1 Construcción de la tabla con frecuencias de respuesta por categoría

1.1 Pregunta P01: Tipo de vivienda

Ésta pregunta posee 10 categorías de respuesta:

1 Casa
2 Departamento en edificio
3 Vivienda tradicional indígena (ruka, pae pae u otras)
4 Pieza en casa antigua o en conventillo
5 Mediagua, mejora, rancho o choza
6 Móvil (carpa, casa rodante o similar)
7 Otro tipo de vivienda particular
8 Vivienda colectiva
9 Operativo personas en tránsito (no es vivienda)
10 Operativo calle (no es vivienda)


1.1.2 Cálculo de frecuencias

Leemos los datos del censo viviendas 2017 y obtenemos la tabla de frecuencias por categoría de respuesta:

tabla_con_clave <- readRDS("censo_viviendas_con_clave_17.rds")
b <- tabla_con_clave$COMUNA
c <- tabla_con_clave$P01
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 1)
for(i in 2:10){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
tablamadre <- head(d_t,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
unlist.b. unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y
1101 1 38383 2017 2 22525 2017 3 20 2017 4 4489 2017 5 586 2017 6 55 2017 7 667 2017 8 261 2017 9 1 2017 10 1 2017
1107 1 26410 2017 2 4142 2017 3 13 2017 4 446 2017 5 1766 2017 6 32 2017 7 353 2017 8 16 2017 NA NA NA 10 1 2017
1401 1 7855 2017 2 4 2017 3 31 2017 4 248 2017 5 543 2017 6 10 2017 7 193 2017 8 42 2017 9 1 2017 NA NA NA
1402 1 828 2017 2 10 2017 3 12 2017 4 13 2017 5 213 2017 6 1 2017 7 11 2017 8 4 2017 NA NA NA NA NA NA
1403 1 826 2017 2 2 2017 3 1141 2017 4 10 2017 5 32 2017 6 1 2017 7 13 2017 8 5 2017 9 1 2017 NA NA NA
1404 1 2266 2017 2 4 2017 3 61 2017 4 50 2017 5 443 2017 NA NA NA 7 39 2017 8 8 2017 NA NA NA NA NA NA
1405 1 2424 2017 2 5 2017 3 11 2017 4 34 2017 5 169 2017 6 2 2017 7 58 2017 8 23 2017 NA NA NA NA NA NA
2101 1 80067 2017 2 27940 2017 3 31 2017 4 751 2017 5 2782 2017 6 44 2017 7 660 2017 8 176 2017 9 1 2017 10 1 2017
2102 1 3236 2017 2 473 2017 3 1 2017 4 13 2017 5 198 2017 6 6 2017 7 49 2017 8 240 2017 9 1 2017 NA NA NA
2103 1 466 2017 NA NA NA NA NA NA 4 21 2017 5 36 2017 6 1 2017 7 3 2017 8 43 2017 NA NA NA NA NA NA
2104 1 4123 2017 2 3 2017 3 50 2017 4 20 2017 5 265 2017 6 28 2017 7 59 2017 8 45 2017 9 1 2017 10 1 2017
2201 1 49994 2017 2 3683 2017 3 137 2017 4 1610 2017 5 705 2017 6 26 2017 7 808 2017 8 344 2017 9 1 2017 10 1 2017
2202 1 173 2017 NA NA NA NA NA NA 4 6 2017 5 234 2017 6 1 2017 7 13 2017 8 12 2017 NA NA NA NA NA NA
2203 1 3407 2017 2 5 2017 3 78 2017 4 229 2017 5 126 2017 6 6 2017 7 121 2017 8 172 2017 9 1 2017 10 1 2017
2301 1 8580 2017 2 1110 2017 3 3 2017 4 48 2017 5 789 2017 6 12 2017 7 78 2017 8 50 2017 9 1 2017 10 1 2017
2302 1 1798 2017 2 3 2017 3 1 2017 4 25 2017 5 7 2017 6 1 2017 7 30 2017 8 94 2017 NA NA NA NA NA NA
3101 1 46557 2017 2 6812 2017 3 9 2017 4 351 2017 5 1481 2017 6 38 2017 7 205 2017 8 112 2017 NA NA NA 10 1 2017
3102 1 12730 2017 2 71 2017 3 16 2017 4 95 2017 5 2483 2017 6 68 2017 7 149 2017 8 39 2017 NA NA NA 10 1 2017
3103 1 4360 2017 2 4 2017 3 4 2017 4 49 2017 5 263 2017 6 2 2017 7 23 2017 8 40 2017 NA NA NA 10 1 2017
3201 1 5824 2017 2 74 2017 NA NA NA 4 10 2017 5 180 2017 6 6 2017 7 28 2017 8 31 2017 NA NA NA NA NA NA
3202 1 6192 2017 2 520 2017 NA NA NA 4 35 2017 5 30 2017 6 1 2017 7 34 2017 8 102 2017 NA NA NA NA NA NA
3301 1 18055 2017 2 514 2017 3 12 2017 4 84 2017 5 532 2017 6 20 2017 7 122 2017 8 63 2017 9 1 2017 10 1 2017
3302 1 2535 2017 2 4 2017 3 22 2017 4 22 2017 5 271 2017 6 3 2017 7 46 2017 8 24 2017 NA NA NA NA NA NA
3303 1 3044 2017 NA NA NA 3 1 2017 4 19 2017 5 410 2017 6 3 2017 7 21 2017 8 13 2017 NA NA NA NA NA NA
3304 1 5411 2017 2 187 2017 3 6 2017 4 22 2017 5 530 2017 6 9 2017 7 36 2017 8 25 2017 9 1 2017 10 1 2017
4101 1 68106 2017 2 17825 2017 3 8 2017 4 190 2017 5 707 2017 6 40 2017 7 391 2017 8 197 2017 NA NA NA 10 1 2017
4102 1 77648 2017 2 10320 2017 3 12 2017 4 310 2017 5 640 2017 6 30 2017 7 379 2017 8 160 2017 9 1 2017 10 1 2017
4103 1 4310 2017 2 24 2017 3 1 2017 4 25 2017 5 86 2017 6 2 2017 7 43 2017 8 15 2017 NA NA NA NA NA NA
4104 1 2430 2017 NA NA NA 3 1 2017 4 14 2017 5 162 2017 6 2 2017 7 34 2017 8 17 2017 NA NA NA NA NA NA
4105 1 2258 2017 NA NA NA 3 2 2017 4 16 2017 5 48 2017 6 5 2017 7 19 2017 8 25 2017 NA NA NA NA NA NA
4106 1 10347 2017 2 60 2017 3 7 2017 4 29 2017 5 237 2017 6 14 2017 7 39 2017 8 46 2017 NA NA NA NA NA NA
4201 1 11612 2017 2 212 2017 3 2 2017 4 53 2017 5 336 2017 6 13 2017 7 57 2017 8 35 2017 NA NA NA NA NA NA
4202 1 4848 2017 NA NA NA 3 5 2017 4 20 2017 5 356 2017 6 4 2017 7 37 2017 8 8 2017 NA NA NA NA NA NA
4203 1 12935 2017 2 10 2017 3 2 2017 4 25 2017 5 208 2017 6 4 2017 7 53 2017 8 51 2017 NA NA NA 10 1 2017
4204 1 10069 2017 2 132 2017 3 1 2017 4 38 2017 5 297 2017 6 21 2017 7 54 2017 8 85 2017 NA NA NA 10 1 2017
4301 1 38937 2017 2 1578 2017 3 7 2017 4 203 2017 5 1097 2017 6 25 2017 7 192 2017 8 56 2017 9 1 2017 10 1 2017
4302 1 6597 2017 2 4 2017 3 7 2017 4 25 2017 5 308 2017 6 6 2017 7 33 2017 8 19 2017 NA NA NA NA NA NA
4303 1 12084 2017 NA NA NA 3 4 2017 4 80 2017 5 810 2017 6 6 2017 7 59 2017 8 31 2017 NA NA NA NA NA NA
4304 1 4521 2017 2 2 2017 3 3 2017 4 13 2017 5 233 2017 6 10 2017 7 24 2017 8 6 2017 NA NA NA 10 1 2017
4305 1 2529 2017 2 1 2017 3 3 2017 4 13 2017 5 184 2017 6 6 2017 7 15 2017 8 13 2017 NA NA NA NA NA NA
5101 1 83616 2017 2 30690 2017 3 18 2017 4 716 2017 5 1257 2017 6 30 2017 7 508 2017 8 361 2017 9 1 2017 10 1 2017
5102 1 10211 2017 2 1151 2017 3 2 2017 4 42 2017 5 106 2017 6 12 2017 7 64 2017 8 18 2017 NA NA NA 10 1 2017
5103 1 11433 2017 2 8548 2017 3 4 2017 4 46 2017 5 109 2017 6 2 2017 7 124 2017 8 24 2017 NA NA NA NA NA NA
5104 1 425 2017 NA NA NA NA NA NA 4 3 2017 5 8 2017 NA NA NA 7 2 2017 8 7 2017 9 1 2017 NA NA NA
5105 1 15270 2017 2 1765 2017 NA NA NA 4 18 2017 5 222 2017 6 6 2017 7 155 2017 8 15 2017 NA NA NA 10 1 2017
5107 1 15582 2017 2 1434 2017 3 3 2017 4 47 2017 5 217 2017 6 14 2017 7 120 2017 8 25 2017 9 1 2017 10 1 2017
5109 1 77662 2017 2 67357 2017 3 18 2017 4 327 2017 5 1024 2017 6 5 2017 7 451 2017 8 273 2017 9 1 2017 10 1 2017
5201 1 2782 2017 2 1 2017 3 108 2017 4 19 2017 5 37 2017 6 7 2017 7 68 2017 8 114 2017 NA NA NA NA NA NA
5301 1 19535 2017 2 3765 2017 3 1 2017 4 90 2017 5 105 2017 6 15 2017 7 70 2017 8 80 2017 9 1 2017 10 1 2017
5302 1 5313 2017 NA NA NA NA NA NA 4 20 2017 5 129 2017 6 1 2017 7 21 2017 8 4 2017 NA NA NA NA NA NA


