Setup

#Packages

library(pacman); p_load(psych, lavaan, semPlot)

#Functions

CONGO <- function(F1, F2) {
  PHI = sum(F1*F2) / sqrt(sum(F1^2)*sum(F2^2))
  return(PHI)}

CRITR <- function(n, alpha = .05) {
  df <- n - 2; CRITT <- qt(alpha/2, df, lower.tail = F)
  CRITR <- sqrt((CRITT^2)/((CRITT^2) + df ))
  return(CRITR)}

NP <- function(N, S = 2) {
  NP = 1-pnorm(qnorm(1-(N^(-6/5))/S))
  return(NP)}

#Model Fit Measures

FITM <- c("chisq", "df", "nPar", "cfi", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "aic", "bic")
#Data

##Correlation Matrices

lowerKAUF <-'
1                                           
0.5 1                                       
0.66    0.48    1                                   
0.28    0.31    0.16    1                               
0.2 0.29    0.19    0.1 1                           
0.27    0.16    0.25    0.21    0.19    1                       
0.24    0.22    0.09    0.08    0.18    0.18    1                   
0.3 0.32    0.24    0.21    0.25    0.21    0.28    1               
0.36    0.33    0.33    0.26    0.28    0.26    0.42    0.63    1           
0.13    0.05    0.13    0.01    0.03    0.13    0.02    0.01    0.08    1       
0.04    0.17    0.05    0.18    0.24    0.21    0.21    0.27    0.33    0.66    1   
0.03    0.1 0.01    0.1 0.18    0.23    0.19    0.25    0.16    0.76    0.76    1'

lowerKAUFPSY <- '
1                   
0.5 1               
0.66    0.48    1           
0.28    0.31    0.16    1       
0.2 0.29    0.19    0.1 1   
0.27    0.16    0.25    0.21    0.19    1'

lowerKAUFOTH <- '
1                   
0.28    1               
0.42    0.63    1           
0.02    0.01    0.08    1       
0.21    0.27    0.33    0.66    1   
0.19    0.25    0.16    0.76    0.76    1'

KAUF.cor = getCov(lowerKAUF, names = c("AbsPR", "VerbR", "MentRA", "ExpAL", "WM", "PS", "ARA", "PRA", "SERA", "ARS", "PRS", "SERS"))
KAUFPSY.cor = getCov(lowerKAUFPSY, names = c("AbsPR", "VerbR", "MentRA", "ExpAL", "WM", "PS"))
KAUFOTH.cor = getCov(lowerKAUFOTH, names = c("ARA", "PRA", "SERA", "ARS", "PRS", "SERS"))

##Sample Size

nKAUF <- 112

Speed signs were reversed, as is typical. An n of 112 was used even though correlations with explicit associative learning used an n of 111.

Analysis

Parallel Analyses

fa.parallel(KAUF.cor, n.obs = nKAUF)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
fa.parallel(KAUF.cor[1:9,1:9], n.obs = nKAUF)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
fa.parallel(KAUFPSY.cor, n.obs = nKAUF)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
fa.parallel(KAUFOTH.cor, n.obs = nKAUF)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  2  and the number of components =  2
fa.parallel(KAUFOTH.cor[1:3,1:3], n.obs = nKAUF)

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1

Exploratory Factor Analyses

FATOT1 <- fa(KAUF.cor, n.obs = nKAUF, nfactors = 1)
FATOT2 <- fa(KAUF.cor, n.obs = nKAUF, nfactors = 2)
## Loading required namespace: GPArotation
FATOT3 <- fa(KAUF.cor, n.obs = nKAUF, nfactors = 3)

FATOTS1 <- fa(KAUF.cor[1:9,1:9], n.obs = nKAUF, nfactors = 1)
FATOTS2 <- fa(KAUF.cor[1:9,1:9], n.obs = nKAUF, nfactors = 2)
FATOTS3 <- fa(KAUF.cor[1:9,1:9], n.obs = nKAUF, nfactors = 3)
  
FAPSY1 <- fa(KAUFPSY.cor, n.obs = nKAUF, nfactors = 1)
FAPSY2 <- fa(KAUFPSY.cor, n.obs = nKAUF, nfactors = 2)

FAOTH1 <- fa(KAUFOTH.cor, n.obs = nKAUF, nfactors = 1)
FAOTH2 <- fa(KAUFOTH.cor, n.obs = nKAUF, nfactors = 2)

