_R_FA ~ Sex + PovStat + Age.scan + Sex:PovStat, 
##     data = mridat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.092190 -0.017932  0.001368  0.017013  0.069779 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.3290710  0.0115139  28.580  < 2e-16 ***
## Sex2           0.0014947  0.0045148   0.331    0.741    
## PovStat2       0.0008885  0.0051524   0.172    0.863    
## Age.scan      -0.0008674  0.0002041  -4.249 3.12e-05 ***
## Sex2:PovStat2 -0.0123972  0.0081763  -1.516    0.131    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02828 on 229 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.0819, Adjusted R-squared:  0.06587 
## F-statistic: 5.107 on 4 and 229 DF,  p-value: 0.0005846