Agregamos un cero a los códigos comunales de 4 dígitos, que queda en la columna llamada código:

codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[31] <- "código" 
tablamadre <- head(comuna_corr,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x.1 Freq.x.1 anio.x.1 unlist.c..y.1 Freq.y.1 anio.y.1 unlist.c..x.2 Freq.x.2 anio.x.2 unlist.c..y.2 Freq.y.2 anio.y.2 unlist.c..x.3 Freq.x.3 anio.x.3 unlist.c..y.3 Freq.y.3 anio.y.3 unlist.c..x.4 Freq.x.4 anio.x.4 unlist.c..y.4 Freq.y.4 anio.y.4 código
1 38383 2017 2 22525 2017 3 20 2017 4 4489 2017 5 586 2017 6 55 2017 7 667 2017 8 261 2017 9 1 2017 10 1 2017 01101
1 26410 2017 2 4142 2017 3 13 2017 4 446 2017 5 1766 2017 6 32 2017 7 353 2017 8 16 2017 NA NA NA 10 1 2017 01107
1 7855 2017 2 4 2017 3 31 2017 4 248 2017 5 543 2017 6 10 2017 7 193 2017 8 42 2017 9 1 2017 NA NA NA 01401
1 828 2017 2 10 2017 3 12 2017 4 13 2017 5 213 2017 6 1 2017 7 11 2017 8 4 2017 NA NA NA NA NA NA 01402
1 826 2017 2 2 2017 3 1141 2017 4 10 2017 5 32 2017 6 1 2017 7 13 2017 8 5 2017 9 1 2017 NA NA NA 01403
1 2266 2017 2 4 2017 3 61 2017 4 50 2017 5 443 2017 NA NA NA 7 39 2017 8 8 2017 NA NA NA NA NA NA 01404
1 2424 2017 2 5 2017 3 11 2017 4 34 2017 5 169 2017 6 2 2017 7 58 2017 8 23 2017 NA NA NA NA NA NA 01405
1 80067 2017 2 27940 2017 3 31 2017 4 751 2017 5 2782 2017 6 44 2017 7 660 2017 8 176 2017 9 1 2017 10 1 2017 02101
1 3236 2017 2 473 2017 3 1 2017 4 13 2017 5 198 2017 6 6 2017 7 49 2017 8 240 2017 9 1 2017 NA NA NA 02102
1 466 2017 NA NA NA NA NA NA 4 21 2017 5 36 2017 6 1 2017 7 3 2017 8 43 2017 NA NA NA NA NA NA 02103
1 4123 2017 2 3 2017 3 50 2017 4 20 2017 5 265 2017 6 28 2017 7 59 2017 8 45 2017 9 1 2017 10 1 2017 02104
1 49994 2017 2 3683 2017 3 137 2017 4 1610 2017 5 705 2017 6 26 2017 7 808 2017 8 344 2017 9 1 2017 10 1 2017 02201
1 173 2017 NA NA NA NA NA NA 4 6 2017 5 234 2017 6 1 2017 7 13 2017 8 12 2017 NA NA NA NA NA NA 02202
1 3407 2017 2 5 2017 3 78 2017 4 229 2017 5 126 2017 6 6 2017 7 121 2017 8 172 2017 9 1 2017 10 1 2017 02203
1 8580 2017 2 1110 2017 3 3 2017 4 48 2017 5 789 2017 6 12 2017 7 78 2017 8 50 2017 9 1 2017 10 1 2017 02301
1 1798 2017 2 3 2017 3 1 2017 4 25 2017 5 7 2017 6 1 2017 7 30 2017 8 94 2017 NA NA NA NA NA NA 02302
1 46557 2017 2 6812 2017 3 9 2017 4 351 2017 5 1481 2017 6 38 2017 7 205 2017 8 112 2017 NA NA NA 10 1 2017 03101
1 12730 2017 2 71 2017 3 16 2017 4 95 2017 5 2483 2017 6 68 2017 7 149 2017 8 39 2017 NA NA NA 10 1 2017 03102
1 4360 2017 2 4 2017 3 4 2017 4 49 2017 5 263 2017 6 2 2017 7 23 2017 8 40 2017 NA NA NA 10 1 2017 03103
1 5824 2017 2 74 2017 NA NA NA 4 10 2017 5 180 2017 6 6 2017 7 28 2017 8 31 2017 NA NA NA NA NA NA 03201
1 6192 2017 2 520 2017 NA NA NA 4 35 2017 5 30 2017 6 1 2017 7 34 2017 8 102 2017 NA NA NA NA NA NA 03202
1 18055 2017 2 514 2017 3 12 2017 4 84 2017 5 532 2017 6 20 2017 7 122 2017 8 63 2017 9 1 2017 10 1 2017 03301
1 2535 2017 2 4 2017 3 22 2017 4 22 2017 5 271 2017 6 3 2017 7 46 2017 8 24 2017 NA NA NA NA NA NA 03302
1 3044 2017 NA NA NA 3 1 2017 4 19 2017 5 410 2017 6 3 2017 7 21 2017 8 13 2017 NA NA NA NA NA NA 03303
1 5411 2017 2 187 2017 3 6 2017 4 22 2017 5 530 2017 6 9 2017 7 36 2017 8 25 2017 9 1 2017 10 1 2017 03304
1 68106 2017 2 17825 2017 3 8 2017 4 190 2017 5 707 2017 6 40 2017 7 391 2017 8 197 2017 NA NA NA 10 1 2017 04101
1 77648 2017 2 10320 2017 3 12 2017 4 310 2017 5 640 2017 6 30 2017 7 379 2017 8 160 2017 9 1 2017 10 1 2017 04102
1 4310 2017 2 24 2017 3 1 2017 4 25 2017 5 86 2017 6 2 2017 7 43 2017 8 15 2017 NA NA NA NA NA NA 04103
1 2430 2017 NA NA NA 3 1 2017 4 14 2017 5 162 2017 6 2 2017 7 34 2017 8 17 2017 NA NA NA NA NA NA 04104
1 2258 2017 NA NA NA 3 2 2017 4 16 2017 5 48 2017 6 5 2017 7 19 2017 8 25 2017 NA NA NA NA NA NA 04105
1 10347 2017 2 60 2017 3 7 2017 4 29 2017 5 237 2017 6 14 2017 7 39 2017 8 46 2017 NA NA NA NA NA NA 04106
1 11612 2017 2 212 2017 3 2 2017 4 53 2017 5 336 2017 6 13 2017 7 57 2017 8 35 2017 NA NA NA NA NA NA 04201
1 4848 2017 NA NA NA 3 5 2017 4 20 2017 5 356 2017 6 4 2017 7 37 2017 8 8 2017 NA NA NA NA NA NA 04202
1 12935 2017 2 10 2017 3 2 2017 4 25 2017 5 208 2017 6 4 2017 7 53 2017 8 51 2017 NA NA NA 10 1 2017 04203
1 10069 2017 2 132 2017 3 1 2017 4 38 2017 5 297 2017 6 21 2017 7 54 2017 8 85 2017 NA NA NA 10 1 2017 04204
1 38937 2017 2 1578 2017 3 7 2017 4 203 2017 5 1097 2017 6 25 2017 7 192 2017 8 56 2017 9 1 2017 10 1 2017 04301
1 6597 2017 2 4 2017 3 7 2017 4 25 2017 5 308 2017 6 6 2017 7 33 2017 8 19 2017 NA NA NA NA NA NA 04302
1 12084 2017 NA NA NA 3 4 2017 4 80 2017 5 810 2017 6 6 2017 7 59 2017 8 31 2017 NA NA NA NA NA NA 04303
1 4521 2017 2 2 2017 3 3 2017 4 13 2017 5 233 2017 6 10 2017 7 24 2017 8 6 2017 NA NA NA 10 1 2017 04304
1 2529 2017 2 1 2017 3 3 2017 4 13 2017 5 184 2017 6 6 2017 7 15 2017 8 13 2017 NA NA NA NA NA NA 04305
1 83616 2017 2 30690 2017 3 18 2017 4 716 2017 5 1257 2017 6 30 2017 7 508 2017 8 361 2017 9 1 2017 10 1 2017 05101
1 10211 2017 2 1151 2017 3 2 2017 4 42 2017 5 106 2017 6 12 2017 7 64 2017 8 18 2017 NA NA NA 10 1 2017 05102
1 11433 2017 2 8548 2017 3 4 2017 4 46 2017 5 109 2017 6 2 2017 7 124 2017 8 24 2017 NA NA NA NA NA NA 05103
1 425 2017 NA NA NA NA NA NA 4 3 2017 5 8 2017 NA NA NA 7 2 2017 8 7 2017 9 1 2017 NA NA NA 05104
1 15270 2017 2 1765 2017 NA NA NA 4 18 2017 5 222 2017 6 6 2017 7 155 2017 8 15 2017 NA NA NA 10 1 2017 05105
1 15582 2017 2 1434 2017 3 3 2017 4 47 2017 5 217 2017 6 14 2017 7 120 2017 8 25 2017 9 1 2017 10 1 2017 05107
1 77662 2017 2 67357 2017 3 18 2017 4 327 2017 5 1024 2017 6 5 2017 7 451 2017 8 273 2017 9 1 2017 10 1 2017 05109
1 2782 2017 2 1 2017 3 108 2017 4 19 2017 5 37 2017 6 7 2017 7 68 2017 8 114 2017 NA NA NA NA NA NA 05201
1 19535 2017 2 3765 2017 3 1 2017 4 90 2017 5 105 2017 6 15 2017 7 70 2017 8 80 2017 9 1 2017 10 1 2017 05301
1 5313 2017 NA NA NA NA NA NA 4 20 2017 5 129 2017 6 1 2017 7 21 2017 8 4 2017 NA NA NA NA NA NA 05302