FAOTHS1 <- fa(KAUFOTH.cor[1:3,1:3], n.obs = nKAUF, nfactors = 1)

print(FATOT1$loadings)
## 
## Loadings:
##        MR1  
## AbsPR  0.568
## VerbR  0.556
## MentRA 0.500
## ExpAL  0.359
## WM     0.400
## PS     0.416
## ARA    0.407
## PRA    0.588
## SERA   0.674
## ARS    0.362
## PRS    0.547
## SERS   0.476
## 
##                  MR1
## SS loadings    2.966
## Proportion Var 0.247
print(FATOT2$loadings)
## 
## Loadings:
##        MR1    MR2   
## AbsPR   0.735       
## VerbR   0.645       
## MentRA  0.643       
## ExpAL   0.365       
## WM      0.352  0.119
## PS      0.344  0.158
## ARA     0.358  0.118
## PRA     0.547  0.131
## SERA    0.646  0.125
## ARS            0.753
## PRS     0.100  0.835
## SERS           0.960
## 
##                  MR1   MR2
## SS loadings    2.605 2.291
## Proportion Var 0.217 0.191
## Cumulative Var 0.217 0.408
print(FATOT3$loadings)
## 
## Loadings:
##        MR2    MR3    MR1   
## AbsPR          0.820       
## VerbR          0.514  0.239
## MentRA         0.795       
## ExpAL          0.217  0.224
## WM             0.137  0.308
## PS      0.151  0.215  0.207
## ARA                   0.440
## PRA                   0.673
## SERA           0.139  0.754
## ARS     0.902  0.145 -0.252
## PRS     0.774         0.273
## SERS    0.893         0.119
## 
##                  MR2   MR3   MR1
## SS loadings    2.246 1.744 1.619
## Proportion Var 0.187 0.145 0.135
## Cumulative Var 0.187 0.333 0.467
print(FATOTS1$loadings)
## 
## Loadings:
##        MR1  
## AbsPR  0.701
## VerbR  0.633
## MentRA 0.610
## ExpAL  0.373
## WM     0.381
## PS     0.384
## ARA    0.391
## PRA    0.584
## SERA   0.684
## 
##                  MR1
## SS loadings    2.659
## Proportion Var 0.295
print(FATOTS2$loadings)
## 
## Loadings:
##        MR1    MR2   
## AbsPR   0.819       
## VerbR   0.547  0.165
## MentRA  0.806       
## ExpAL   0.232  0.185
## WM      0.144  0.285
## PS      0.212  0.220
## ARA            0.461
## PRA            0.687
## SERA           0.878
## 
##                  MR1   MR2
## SS loadings    1.739 1.652
## Proportion Var 0.193 0.184
## Cumulative Var 0.193 0.377
print(FATOTS3$loadings)
## 
## Loadings:
##        MR3    MR1    MR2   
## AbsPR          0.759       
## VerbR   0.162  0.492  0.122
## MentRA         0.871       
## ExpAL                 1.001
## WM      0.297  0.141       
## PS      0.207  0.179       
## ARA     0.485              
## PRA     0.686              
## SERA    0.876              
## 
##                  MR3   MR1   MR2
## SS loadings    1.638 1.627 1.034
## Proportion Var 0.182 0.181 0.115
## Cumulative Var 0.182 0.363 0.478
print(FAPSY1$loadings)
## 
## Loadings:
##        MR1  
## AbsPR  0.812
## VerbR  0.658
## MentRA 0.734
## ExpAL  0.353
## WM     0.317
## PS     0.346
## 
##                  MR1
## SS loadings    1.976
## Proportion Var 0.329
print(FAPSY2$loadings)
## 
## Loadings:
##        MR1    MR2   
## AbsPR   0.388  0.454
## VerbR   0.113  0.604
## MentRA  0.996       
## ExpAL  -0.178  0.570
## WM             0.370
## PS             0.352
## 
##                  MR1   MR2
## SS loadings    1.188 1.158
## Proportion Var 0.198 0.193
## Cumulative Var 0.198 0.391
print(FAOTH1$loadings)
## 
## Loadings:
##      MR1  
## ARA  0.271
## PRA  0.347
## SERA 0.370
## ARS  0.684
## PRS  0.887
## SERS 0.878
## 
##                  MR1
## SS loadings    2.355
## Proportion Var 0.393
print(FAOTH2$loadings)
## 
## Loadings:
##      MR1    MR2   
## ARA          0.437
## PRA          0.679
## SERA         0.911
## ARS   0.867 -0.161
## PRS   0.780  0.187
## SERS  0.915       
## 
##                  MR1   MR2
## SS loadings    2.200 1.543
## Proportion Var 0.367 0.257
## Cumulative Var 0.367 0.624
print(FAOTHS1$loadings)
## 
## Loadings:
##      MR1  
## ARA  0.432
## PRA  0.648
## SERA 0.972
## 
##                  MR1
## SS loadings    1.552
## Proportion Var 0.517

