Este es un R Markdown Notebook para realizar un análisis exploratorio de datos de la base de datos Carseats del paquete ISLR. Se trabajará principalmente con el paquete dlookr. Fuente: https://cran.r-project.org/web/packages/dlookr/vignettes/EDA.html

library(ISLR)
str(Carseats)
'data.frame':   400 obs. of  11 variables:
 $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
 $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
 $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
 $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
 $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
 $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
 $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 ...
 $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
 $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
 $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ...
 $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...
carseats <- ISLR::Carseats
library(dlookr)
describe(carseats)
NA
describe(carseats, -(Sales:Income))
library(dplyr)

Attaching package: ‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union
carseats %>%
  group_by(US) %>% 
  describe(Sales, Income) 
carseats %>%
  group_by(US, Urban) %>% 
  describe(Sales, Income) 
normality(carseats, Sales, CompPrice, Income)
LS0tCnRpdGxlOiAiQW7DoWxpc2lzIEV4cGxvcmF0b3JpbyBkZSBEYXRvcyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKRXN0ZSBlcyB1biBSIE1hcmtkb3duIE5vdGVib29rIHBhcmEgcmVhbGl6YXIgdW4gYW7DoWxpc2lzIGV4cGxvcmF0b3JpbyBkZSBkYXRvcyBkZSBsYSBiYXNlIGRlIGRhdG9zIENhcnNlYXRzIGRlbCBwYXF1ZXRlIElTTFIuIFNlIHRyYWJhamFyw6EgcHJpbmNpcGFsbWVudGUgY29uIGVsIHBhcXVldGUgZGxvb2tyLgpGdWVudGU6IGh0dHBzOi8vY3Jhbi5yLXByb2plY3Qub3JnL3dlYi9wYWNrYWdlcy9kbG9va3IvdmlnbmV0dGVzL0VEQS5odG1sCgpgYGB7cn0KbGlicmFyeShJU0xSKQpzdHIoQ2Fyc2VhdHMpCmBgYAoKYGBge3J9CmNhcnNlYXRzIDwtIElTTFI6OkNhcnNlYXRzCmxpYnJhcnkoZGxvb2tyKQpkZXNjcmliZShjYXJzZWF0cykKCmBgYAoKCgpgYGB7cn0KZGVzY3JpYmUoY2Fyc2VhdHMsIFNhbGVzLCBDb21wUHJpY2UsIEluY29tZSkKYGBgCgpgYGB7cn0KZGVzY3JpYmUoY2Fyc2VhdHMsIFNhbGVzOkluY29tZSkKYGBgCgpgYGB7cn0KZGVzY3JpYmUoY2Fyc2VhdHMsIC0oU2FsZXM6SW5jb21lKSkKYGBgCgpgYGB7cn0KbGlicmFyeShkcGx5cikKYGBgCgoKYGBge3J9CmNhcnNlYXRzICU+JQogIGRlc2NyaWJlKCkgJT4lCiAgc2VsZWN0KHZhcmlhYmxlLCBza2V3bmVzcywgbWVhbiwgcDI1LCBwNTAsIHA3NSkgJT4lIAogIGZpbHRlcighaXMubmEoc2tld25lc3MpKSAlPiUgCiAgYXJyYW5nZShkZXNjKGFicyhza2V3bmVzcykpKQoKYGBgCgpgYGB7cn0KY2Fyc2VhdHMgJT4lCiAgZ3JvdXBfYnkoVVMpICU+JSAKICBkZXNjcmliZShTYWxlcywgSW5jb21lKSAKYGBgCgpgYGB7cn0KY2Fyc2VhdHMgJT4lCiAgZ3JvdXBfYnkoVVMsIFVyYmFuKSAlPiUgCiAgZGVzY3JpYmUoU2FsZXMsIEluY29tZSkgCmBgYAoKYGBge3J9Cm5vcm1hbGl0eShjYXJzZWF0cykKYGBgCgpgYGB7cn0Kbm9ybWFsaXR5KGNhcnNlYXRzLCBTYWxlcywgQ29tcFByaWNlLCBJbmNvbWUpCmBgYAoKCmBgYHtyfQpub3JtYWxpdHkoY2Fyc2VhdHMsIFNhbGVzOkluY29tZSkKYGBgCgoK