Hacemos la unión con los ingresos promedio comunales expandidos:

ingresos_expandidos_2017 <- readRDS("ingresos_expandidos_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
tablamadre <- head(df_2017_2,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x.1 Freq.x.1 anio.x.1 unlist.c..y.1 Freq.y.1 anio.y.1 unlist.c..x.2 Freq.x.2 anio.x.2 unlist.c..y.2 Freq.y.2 anio.y.2 unlist.c..x.3 Freq.x.3 anio.x.3 unlist.c..y.3 Freq.y.3 anio.y.3 unlist.c..x.4 Freq.x.4 anio.x.4 unlist.c..y.4 Freq.y.4 anio.y.4 comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 1 38383 2017 2 22525 2017 3 20 2017 4 4489 2017 5 586 2017 6 55 2017 7 667 2017 8 261 2017 9 1 2017 10 1 2017 Iquique 354820.7 2017 1101 191468 67936815240
01107 1 26410 2017 2 4142 2017 3 13 2017 4 446 2017 5 1766 2017 6 32 2017 7 353 2017 8 16 2017 NA NA NA 10 1 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397
01401 1 7855 2017 2 4 2017 3 31 2017 4 248 2017 5 543 2017 6 10 2017 7 193 2017 8 42 2017 9 1 2017 NA NA NA Pozo Almonte 285981.8 2017 1401 15711 4493059532
01402 1 828 2017 2 10 2017 3 12 2017 4 13 2017 5 213 2017 6 1 2017 7 11 2017 8 4 2017 NA NA NA NA NA NA Camiña 262850.3 2017 1402 1250 328562901
01403 1 826 2017 2 2 2017 3 1141 2017 4 10 2017 5 32 2017 6 1 2017 7 13 2017 8 5 2017 9 1 2017 NA NA NA NA NA NA NA NA NA
01404 1 2266 2017 2 4 2017 3 61 2017 4 50 2017 5 443 2017 NA NA NA 7 39 2017 8 8 2017 NA NA NA NA NA NA Huara 253968.5 2017 1404 2730 693334131
01405 1 2424 2017 2 5 2017 3 11 2017 4 34 2017 5 169 2017 6 2 2017 7 58 2017 8 23 2017 NA NA NA NA NA NA Pica 313007.5 2017 1405 9296 2909717399
02101 1 80067 2017 2 27940 2017 3 31 2017 4 751 2017 5 2782 2017 6 44 2017 7 660 2017 8 176 2017 9 1 2017 10 1 2017 Antofagasta 347580.2 2017 2101 361873 125779893517
02102 1 3236 2017 2 473 2017 3 1 2017 4 13 2017 5 198 2017 6 6 2017 7 49 2017 8 240 2017 9 1 2017 NA NA NA Mejillones 369770.7 2017 2102 13467 4979702302
02103 1 466 2017 NA NA NA NA NA NA 4 21 2017 5 36 2017 6 1 2017 7 3 2017 8 43 2017 NA NA NA NA NA NA Sierra Gorda 403458.5 2017 2103 10186 4109628188
02104 1 4123 2017 2 3 2017 3 50 2017 4 20 2017 5 265 2017 6 28 2017 7 59 2017 8 45 2017 9 1 2017 10 1 2017 Taltal 364539.1 2017 2104 13317 4854566842
02201 1 49994 2017 2 3683 2017 3 137 2017 4 1610 2017 5 705 2017 6 26 2017 7 808 2017 8 344 2017 9 1 2017 10 1 2017 Calama 409671.3 2017 2201 165731 67895226712
02202 1 173 2017 NA NA NA NA NA NA 4 6 2017 5 234 2017 6 1 2017 7 13 2017 8 12 2017 NA NA NA NA NA NA NA NA NA NA NA NA
02203 1 3407 2017 2 5 2017 3 78 2017 4 229 2017 5 126 2017 6 6 2017 7 121 2017 8 172 2017 9 1 2017 10 1 2017 San Pedro de Atacama 426592.0 2017 2203 10996 4690805471
02301 1 8580 2017 2 1110 2017 3 3 2017 4 48 2017 5 789 2017 6 12 2017 7 78 2017 8 50 2017 9 1 2017 10 1 2017 Tocopilla 246615.3 2017 2301 25186 6211253937
02302 1 1798 2017 2 3 2017 3 1 2017 4 25 2017 5 7 2017 6 1 2017 7 30 2017 8 94 2017 NA NA NA NA NA NA María Elena 466266.9 2017 2302 6457 3010685220
03101 1 46557 2017 2 6812 2017 3 9 2017 4 351 2017 5 1481 2017 6 38 2017 7 205 2017 8 112 2017 NA NA NA 10 1 2017 Copiapó 330075.2 2017 3101 153937 50810778473
03102 1 12730 2017 2 71 2017 3 16 2017 4 95 2017 5 2483 2017 6 68 2017 7 149 2017 8 39 2017 NA NA NA 10 1 2017 Caldera 299314.8 2017 3102 17662 5286498241
03103 1 4360 2017 2 4 2017 3 4 2017 4 49 2017 5 263 2017 6 2 2017 7 23 2017 8 40 2017 NA NA NA 10 1 2017 Tierra Amarilla 314643.9 2017 3103 14019 4410992711
03201 1 5824 2017 2 74 2017 NA NA NA 4 10 2017 5 180 2017 6 6 2017 7 28 2017 8 31 2017 NA NA NA NA NA NA Chañaral 286389.3 2017 3201 12219 3499391196
03202 1 6192 2017 2 520 2017 NA NA NA 4 35 2017 5 30 2017 6 1 2017 7 34 2017 8 102 2017 NA NA NA NA NA NA Diego de Almagro 336256.8 2017 3202 13925 4682376047
03301 1 18055 2017 2 514 2017 3 12 2017 4 84 2017 5 532 2017 6 20 2017 7 122 2017 8 63 2017 9 1 2017 10 1 2017 Vallenar 304336.7 2017 3301 51917 15800246795
03302 1 2535 2017 2 4 2017 3 22 2017 4 22 2017 5 271 2017 6 3 2017 7 46 2017 8 24 2017 NA NA NA NA NA NA Alto del Carmen 227130.4 2017 3302 5299 1203563833
03303 1 3044 2017 NA NA NA 3 1 2017 4 19 2017 5 410 2017 6 3 2017 7 21 2017 8 13 2017 NA NA NA NA NA NA Freirina 253086.7 2017 3303 7041 1781983257
03304 1 5411 2017 2 187 2017 3 6 2017 4 22 2017 5 530 2017 6 9 2017 7 36 2017 8 25 2017 9 1 2017 10 1 2017 Huasco 287406.6 2017 3304 10149 2916889629
04101 1 68106 2017 2 17825 2017 3 8 2017 4 190 2017 5 707 2017 6 40 2017 7 391 2017 8 197 2017 NA NA NA 10 1 2017 La Serena 270221.9 2017 4101 221054 59733627577
04102 1 77648 2017 2 10320 2017 3 12 2017 4 310 2017 5 640 2017 6 30 2017 7 379 2017 8 160 2017 9 1 2017 10 1 2017 Coquimbo 261852.6 2017 4102 227730 59631700074
04103 1 4310 2017 2 24 2017 3 1 2017 4 25 2017 5 86 2017 6 2 2017 7 43 2017 8 15 2017 NA NA NA NA NA NA Andacollo 248209.3 2017 4103 11044 2741223967
04104 1 2430 2017 NA NA NA 3 1 2017 4 14 2017 5 162 2017 6 2 2017 7 34 2017 8 17 2017 NA NA NA NA NA NA La Higuera 228356.8 2017 4104 4241 968461330
04105 1 2258 2017 NA NA NA 3 2 2017 4 16 2017 5 48 2017 6 5 2017 7 19 2017 8 25 2017 NA NA NA NA NA NA Paiguano 205942.1 2017 4105 4497 926121774
04106 1 10347 2017 2 60 2017 3 7 2017 4 29 2017 5 237 2017 6 14 2017 7 39 2017 8 46 2017 NA NA NA NA NA NA Vicuña 211431.9 2017 4106 27771 5871675449
04201 1 11612 2017 2 212 2017 3 2 2017 4 53 2017 5 336 2017 6 13 2017 7 57 2017 8 35 2017 NA NA NA NA NA NA Illapel 238674.4 2017 4201 30848 7362627007
04202 1 4848 2017 NA NA NA 3 5 2017 4 20 2017 5 356 2017 6 4 2017 7 37 2017 8 8 2017 NA NA NA NA NA NA Canela 207933.6 2017 4202 9093 1890740321
04203 1 12935 2017 2 10 2017 3 2 2017 4 25 2017 5 208 2017 6 4 2017 7 53 2017 8 51 2017 NA NA NA 10 1 2017 Los Vilos 255200.4 2017 4203 21382 5456695139
04204 1 10069 2017 2 132 2017 3 1 2017 4 38 2017 5 297 2017 6 21 2017 7 54 2017 8 85 2017 NA NA NA 10 1 2017 Salamanca 242879.5 2017 4204 29347 7127783272
04301 1 38937 2017 2 1578 2017 3 7 2017 4 203 2017 5 1097 2017 6 25 2017 7 192 2017 8 56 2017 9 1 2017 10 1 2017 Ovalle 266522.9 2017 4301 111272 29656533187
04302 1 6597 2017 2 4 2017 3 7 2017 4 25 2017 5 308 2017 6 6 2017 7 33 2017 8 19 2017 NA NA NA NA NA NA Combarbalá 210409.7 2017 4302 13322 2803077721
04303 1 12084 2017 NA NA NA 3 4 2017 4 80 2017 5 810 2017 6 6 2017 7 59 2017 8 31 2017 NA NA NA NA NA NA Monte Patria 211907.9 2017 4303 30751 6516380780
04304 1 4521 2017 2 2 2017 3 3 2017 4 13 2017 5 233 2017 6 10 2017 7 24 2017 8 6 2017 NA NA NA 10 1 2017 Punitaqui 194997.8 2017 4304 10956 2136395349
04305 1 2529 2017 2 1 2017 3 3 2017 4 13 2017 5 184 2017 6 6 2017 7 15 2017 8 13 2017 NA NA NA NA NA NA Río Hurtado 182027.2 2017 4305 4278 778712384
05101 1 83616 2017 2 30690 2017 3 18 2017 4 716 2017 5 1257 2017 6 30 2017 7 508 2017 8 361 2017 9 1 2017 10 1 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05102 1 10211 2017 2 1151 2017 3 2 2017 4 42 2017 5 106 2017 6 12 2017 7 64 2017 8 18 2017 NA NA NA 10 1 2017 Casablanca 312802.7 2017 5102 26867 8404070481
05103 1 11433 2017 2 8548 2017 3 4 2017 4 46 2017 5 109 2017 6 2 2017 7 124 2017 8 24 2017 NA NA NA NA NA NA Concón 318496.3 2017 5103 42152 13425257057
05104 1 425 2017 NA NA NA NA NA NA 4 3 2017 5 8 2017 NA NA NA 7 2 2017 8 7 2017 9 1 2017 NA NA NA NA NA NA NA NA NA
05105 1 15270 2017 2 1765 2017 NA NA NA 4 18 2017 5 222 2017 6 6 2017 7 155 2017 8 15 2017 NA NA NA 10 1 2017 Puchuncaví 288737.2 2017 5105 18546 5354920887
05107 1 15582 2017 2 1434 2017 3 3 2017 4 47 2017 5 217 2017 6 14 2017 7 120 2017 8 25 2017 9 1 2017 10 1 2017 Quintero 316659.1 2017 5107 31923 10108709691
05109 1 77662 2017 2 67357 2017 3 18 2017 4 327 2017 5 1024 2017 6 5 2017 7 451 2017 8 273 2017 9 1 2017 10 1 2017 Viña del Mar 337006.1 2017 5109 334248 112643604611
05201 1 2782 2017 2 1 2017 3 108 2017 4 19 2017 5 37 2017 6 7 2017 7 68 2017 8 114 2017 NA NA NA NA NA NA NA NA NA NA NA NA
05301 1 19535 2017 2 3765 2017 3 1 2017 4 90 2017 5 105 2017 6 15 2017 7 70 2017 8 80 2017 9 1 2017 10 1 2017 Los Andes 338182.5 2017 5301 66708 22559476922
05302 1 5313 2017 NA NA NA NA NA NA 4 20 2017 5 129 2017 6 1 2017 7 21 2017 8 4 2017 NA NA NA NA NA NA Calle Larga 245165.4 2017 5302 14832 3636293159