Assessment of Loading Stability

EFATOTALL  <- c(0.568, 0.556, 0.500, 0.359, 0.400, 0.416, 0.407, 0.588, 0.674)
EFATOTALLS <- c(0.701, 0.633, 0.610, 0.373, 0.381, 0.384, 0.391, 0.584, 0.684)

cor(EFATOTALL, EFATOTALLS, method = "pearson"); cor(EFATOTALL, EFATOTALLS, method = "spearman"); CONGO(EFATOTALL, EFATOTALLS)
## [1] 0.918411
## [1] 0.85
## [1] 0.9948657

The g loadings are stable even if the speed indicators are excluded.

EFATOKAUF <- c(0.568, 0.556, 0.500, 0.359, 0.400, 0.416, 0.407, 0.588, 0.674, 0.362, 0.547, 0.476)
EFATOKAUFPsy <- c(0.568, 0.556, 0.500, 0.359, 0.400, 0.416); EFATOKAUFOTH <- c(0.407, 0.588, 0.674, 0.362, 0.547, 0.476)
EFASEKAUFO <- c(0.812, 0.658, 0.734, 0.353, 0.317, 0.346, 0.271, 0.347, 0.370, 0.684, 0.887, 0.878)
EFASEKAUFOPsy <- c(0.812, 0.658, 0.734, 0.353, 0.317, 0.346); EFASEKAUFOOTH <- c(0.271, 0.347, 0.370, 0.684, 0.887, 0.878)

cor(EFATOKAUF, EFASEKAUFO, method = "pearson"); cor(EFATOKAUF, EFASEKAUFO, method = "spearman"); CONGO(EFATOKAUF, EFASEKAUFO)
## [1] 0.2211624
## [1] 0.3006993
## [1] 0.9222471
cor(EFATOKAUFPsy, EFASEKAUFOPsy, method = "pearson"); cor(EFATOKAUFPsy, EFASEKAUFOPsy, method = "spearman"); CONGO(EFATOKAUFPsy, EFASEKAUFOPsy)
## [1] 0.921678
## [1] 0.7714286
## [1] 0.9767497
cor(EFATOKAUFOTH, EFASEKAUFOOTH, method = "pearson"); cor(EFATOKAUFOTH, EFASEKAUFOOTH, method = "spearman"); CONGO(EFATOKAUFOTH, EFASEKAUFOOTH)
## [1] -0.2155838
## [1] -0.02857143
## [1] 0.8768356
EFATOKAUF <- c(0.701, 0.633, 0.610, 0.373, 0.381, 0.384, 0.391, 0.584, 0.684)
EFATOKAUFPsy <- c(0.701, 0.633, 0.610, 0.373, 0.381, 0.384); EFATOKAUFOTH <- c(0.391, 0.584, 0.684)
EFASEKAUFO <- c(0.812, 0.658, 0.734, 0.353, 0.317, 0.346, 0.432, 0.648, 0.972)
EFASEKAUFOPsy <- c(0.812, 0.658, 0.734, 0.353, 0.317, 0.346); EFASEKAUFOOTH <- c(0.432, 0.648, 0.972)

cor(EFATOKAUF, EFASEKAUFO, method = "pearson"); cor(EFATOKAUF, EFASEKAUFO, method = "spearman"); CONGO(EFATOKAUF, EFASEKAUFO)
## [1] 0.9568264
## [1] 0.9166667
## [1] 0.9899462
cor(EFATOKAUFPsy, EFASEKAUFOPsy, method = "pearson"); cor(EFATOKAUFPsy, EFASEKAUFOPsy, method = "spearman"); CONGO(EFATOKAUFPsy, EFASEKAUFOPsy)
## [1] 0.9854435
## [1] 0.7714286
## [1] 0.9935607
cor(EFATOKAUFOTH, EFASEKAUFOOTH, method = "pearson"); cor(EFATOKAUFOTH, EFASEKAUFOOTH, method = "spearman"); CONGO(EFATOKAUFOTH, EFASEKAUFOOTH)
## [1] 0.9564513
## [1] 1
## [1] 0.9923869

Confirmatory Factor Analyses

Solo Models

PSYSO.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS'

PSYSO.fit <- cfa(PSYSO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
summary(PSYSO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 13 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         12
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                12.788
##   Degrees of freedom                                 9
##   P-value (Chi-square)                           0.172
## 
## Model Test Baseline Model:
## 
##   Test statistic                               142.001
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.970
##   Tucker-Lewis Index (TLI)                       0.950
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -885.907
##   Loglikelihood unrestricted model (H1)       -879.513
##                                                       
##   Akaike (AIC)                                1795.813
##   Bayesian (BIC)                              1828.435
##   Sample-size adjusted Bayesian (BIC)         1790.511
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.061
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.132
##   P-value RMSEA <= 0.05                          0.352
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.052
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY =~                                                               
##     AbsPR             0.831    0.089    9.333    0.000    0.831    0.835
##     VerbR             0.620    0.093    6.660    0.000    0.620    0.623
##     MentRA            0.768    0.090    8.517    0.000    0.768    0.771
##     ExpAL             0.324    0.101    3.215    0.001    0.324    0.325
##     WM                0.282    0.101    2.780    0.005    0.282    0.283
##     PS                0.328    0.101    3.258    0.001    0.328    0.329
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AbsPR             0.300    0.087    3.450    0.001    0.300    0.303
##    .VerbR             0.606    0.095    6.408    0.000    0.606    0.612
##    .MentRA            0.401    0.086    4.666    0.000    0.401    0.405
##    .ExpAL             0.886    0.122    7.294    0.000    0.886    0.894
##    .WM                0.912    0.124    7.344    0.000    0.912    0.920
##    .PS                0.884    0.121    7.289    0.000    0.884    0.892
##     gPSY              1.000                               1.000    1.000
OTHSO.model <- '
gOTH =~ ARA + PRA + SERA + ARS + PRS + SERS'

OTHSO.fit <- cfa(OTHSO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
summary(OTHSO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         12
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               103.712
##   Degrees of freedom                                 9
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               315.847
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.685
##   Tucker-Lewis Index (TLI)                       0.475
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -844.446
##   Loglikelihood unrestricted model (H1)       -792.590
##                                                       
##   Akaike (AIC)                                1712.892
##   Bayesian (BIC)                              1745.514
##   Sample-size adjusted Bayesian (BIC)         1707.590
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.307
##   90 Percent confidence interval - lower         0.255
##   90 Percent confidence interval - upper         0.361
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.171
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gOTH =~                                                               
##     ARA               0.197    0.097    2.029    0.042    0.197    0.198
##     PRA               0.253    0.097    2.622    0.009    0.253    0.255
##     SERA              0.226    0.097    2.327    0.020    0.226    0.227
##     ARS               0.796    0.081    9.808    0.000    0.796    0.799
##     PRS               0.820    0.080   10.222    0.000    0.820    0.824
##     SERS              0.929    0.076   12.287    0.000    0.929    0.934
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ARA               0.952    0.128    7.455    0.000    0.952    0.961
##    .PRA               0.927    0.125    7.435    0.000    0.927    0.935
##    .SERA              0.940    0.126    7.446    0.000    0.940    0.949
##    .ARS               0.358    0.061    5.886    0.000    0.358    0.361
##    .PRS               0.319    0.058    5.480    0.000    0.319    0.322
##    .SERS              0.127    0.053    2.401    0.016    0.127    0.128
##     gOTH              1.000                               1.000    1.000
OTHSO.model <- '
gOTH =~ ARA + PRA + SERA'

OTHSO.fit <- cfa(OTHSO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
summary(OTHSO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          6
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                78.425
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -436.044
##   Loglikelihood unrestricted model (H1)       -436.044
##                                                       
##   Akaike (AIC)                                 884.089
##   Bayesian (BIC)                               900.400
##   Sample-size adjusted Bayesian (BIC)          881.437
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gOTH =~                                                               
##     ARA               0.430    0.103    4.169    0.000    0.430    0.432
##     PRA               0.645    0.114    5.682    0.000    0.645    0.648
##     SERA              0.968    0.134    7.224    0.000    0.968    0.972
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ARA               0.806    0.116    6.926    0.000    0.806    0.813
##    .PRA               0.575    0.125    4.584    0.000    0.575    0.580
##    .SERA              0.055    0.223    0.244    0.807    0.055    0.055
##     gOTH              1.000                               1.000    1.000
OTHSO.model <- '
gOTH =~ ARS + PRS + SERS'