1.1.3 Correlaciones

1 Casa

dat1 <- data.frame(df_2017_2$Freq.x, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

2 Departamento en edificio

dat1 <- data.frame(df_2017_2$Freq.y, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

3 Vivienda tradicional indígena (ruka, pae pae u otras)

dat1 <- data.frame(df_2017_2$Freq.x.1, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

4 Pieza en casa antigua o en conventillo

dat1 <- data.frame(df_2017_2$Freq.y.1, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

5 Mediagua, mejora, rancho o choza

dat1 <- data.frame(df_2017_2$Freq.x.2, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

6 Móvil (carpa, casa rodante o similar)

dat1 <- data.frame(df_2017_2$Freq.y.2, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

7 Otro tipo de vivienda particular

dat1 <- data.frame(df_2017_2$Freq.x.3, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

8 Vivienda colectiva

dat1 <- data.frame(df_2017_2$Freq.y.3, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

9 Operativo personas en tránsito (no es vivienda)

dat1 <- data.frame(df_2017_2$Freq.x.4, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)
## Warning in cor(x, y, use = use, method = method): the standard deviation is zero
## Warning in cor(x, y): the standard deviation is zero

10 Operativo calle (no es vivienda)

dat1 <- data.frame(df_2017_2$Freq.y.4, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)
## Warning in cor(x, y, use = use, method = method): the standard deviation is zero
## Warning in cor(x, y): the standard deviation is zero

1.2 P03B: Material en la cubierta del techo

1 Tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas
2 Losa hormigón
3 Planchas metálicas de zinc, cobre, etc. o fibrocemento (tipo pizarreño)
4 Fonolita o plancha de fieltro embreado
5 Paja, coirón, totora o caña
6 Materiales precarios (lata, cartón, plásticos, etc.)
7 Sin cubierta sólida de techo
98 No aplica
99 Missing

b <- tabla_con_clave$COMUNA
c <- tabla_con_clave$P03B
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"

d_t <- filter(d,d$unlist.c. == 1)
for(i in 2:7){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
## Warning in merge.data.frame(x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE):
## column names 'unlist.c..x', 'Freq.x', 'anio.x', 'unlist.c..y', 'Freq.y',
## 'anio.y' are duplicated in the result

## Warning in merge.data.frame(x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE):
## column names 'unlist.c..x', 'Freq.x', 'anio.x', 'unlist.c..y', 'Freq.y',
## 'anio.y' are duplicated in the result
## Warning in merge.data.frame(x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE):
## column names 'unlist.c..x', 'Freq.x', 'anio.x', 'unlist.c..y', 'Freq.y',
## 'anio.y', 'unlist.c..x', 'Freq.x', 'anio.x', 'unlist.c..y', 'Freq.y', 'anio.y'
## are duplicated in the result