OTHSO.fit <- cfa(OTHSO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
summary(OTHSO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 11 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          6
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               197.389
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -376.562
##   Loglikelihood unrestricted model (H1)       -376.562
##                                                       
##   Akaike (AIC)                                 765.124
##   Bayesian (BIC)                               781.435
##   Sample-size adjusted Bayesian (BIC)          762.473
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gOTH =~                                                               
##     ARS               0.809    0.081   10.008    0.000    0.809    0.812
##     PRS               0.809    0.081   10.008    0.000    0.809    0.812
##     SERS              0.931    0.076   12.255    0.000    0.931    0.935
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ARS               0.337    0.060    5.614    0.000    0.337    0.340
##    .PRS               0.337    0.060    5.614    0.000    0.337    0.340
##    .SERS              0.124    0.055    2.243    0.025    0.124    0.125
##     gOTH              1.000                               1.000    1.000
OTHSO.model <- '
ACC =~ ARA + PRA + SERA
SPE =~ ARS + PRS + SERS

gOTH =~ ACC + SPE'

OTHSO.fit <- cfa(OTHSO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
summary(OTHSO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         14
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                34.873
##   Degrees of freedom                                 7
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               315.847
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.907
##   Tucker-Lewis Index (TLI)                       0.801
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -810.026
##   Loglikelihood unrestricted model (H1)       -792.590
##                                                       
##   Akaike (AIC)                                1648.053
##   Bayesian (BIC)                              1686.112
##   Sample-size adjusted Bayesian (BIC)         1641.867
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.189
##   90 Percent confidence interval - lower         0.129
##   90 Percent confidence interval - upper         0.253
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ACC =~                                                                
##     ARA               0.397       NA                      0.455    0.457
##     PRA               0.605       NA                      0.691    0.695
##     SERA              0.788       NA                      0.901    0.905
##   SPE =~                                                                
##     ARS               0.690       NA                      0.806    0.810
##     PRS               0.699       NA                      0.817    0.820
##     SERS              0.793       NA                      0.927    0.931
##   gOTH =~                                                               
##     ACC               0.555       NA                      0.485    0.485
##     SPE               0.605       NA                      0.517    0.517
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ARA               0.784       NA                      0.784    0.791
##    .PRA               0.513       NA                      0.513    0.518
##    .SERA              0.179       NA                      0.179    0.181
##    .ARS               0.341       NA                      0.341    0.344
##    .PRS               0.324       NA                      0.324    0.327
##    .SERS              0.132       NA                      0.132    0.133
##    .ACC               1.000                               0.764    0.764
##    .SPE               1.000                               0.732    0.732
##     gOTH              1.000                               1.000    1.000

Joint Models

KAUFNO.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARA + PRA + SERA + ARS + PRS + SERS

gPSY ~~ 0*gOTH'

KAUF.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARA + PRA + SERA + ARS + PRS + SERS

gPSY ~~ gOTH'

KAUFID.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARA + PRA + SERA + ARS + PRS + SERS

gPSY ~~ 1*gOTH'

KAUFNO.fit <- cfa(KAUFNO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
KAUF.fit   <- cfa(KAUF.model,   sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
KAUFID.fit <- cfa(KAUFID.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)