## Warning in merge.data.frame(x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE):
## column names 'unlist.c..x', 'Freq.x', 'anio.x', 'unlist.c..y', 'Freq.y',
## 'anio.y', 'unlist.c..x', 'Freq.x', 'anio.x', 'unlist.c..y', 'Freq.y', 'anio.y'
## are duplicated in the result
tablamadre <- head(d_t,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
unlist.b. unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c. Freq anio
1101 1 15518 2017 2 17268 2017 3 21126 2017 4 651 2017 5 43 2017 6 590 2017 7 182 2017
1107 1 7463 2017 2 7673 2017 3 11776 2017 4 344 2017 5 18 2017 6 733 2017 7 190 2017
1401 1 933 2017 2 112 2017 3 2762 2017 4 75 2017 5 18 2017 6 124 2017 7 32 2017
1402 1 82 2017 2 6 2017 3 369 2017 4 5 2017 5 1 2017 6 3 2017 7 1 2017
1403 1 41 2017 2 3 2017 3 344 2017 4 2 2017 5 69 2017 6 3 2017 NA NA NA
1404 1 205 2017 2 13 2017 3 620 2017 4 20 2017 5 9 2017 6 62 2017 7 8 2017
1405 1 368 2017 2 42 2017 3 1085 2017 4 20 2017 5 40 2017 6 36 2017 7 2 2017
2101 1 28222 2017 2 30665 2017 3 37231 2017 4 674 2017 5 20 2017 6 715 2017 7 137 2017
2102 1 753 2017 2 599 2017 3 1602 2017 4 33 2017 5 1 2017 6 34 2017 7 7 2017
2103 1 48 2017 2 5 2017 3 285 2017 4 1 2017 NA NA NA 6 1 2017 NA NA NA
2104 1 701 2017 2 72 2017 3 2574 2017 4 18 2017 NA NA NA 6 66 2017 7 22 2017
2201 1 15078 2017 2 3796 2017 3 25641 2017 4 422 2017 5 44 2017 6 661 2017 7 103 2017
2202 1 20 2017 NA NA NA 3 67 2017 NA NA NA 5 4 2017 6 3 2017 NA NA NA
2203 1 424 2017 2 13 2017 3 2094 2017 4 33 2017 5 220 2017 6 54 2017 7 1 2017
2301 1 2406 2017 2 906 2017 3 4218 2017 4 77 2017 NA NA NA 6 97 2017 7 32 2017
2302 1 410 2017 2 4 2017 3 963 2017 4 2 2017 5 1 2017 6 23 2017 7 3 2017
3101 1 8019 2017 2 3664 2017 3 32996 2017 4 222 2017 5 29 2017 6 216 2017 7 40 2017
3102 1 1014 2017 2 79 2017 3 4371 2017 4 32 2017 5 15 2017 6 52 2017 7 16 2017
3103 1 239 2017 2 5 2017 3 3488 2017 4 12 2017 5 16 2017 6 13 2017 7 5 2017
3201 1 229 2017 2 71 2017 3 3267 2017 4 31 2017 5 3 2017 6 59 2017 7 5 2017
3202 1 646 2017 2 670 2017 3 3111 2017 4 5 2017 5 1 2017 6 29 2017 7 5 2017
3301 1 4699 2017 2 318 2017 3 10268 2017 4 98 2017 5 30 2017 6 181 2017 7 35 2017
3302 1 214 2017 2 1 2017 3 1445 2017 4 13 2017 5 31 2017 6 27 2017 7 7 2017
3303 1 315 2017 2 3 2017 3 1886 2017 4 8 2017 5 2 2017 6 23 2017 7 3 2017
3304 1 531 2017 2 48 2017 3 2640 2017 4 33 2017 5 1 2017 6 48 2017 7 7 2017
4101 1 23191 2017 2 6839 2017 3 36623 2017 4 264 2017 5 12 2017 6 143 2017 7 42 2017
4102 1 19353 2017 2 3376 2017 3 43825 2017 4 380 2017 5 16 2017 6 180 2017 7 49 2017
4103 1 420 2017 2 2 2017 3 2980 2017 4 29 2017 5 1 2017 6 10 2017 7 5 2017
4104 1 163 2017 NA NA NA 3 1238 2017 4 23 2017 NA NA NA 6 25 2017 7 3 2017
4105 1 146 2017 2 1 2017 3 1424 2017 4 4 2017 5 2 2017 6 8 2017 7 4 2017
4106 1 981 2017 2 26 2017 3 7609 2017 4 27 2017 5 4 2017 6 37 2017 7 9 2017
4201 1 696 2017 2 75 2017 3 9311 2017 4 20 2017 NA NA NA 6 18 2017 7 5 2017
4202 1 122 2017 2 4 2017 3 3223 2017 4 6 2017 5 6 2017 6 6 2017 7 9 2017
4203 1 945 2017 2 14 2017 3 6188 2017 4 25 2017 5 2 2017 6 11 2017 7 2 2017
4204 1 775 2017 2 96 2017 3 7732 2017 4 18 2017 5 2 2017 6 24 2017 7 8 2017
4301 1 5460 2017 2 755 2017 3 27922 2017 4 179 2017 5 14 2017 6 105 2017 7 22 2017
4302 1 217 2017 2 2 2017 3 4603 2017 4 7 2017 5 3 2017 6 12 2017 7 9 2017
4303 1 586 2017 2 14 2017 3 9507 2017 4 29 2017 5 2 2017 6 35 2017 7 5 2017
4304 1 213 2017 2 6 2017 3 3471 2017 4 9 2017 5 1 2017 6 25 2017 7 4 2017
4305 1 108 2017 NA NA NA 3 1529 2017 4 4 2017 5 1 2017 6 30 2017 NA NA NA
5101 1 19178 2017 2 13731 2017 3 61208 2017 4 259 2017 5 17 2017 6 2398 2017 7 89 2017
5102 1 1525 2017 2 350 2017 3 6690 2017 4 31 2017 NA NA NA 6 50 2017 7 7 2017
5103 1 4320 2017 2 2589 2017 3 6576 2017 4 72 2017 5 2 2017 6 52 2017 7 4 2017
5104 1 45 2017 NA NA NA 3 302 2017 NA NA NA NA NA NA 6 1 2017 NA NA NA
5105 1 1369 2017 2 56 2017 3 4850 2017 4 35 2017 5 3 2017 6 23 2017 7 8 2017
5107 1 2717 2017 2 503 2017 3 6985 2017 4 49 2017 5 2 2017 6 53 2017 7 19 2017
5109 1 23960 2017 2 29228 2017 3 60722 2017 4 259 2017 5 13 2017 6 1061 2017 7 96 2017
5201 1 245 2017 2 4 2017 3 2159 2017 4 7 2017 NA NA NA 6 15 2017 7 1 2017
5301 1 5144 2017 2 1233 2017 3 13952 2017 4 51 2017 5 6 2017 6 56 2017 7 19 2017
5302 1 1013 2017 2 31 2017 3 3555 2017 4 23 2017 NA NA NA 6 14 2017 7 1 2017