round(cbind("No Relationship"   = fitMeasures(KAUFNO.fit, FITM),
            "Free Relationship" = fitMeasures(KAUF.fit, FITM),
            "Identical"         = fitMeasures(KAUFID.fit, FITM)), 3)
##                No Relationship Free Relationship Identical
## chisq                  190.396           188.656   321.933
## df                      54.000            53.000    54.000
## npar                    24.000            25.000    24.000
## cfi                      0.707             0.709     0.425
## rmsea                    0.150             0.151     0.210
## rmsea.ci.lower           0.127             0.128     0.189
## rmsea.ci.upper           0.174             0.175     0.233
## aic                   3508.705          3508.965  3640.242
## bic                   3573.949          3576.928  3705.486
summary(KAUF.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         25
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               188.656
##   Degrees of freedom                                53
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               531.744
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.709
##   Tucker-Lewis Index (TLI)                       0.637
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1729.483
##   Loglikelihood unrestricted model (H1)      -1635.155
##                                                       
##   Akaike (AIC)                                3508.965
##   Bayesian (BIC)                              3576.928
##   Sample-size adjusted Bayesian (BIC)         3497.919
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.151
##   90 Percent confidence interval - lower         0.128
##   90 Percent confidence interval - upper         0.175
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.154
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY =~                                                               
##     AbsPR             0.826    0.089    9.287    0.000    0.826    0.830
##     VerbR             0.624    0.093    6.707    0.000    0.624    0.627
##     MentRA            0.766    0.090    8.501    0.000    0.766    0.769
##     ExpAL             0.328    0.101    3.251    0.001    0.328    0.329
##     WM                0.289    0.101    2.846    0.004    0.289    0.290
##     PS                0.335    0.101    3.326    0.001    0.335    0.336
##   gOTH =~                                                               
##     ARA               0.201    0.097    2.062    0.039    0.201    0.202
##     PRA               0.258    0.097    2.669    0.008    0.258    0.260
##     SERA              0.236    0.097    2.433    0.015    0.236    0.237
##     ARS               0.797    0.081    9.833    0.000    0.797    0.801
##     PRS               0.824    0.080   10.303    0.000    0.824    0.828
##     SERS              0.923    0.076   12.165    0.000    0.923    0.927
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY ~~                                                               
##     gOTH              0.146    0.107    1.367    0.172    0.146    0.146
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AbsPR             0.309    0.086    3.572    0.000    0.309    0.311
##    .VerbR             0.601    0.094    6.375    0.000    0.601    0.607
##    .MentRA            0.404    0.086    4.717    0.000    0.404    0.408
##    .ExpAL             0.884    0.121    7.287    0.000    0.884    0.892
##    .WM                0.908    0.124    7.335    0.000    0.908    0.916
##    .PS                0.879    0.121    7.277    0.000    0.879    0.887
##    .ARA               0.951    0.128    7.452    0.000    0.951    0.959
##    .PRA               0.924    0.124    7.430    0.000    0.924    0.933
##    .SERA              0.935    0.126    7.440    0.000    0.935    0.944
##    .ARS               0.356    0.061    5.864    0.000    0.356    0.359
##    .PRS               0.311    0.058    5.398    0.000    0.311    0.314
##    .SERS              0.139    0.053    2.636    0.008    0.139    0.140
##     gPSY              1.000                               1.000    1.000
##     gOTH              1.000                               1.000    1.000
KAUFNO.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARA + PRA + SERA

gPSY ~~ 0*gOTH'

KAUF.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARA + PRA + SERA

gPSY ~~ gOTH'

KAUFID.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARA + PRA + SERA

gPSY ~~ 1*gOTH'

KAUFNO.fit <- cfa(KAUFNO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
KAUF.fit   <- cfa(KAUF.model,   sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
KAUFID.fit <- cfa(KAUFID.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)

round(cbind("No Relationship"   = fitMeasures(KAUFNO.fit, FITM),
            "Free Relationship" = fitMeasures(KAUF.fit, FITM),
            "Identical"         = fitMeasures(KAUFID.fit, FITM)), 3)
##                No Relationship Free Relationship Identical
## chisq                   52.699            28.148    73.184
## df                      27.000            26.000    27.000
## npar                    18.000            19.000    18.000
## cfi                      0.885             0.990     0.794
## rmsea                    0.092             0.027     0.124
## rmsea.ci.lower           0.054             0.000     0.090
## rmsea.ci.upper           0.129             0.081     0.158
## aic                   2679.902          2657.352  2700.388
## bic                   2728.835          2709.003  2749.321
summary(KAUF.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         19
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                28.148
##   Degrees of freedom                                26
##   P-value (Chi-square)                           0.351
## 
## Model Test Baseline Model:
## 
##   Test statistic                               260.337
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.990
##   Tucker-Lewis Index (TLI)                       0.987
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1309.676
##   Loglikelihood unrestricted model (H1)      -1295.602
##                                                       
##   Akaike (AIC)                                2657.352
##   Bayesian (BIC)                              2709.003
##   Sample-size adjusted Bayesian (BIC)         2648.956
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.027
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.081
##   P-value RMSEA <= 0.05                          0.695
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.060
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY =~                                                               
##     AbsPR             0.815    0.087    9.358    0.000    0.815    0.818
##     VerbR             0.637    0.092    6.898    0.000    0.637    0.639
##     MentRA            0.754    0.089    8.497    0.000    0.754    0.758
##     ExpAL             0.344    0.100    3.436    0.001    0.344    0.346
##     WM                0.311    0.101    3.083    0.002    0.311    0.312
##     PS                0.346    0.100    3.459    0.001    0.346    0.348
##   gOTH =~                                                               
##     ARA               0.452    0.098    4.628    0.000    0.452    0.454
##     PRA               0.688    0.096    7.146    0.000    0.688    0.691
##     SERA              0.907    0.097    9.347    0.000    0.907    0.911
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY ~~                                                               
##     gOTH              0.537    0.090    5.969    0.000    0.537    0.537
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AbsPR             0.327    0.080    4.091    0.000    0.327    0.330
##    .VerbR             0.586    0.092    6.346    0.000    0.586    0.591
##    .MentRA            0.422    0.082    5.139    0.000    0.422    0.426
##    .ExpAL             0.873    0.120    7.269    0.000    0.873    0.880
##    .WM                0.895    0.122    7.313    0.000    0.895    0.903
##    .PS                0.871    0.120    7.266    0.000    0.871    0.879
##    .ARA               0.787    0.111    7.077    0.000    0.787    0.794
##    .PRA               0.518    0.098    5.290    0.000    0.518    0.522
##    .SERA              0.169    0.120    1.411    0.158    0.169    0.171
##     gPSY              1.000                               1.000    1.000
##     gOTH              1.000                               1.000    1.000
KAUFNO.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARS + PRS + SERS