codigos <- d_t$
unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[22] <- "código" 
tablamadre <- head(comuna_corr,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x.1 Freq.x.1 anio.x.1 unlist.c..y.1 Freq.y.1 anio.y.1 unlist.c..x.2 Freq.x.2 anio.x.2 unlist.c..y.2 Freq.y.2 anio.y.2 unlist.c. Freq anio código
1 15518 2017 2 17268 2017 3 21126 2017 4 651 2017 5 43 2017 6 590 2017 7 182 2017 01101
1 7463 2017 2 7673 2017 3 11776 2017 4 344 2017 5 18 2017 6 733 2017 7 190 2017 01107
1 933 2017 2 112 2017 3 2762 2017 4 75 2017 5 18 2017 6 124 2017 7 32 2017 01401
1 82 2017 2 6 2017 3 369 2017 4 5 2017 5 1 2017 6 3 2017 7 1 2017 01402
1 41 2017 2 3 2017 3 344 2017 4 2 2017 5 69 2017 6 3 2017 NA NA NA 01403
1 205 2017 2 13 2017 3 620 2017 4 20 2017 5 9 2017 6 62 2017 7 8 2017 01404
1 368 2017 2 42 2017 3 1085 2017 4 20 2017 5 40 2017 6 36 2017 7 2 2017 01405
1 28222 2017 2 30665 2017 3 37231 2017 4 674 2017 5 20 2017 6 715 2017 7 137 2017 02101
1 753 2017 2 599 2017 3 1602 2017 4 33 2017 5 1 2017 6 34 2017 7 7 2017 02102
1 48 2017 2 5 2017 3 285 2017 4 1 2017 NA NA NA 6 1 2017 NA NA NA 02103
1 701 2017 2 72 2017 3 2574 2017 4 18 2017 NA NA NA 6 66 2017 7 22 2017 02104
1 15078 2017 2 3796 2017 3 25641 2017 4 422 2017 5 44 2017 6 661 2017 7 103 2017 02201
1 20 2017 NA NA NA 3 67 2017 NA NA NA 5 4 2017 6 3 2017 NA NA NA 02202
1 424 2017 2 13 2017 3 2094 2017 4 33 2017 5 220 2017 6 54 2017 7 1 2017 02203
1 2406 2017 2 906 2017 3 4218 2017 4 77 2017 NA NA NA 6 97 2017 7 32 2017 02301
1 410 2017 2 4 2017 3 963 2017 4 2 2017 5 1 2017 6 23 2017 7 3 2017 02302
1 8019 2017 2 3664 2017 3 32996 2017 4 222 2017 5 29 2017 6 216 2017 7 40 2017 03101
1 1014 2017 2 79 2017 3 4371 2017 4 32 2017 5 15 2017 6 52 2017 7 16 2017 03102
1 239 2017 2 5 2017 3 3488 2017 4 12 2017 5 16 2017 6 13 2017 7 5 2017 03103
1 229 2017 2 71 2017 3 3267 2017 4 31 2017 5 3 2017 6 59 2017 7 5 2017 03201
1 646 2017 2 670 2017 3 3111 2017 4 5 2017 5 1 2017 6 29 2017 7 5 2017 03202
1 4699 2017 2 318 2017 3 10268 2017 4 98 2017 5 30 2017 6 181 2017 7 35 2017 03301
1 214 2017 2 1 2017 3 1445 2017 4 13 2017 5 31 2017 6 27 2017 7 7 2017 03302
1 315 2017 2 3 2017 3 1886 2017 4 8 2017 5 2 2017 6 23 2017 7 3 2017 03303
1 531 2017 2 48 2017 3 2640 2017 4 33 2017 5 1 2017 6 48 2017 7 7 2017 03304
1 23191 2017 2 6839 2017 3 36623 2017 4 264 2017 5 12 2017 6 143 2017 7 42 2017 04101
1 19353 2017 2 3376 2017 3 43825 2017 4 380 2017 5 16 2017 6 180 2017 7 49 2017 04102
1 420 2017 2 2 2017 3 2980 2017 4 29 2017 5 1 2017 6 10 2017 7 5 2017 04103
1 163 2017 NA NA NA 3 1238 2017 4 23 2017 NA NA NA 6 25 2017 7 3 2017 04104
1 146 2017 2 1 2017 3 1424 2017 4 4 2017 5 2 2017 6 8 2017 7 4 2017 04105
1 981 2017 2 26 2017 3 7609 2017 4 27 2017 5 4 2017 6 37 2017 7 9 2017 04106
1 696 2017 2 75 2017 3 9311 2017 4 20 2017 NA NA NA 6 18 2017 7 5 2017 04201
1 122 2017 2 4 2017 3 3223 2017 4 6 2017 5 6 2017 6 6 2017 7 9 2017 04202
1 945 2017 2 14 2017 3 6188 2017 4 25 2017 5 2 2017 6 11 2017 7 2 2017 04203
1 775 2017 2 96 2017 3 7732 2017 4 18 2017 5 2 2017 6 24 2017 7 8 2017 04204
1 5460 2017 2 755 2017 3 27922 2017 4 179 2017 5 14 2017 6 105 2017 7 22 2017 04301
1 217 2017 2 2 2017 3 4603 2017 4 7 2017 5 3 2017 6 12 2017 7 9 2017 04302
1 586 2017 2 14 2017 3 9507 2017 4 29 2017 5 2 2017 6 35 2017 7 5 2017 04303
1 213 2017 2 6 2017 3 3471 2017 4 9 2017 5 1 2017 6 25 2017 7 4 2017 04304
1 108 2017 NA NA NA 3 1529 2017 4 4 2017 5 1 2017 6 30 2017 NA NA NA 04305
1 19178 2017 2 13731 2017 3 61208 2017 4 259 2017 5 17 2017 6 2398 2017 7 89 2017 05101
1 1525 2017 2 350 2017 3 6690 2017 4 31 2017 NA NA NA 6 50 2017 7 7 2017 05102
1 4320 2017 2 2589 2017 3 6576 2017 4 72 2017 5 2 2017 6 52 2017 7 4 2017 05103
1 45 2017 NA NA NA 3 302 2017 NA NA NA NA NA NA 6 1 2017 NA NA NA 05104
1 1369 2017 2 56 2017 3 4850 2017 4 35 2017 5 3 2017 6 23 2017 7 8 2017 05105
1 2717 2017 2 503 2017 3 6985 2017 4 49 2017 5 2 2017 6 53 2017 7 19 2017 05107
1 23960 2017 2 29228 2017 3 60722 2017 4 259 2017 5 13 2017 6 1061 2017 7 96 2017 05109
1 245 2017 2 4 2017 3 2159 2017 4 7 2017 NA NA NA 6 15 2017 7 1 2017 05201
1 5144 2017 2 1233 2017 3 13952 2017 4 51 2017 5 6 2017 6 56 2017 7 19 2017 05301
1 1013 2017 2 31 2017 3 3555 2017 4 23 2017 NA NA NA 6 14 2017 7 1 2017 05302


Hacemos el merge con los ingresos comunales:

ingresos_expandidos_2017 <- readRDS("ingresos_expandidos_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
tablamadre <- head(df_2017_2,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x.1 Freq.x.1 anio.x.1 unlist.c..y.1 Freq.y.1 anio.y.1 unlist.c..x.2 Freq.x.2 anio.x.2 unlist.c..y.2 Freq.y.2 anio.y.2 unlist.c. Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 1 15518 2017 2 17268 2017 3 21126 2017 4 651 2017 5 43 2017 6 590 2017 7 182 2017 Iquique 354820.7 2017 1101 191468 67936815240
01107 1 7463 2017 2 7673 2017 3 11776 2017 4 344 2017 5 18 2017 6 733 2017 7 190 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397
01401 1 933 2017 2 112 2017 3 2762 2017 4 75 2017 5 18 2017 6 124 2017 7 32 2017 Pozo Almonte 285981.8 2017 1401 15711 4493059532
01402 1 82 2017 2 6 2017 3 369 2017 4 5 2017 5 1 2017 6 3 2017 7 1 2017 Camiña 262850.3 2017 1402 1250 328562901
01403 1 41 2017 2 3 2017 3 344 2017 4 2 2017 5 69 2017 6 3 2017 NA NA NA NA NA NA NA NA NA
01404 1 205 2017 2 13 2017 3 620 2017 4 20 2017 5 9 2017 6 62 2017 7 8 2017 Huara 253968.5 2017 1404 2730 693334131
01405 1 368 2017 2 42 2017 3 1085 2017 4 20 2017 5 40 2017 6 36 2017 7 2 2017 Pica 313007.5 2017 1405 9296 2909717399
02101 1 28222 2017 2 30665 2017 3 37231 2017 4 674 2017 5 20 2017 6 715 2017 7 137 2017 Antofagasta 347580.2 2017 2101 361873 125779893517
02102 1 753 2017 2 599 2017 3 1602 2017 4 33 2017 5 1 2017 6 34 2017 7 7 2017 Mejillones 369770.7 2017 2102 13467 4979702302
02103 1 48 2017 2 5 2017 3 285 2017 4 1 2017 NA NA NA 6 1 2017 NA NA NA Sierra Gorda 403458.5 2017 2103 10186 4109628188
02104 1 701 2017 2 72 2017 3 2574 2017 4 18 2017 NA NA NA 6 66 2017 7 22 2017 Taltal 364539.1 2017 2104 13317 4854566842
02201 1 15078 2017 2 3796 2017 3 25641 2017 4 422 2017 5 44 2017 6 661 2017 7 103 2017 Calama 409671.3 2017 2201 165731 67895226712
02202 1 20 2017 NA NA NA 3 67 2017 NA NA NA 5 4 2017 6 3 2017 NA NA NA NA NA NA NA NA NA
02203 1 424 2017 2 13 2017 3 2094 2017 4 33 2017 5 220 2017 6 54 2017 7 1 2017 San Pedro de Atacama 426592.0 2017 2203 10996 4690805471
02301 1 2406 2017 2 906 2017 3 4218 2017 4 77 2017 NA NA NA 6 97 2017 7 32 2017 Tocopilla 246615.3 2017 2301 25186 6211253937
02302 1 410 2017 2 4 2017 3 963 2017 4 2 2017 5 1 2017 6 23 2017 7 3 2017 María Elena 466266.9 2017 2302 6457 3010685220
03101 1 8019 2017 2 3664 2017 3 32996 2017 4 222 2017 5 29 2017 6 216 2017 7 40 2017 Copiapó 330075.2 2017 3101 153937 50810778473
03102 1 1014 2017 2 79 2017 3 4371 2017 4 32 2017 5 15 2017 6 52 2017 7 16 2017 Caldera 299314.8 2017 3102 17662 5286498241
03103 1 239 2017 2 5 2017 3 3488 2017 4 12 2017 5 16 2017 6 13 2017 7 5 2017 Tierra Amarilla 314643.9 2017 3103 14019 4410992711
03201 1 229 2017 2 71 2017 3 3267 2017 4 31 2017 5 3 2017 6 59 2017 7 5 2017 Chañaral 286389.3 2017 3201 12219 3499391196
03202 1 646 2017 2 670 2017 3 3111 2017 4 5 2017 5 1 2017 6 29 2017 7 5 2017 Diego de Almagro 336256.8 2017 3202 13925 4682376047
03301 1 4699 2017 2 318 2017 3 10268 2017 4 98 2017 5 30 2017 6 181 2017 7 35 2017 Vallenar 304336.7 2017 3301 51917 15800246795
03302 1 214 2017 2 1 2017 3 1445 2017 4 13 2017 5 31 2017 6 27 2017 7 7 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833
03303 1 315 2017 2 3 2017 3 1886 2017 4 8 2017 5 2 2017 6 23 2017 7 3 2017 Freirina 253086.7 2017 3303 7041 1781983257
03304 1 531 2017 2 48 2017 3 2640 2017 4 33 2017 5 1 2017 6 48 2017 7 7 2017 Huasco 287406.6 2017 3304 10149 2916889629
04101 1 23191 2017 2 6839 2017 3 36623 2017 4 264 2017 5 12 2017 6 143 2017 7 42 2017 La Serena 270221.9 2017 4101 221054 59733627577
04102 1 19353 2017 2 3376 2017 3 43825 2017 4 380 2017 5 16 2017 6 180 2017 7 49 2017 Coquimbo 261852.6 2017 4102 227730 59631700074
04103 1 420 2017 2 2 2017 3 2980 2017 4 29 2017 5 1 2017 6 10 2017 7 5 2017 Andacollo 248209.3 2017 4103 11044 2741223967
04104 1 163 2017 NA NA NA 3 1238 2017 4 23 2017 NA NA NA 6 25 2017 7 3 2017 La Higuera 228356.8 2017 4104 4241 968461330
04105 1 146 2017 2 1 2017 3 1424 2017 4 4 2017 5 2 2017 6 8 2017 7 4 2017 Paiguano 205942.1 2017 4105 4497 926121774
04106 1 981 2017 2 26 2017 3 7609 2017 4 27 2017 5 4 2017 6 37 2017 7 9 2017 Vicuña 211431.9 2017 4106 27771 5871675449
04201 1 696 2017 2 75 2017 3 9311 2017 4 20 2017 NA NA NA 6 18 2017 7 5 2017 Illapel 238674.4 2017 4201 30848 7362627007
04202 1 122 2017 2 4 2017 3 3223 2017 4 6 2017 5 6 2017 6 6 2017 7 9 2017 Canela 207933.6 2017 4202 9093 1890740321
04203 1 945 2017 2 14 2017 3 6188 2017 4 25 2017 5 2 2017 6 11 2017 7 2 2017 Los Vilos 255200.4 2017 4203 21382 5456695139
04204 1 775 2017 2 96 2017 3 7732 2017 4 18 2017 5 2 2017 6 24 2017 7 8 2017 Salamanca 242879.5 2017 4204 29347 7127783272
04301 1 5460 2017 2 755 2017 3 27922 2017 4 179 2017 5 14 2017 6 105 2017 7 22 2017 Ovalle 266522.9 2017 4301 111272 29656533187
04302 1 217 2017 2 2 2017 3 4603 2017 4 7 2017 5 3 2017 6 12 2017 7 9 2017 Combarbalá 210409.7 2017 4302 13322 2803077721
04303 1 586 2017 2 14 2017 3 9507 2017 4 29 2017 5 2 2017 6 35 2017 7 5 2017 Monte Patria 211907.9 2017 4303 30751 6516380780
04304 1 213 2017 2 6 2017 3 3471 2017 4 9 2017 5 1 2017 6 25 2017 7 4 2017 Punitaqui 194997.8 2017 4304 10956 2136395349
04305 1 108 2017 NA NA NA 3 1529 2017 4 4 2017 5 1 2017 6 30 2017 NA NA NA Río Hurtado 182027.2 2017 4305 4278 778712384
05101 1 19178 2017 2 13731 2017 3 61208 2017 4 259 2017 5 17 2017 6 2398 2017 7 89 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05102 1 1525 2017 2 350 2017 3 6690 2017 4 31 2017 NA NA NA 6 50 2017 7 7 2017 Casablanca 312802.7 2017 5102 26867 8404070481
05103 1 4320 2017 2 2589 2017 3 6576 2017 4 72 2017 5 2 2017 6 52 2017 7 4 2017 Concón 318496.3 2017 5103 42152 13425257057
05104 1 45 2017 NA NA NA 3 302 2017 NA NA NA NA NA NA 6 1 2017 NA NA NA NA NA NA NA NA NA
05105 1 1369 2017 2 56 2017 3 4850 2017 4 35 2017 5 3 2017 6 23 2017 7 8 2017 Puchuncaví 288737.2 2017 5105 18546 5354920887
05107 1 2717 2017 2 503 2017 3 6985 2017 4 49 2017 5 2 2017 6 53 2017 7 19 2017 Quintero 316659.1 2017 5107 31923 10108709691
05109 1 23960 2017 2 29228 2017 3 60722 2017 4 259 2017 5 13 2017 6 1061 2017 7 96 2017 Viña del Mar 337006.1 2017 5109 334248 112643604611
05201 1 245 2017 2 4 2017 3 2159 2017 4 7 2017 NA NA NA 6 15 2017 7 1 2017 NA NA NA NA NA NA
05301 1 5144 2017 2 1233 2017 3 13952 2017 4 51 2017 5 6 2017 6 56 2017 7 19 2017 Los Andes 338182.5 2017 5301 66708 22559476922
05302 1 1013 2017 2 31 2017 3 3555 2017 4 23 2017 NA NA NA 6 14 2017 7 1 2017 Calle Larga 245165.4 2017 5302 14832 3636293159