gPSY ~~ 0*gOTH'

KAUF.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARS + PRS + SERS

gPSY ~~ gOTH'

KAUFID.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
gOTH =~ ARS + PRS + SERS

gPSY ~~ 1*gOTH'

KAUFNO.fit <- cfa(KAUFNO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
KAUF.fit   <- cfa(KAUF.model,   sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)
KAUFID.fit <- cfa(KAUFID.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T)

round(cbind("No Relationship"   = fitMeasures(KAUFNO.fit, FITM),
            "Free Relationship" = fitMeasures(KAUF.fit, FITM),
            "Identical"         = fitMeasures(KAUFID.fit, FITM)), 3)
##                No Relationship Free Relationship Identical
## chisq                   49.090            47.914   164.689
## df                      27.000            26.000    27.000
## npar                    18.000            19.000    18.000
## cfi                      0.935             0.935     0.595
## rmsea                    0.085             0.087     0.213
## rmsea.ci.lower           0.046             0.046     0.183
## rmsea.ci.upper           0.123             0.125     0.245
## aic                   2560.937          2561.762  2676.536
## bic                   2609.870          2613.413  2725.469
summary(KAUF.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 18 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         19
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                47.914
##   Degrees of freedom                                26
##   P-value (Chi-square)                           0.006
## 
## Model Test Baseline Model:
## 
##   Test statistic                               375.692
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.935
##   Tucker-Lewis Index (TLI)                       0.911
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1261.881
##   Loglikelihood unrestricted model (H1)      -1237.924
##                                                       
##   Akaike (AIC)                                2561.762
##   Bayesian (BIC)                              2613.413
##   Sample-size adjusted Bayesian (BIC)         2553.367
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.087
##   90 Percent confidence interval - lower         0.046
##   90 Percent confidence interval - upper         0.125
##   P-value RMSEA <= 0.05                          0.064
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.076
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY =~                                                               
##     AbsPR             0.827    0.089    9.295    0.000    0.827    0.831
##     VerbR             0.623    0.093    6.694    0.000    0.623    0.626
##     MentRA            0.767    0.090    8.506    0.000    0.767    0.770
##     ExpAL             0.327    0.101    3.242    0.001    0.327    0.328
##     WM                0.287    0.101    2.830    0.005    0.287    0.288
##     PS                0.333    0.101    3.312    0.001    0.333    0.335
##   gOTH =~                                                               
##     ARS               0.811    0.081   10.052    0.000    0.811    0.815
##     PRS               0.811    0.081   10.046    0.000    0.811    0.814
##     SERS              0.928    0.076   12.202    0.000    0.928    0.932
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY ~~                                                               
##     gOTH              0.119    0.108    1.107    0.268    0.119    0.119
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AbsPR             0.307    0.087    3.542    0.000    0.307    0.310
##    .VerbR             0.602    0.094    6.383    0.000    0.602    0.608
##    .MentRA            0.403    0.086    4.700    0.000    0.403    0.407
##    .ExpAL             0.884    0.121    7.289    0.000    0.884    0.892
##    .WM                0.909    0.124    7.337    0.000    0.909    0.917
##    .PS                0.880    0.121    7.279    0.000    0.880    0.888
##    .ARS               0.333    0.060    5.586    0.000    0.333    0.336
##    .PRS               0.334    0.060    5.592    0.000    0.334    0.337
##    .SERS              0.130    0.055    2.370    0.018    0.130    0.131
##     gPSY              1.000                               1.000    1.000
##     gOTH              1.000                               1.000    1.000
KAUFNO.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
ACC =~ ARA + PRA + SERA
SPE =~ ARS + PRS + SERS

gOTH =~ ACC + SPE

gPSY ~~ 0*gOTH'

KAUF.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
ACC =~ ARA + PRA + SERA
SPE =~ ARS + PRS + SERS

gOTH =~ ACC + SPE

gPSY ~~ gOTH'

KAUFID.model <- '
gPSY =~ AbsPR + VerbR + MentRA + ExpAL + WM + PS
ACC =~ ARA + PRA + SERA
SPE =~ ARS + PRS + SERS

gOTH =~ ACC + SPE

gPSY ~~ 1*gOTH'

KAUFNO.fit <- cfa(KAUFNO.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T, check.gradient = F)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
KAUF.fit   <- cfa(KAUF.model,   sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T, check.gradient = F)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
KAUFID.fit <- cfa(KAUFID.model, sample.cov = KAUF.cor, sample.nobs = nKAUF, std.lv = T, orthogonal = T, check.gradient = F)

round(cbind("No Relationship"   = fitMeasures(KAUFNO.fit, FITM),
            "Free Relationship" = fitMeasures(KAUF.fit, FITM),
            "Identical"         = fitMeasures(KAUFID.fit, FITM)), 3)
##                No Relationship Free Relationship Identical
## chisq                  121.557            96.532   100.256
## df                      52.000            51.000    52.000
## npar                    26.000            27.000    26.000
## cfi                      0.851             0.902     0.896
## rmsea                    0.109             0.089     0.091
## rmsea.ci.lower           0.084             0.062     0.064
## rmsea.ci.upper           0.135             0.116     0.118
## aic                   3443.866          3420.841  3422.565
## bic                   3514.547          3494.241  3493.246
summary(KAUF.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 907 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         27
##                                                       
##   Number of observations                           112
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                96.532
##   Degrees of freedom                                51
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               531.744
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.902
##   Tucker-Lewis Index (TLI)                       0.873
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1683.421
##   Loglikelihood unrestricted model (H1)      -1635.155
##                                                       
##   Akaike (AIC)                                3420.841
##   Bayesian (BIC)                              3494.241
##   Sample-size adjusted Bayesian (BIC)         3408.911
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.089
##   90 Percent confidence interval - lower         0.062
##   90 Percent confidence interval - upper         0.116
##   P-value RMSEA <= 0.05                          0.013
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.076
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY =~                                                               
##     AbsPR             0.814       NA                      0.814    0.818
##     VerbR             0.638       NA                      0.638    0.641
##     MentRA            0.753       NA                      0.753    0.756
##     ExpAL             0.345       NA                      0.345    0.347
##     WM                0.312       NA                      0.312    0.314
##     PS                0.348       NA                      0.348    0.349
##   ACC =~                                                                
##     ARA               0.002       NA                      0.459    0.461
##     PRA               0.004       NA                      0.704    0.707
##     SERA              0.004       NA                      0.884    0.888
##   SPE =~                                                                
##     ARS               0.779       NA                      0.806    0.810
##     PRS               0.789       NA                      0.816    0.820
##     SERS              0.896       NA                      0.927    0.931
##   gOTH =~                                                               
##     ACC             198.924       NA                      1.000    1.000
##     SPE               0.266       NA                      0.257    0.257
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPSY ~~                                                               
##     gOTH              0.547       NA                      0.547    0.547
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AbsPR             0.329       NA                      0.329    0.332
##    .VerbR             0.584       NA                      0.584    0.589
##    .MentRA            0.425       NA                      0.425    0.429
##    .ExpAL             0.872       NA                      0.872    0.880
##    .WM                0.893       NA                      0.893    0.902
##    .PS                0.870       NA                      0.870    0.878
##    .ARA               0.780       NA                      0.780    0.787
##    .PRA               0.495       NA                      0.495    0.500
##    .SERA              0.209       NA                      0.209    0.211
##    .ARS               0.341       NA                      0.341    0.344
##    .PRS               0.325       NA                      0.325    0.328
##    .SERS              0.131       NA                      0.131    0.133
##     gPSY              1.000                               1.000    1.000
##    .ACC               1.000                               0.000    0.000
##    .SPE               1.000                               0.934    0.934
##     gOTH              1.000                               1.000    1.000

Conclusion

The latent factor correlations from Kaufman et al. (2011) tended to be somewhat higher than their PAF-based analyses indicated. It would be interesting and useful to reassess their hypotheses with models that have less psychometric sampling error to grapple with.

References

Kaufman, S. B., DeYoung, C. G., Reis, D. L., & Gray, J. R. (2011). General intelligence predicts reasoning ability even for evolutionarily familiar content. Intelligence, 39(5), 311–322. https://doi.org/10.1016/j.intell.2011.05.002