Correlacionamos:

1 Tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas

dat1 <- data.frame(df_2017_2$Freq.x, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

2 Losa hormigón

dat1 <- data.frame(df_2017_2$Freq.y, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

3 Planchas metálicas de zinc, cobre, etc. o fibrocemento (tipo pizarreño)

dat1 <- data.frame(df_2017_2$Freq.x.1, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

4 Fonolita o plancha de fieltro embreado

dat1 <- data.frame(df_2017_2$Freq.y.1, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

5 Paja, coirón, totora o caña

dat1 <- data.frame(df_2017_2$Freq.x.2, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

6 Materiales precarios (lata, cartón, plásticos, etc.)

dat1 <- data.frame(df_2017_2$Freq.y.2, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

7 Sin cubierta sólida de techo

dat1 <- data.frame(df_2017_2$Freq, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

2 Cálculo de correlaciones entre la frecuencia de la variable por población y los ingresos expandidos

2.1 P03B: Material en la cubierta del techo

Verifiquemos que nuestra tabla a correlacionar sea la correcta:

tablamadre <- head(df_2017_2,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código unlist.c..x Freq.x anio.x unlist.c..y Freq.y anio.y unlist.c..x.1 Freq.x.1 anio.x.1 unlist.c..y.1 Freq.y.1 anio.y.1 unlist.c..x.2 Freq.x.2 anio.x.2 unlist.c..y.2 Freq.y.2 anio.y.2 unlist.c. Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 1 15518 2017 2 17268 2017 3 21126 2017 4 651 2017 5 43 2017 6 590 2017 7 182 2017 Iquique 354820.7 2017 1101 191468 67936815240
01107 1 7463 2017 2 7673 2017 3 11776 2017 4 344 2017 5 18 2017 6 733 2017 7 190 2017 Alto Hospicio 301933.4 2017 1107 108375 32722034397
01401 1 933 2017 2 112 2017 3 2762 2017 4 75 2017 5 18 2017 6 124 2017 7 32 2017 Pozo Almonte 285981.8 2017 1401 15711 4493059532
01402 1 82 2017 2 6 2017 3 369 2017 4 5 2017 5 1 2017 6 3 2017 7 1 2017 Camiña 262850.3 2017 1402 1250 328562901
01403 1 41 2017 2 3 2017 3 344 2017 4 2 2017 5 69 2017 6 3 2017 NA NA NA NA NA NA NA NA NA
01404 1 205 2017 2 13 2017 3 620 2017 4 20 2017 5 9 2017 6 62 2017 7 8 2017 Huara 253968.5 2017 1404 2730 693334131
01405 1 368 2017 2 42 2017 3 1085 2017 4 20 2017 5 40 2017 6 36 2017 7 2 2017 Pica 313007.5 2017 1405 9296 2909717399
02101 1 28222 2017 2 30665 2017 3 37231 2017 4 674 2017 5 20 2017 6 715 2017 7 137 2017 Antofagasta 347580.2 2017 2101 361873 125779893517
02102 1 753 2017 2 599 2017 3 1602 2017 4 33 2017 5 1 2017 6 34 2017 7 7 2017 Mejillones 369770.7 2017 2102 13467 4979702302
02103 1 48 2017 2 5 2017 3 285 2017 4 1 2017 NA NA NA 6 1 2017 NA NA NA Sierra Gorda 403458.5 2017 2103 10186 4109628188
02104 1 701 2017 2 72 2017 3 2574 2017 4 18 2017 NA NA NA 6 66 2017 7 22 2017 Taltal 364539.1 2017 2104 13317 4854566842
02201 1 15078 2017 2 3796 2017 3 25641 2017 4 422 2017 5 44 2017 6 661 2017 7 103 2017 Calama 409671.3 2017 2201 165731 67895226712
02202 1 20 2017 NA NA NA 3 67 2017 NA NA NA 5 4 2017 6 3 2017 NA NA NA NA NA NA NA NA NA
02203 1 424 2017 2 13 2017 3 2094 2017 4 33 2017 5 220 2017 6 54 2017 7 1 2017 San Pedro de Atacama 426592.0 2017 2203 10996 4690805471
02301 1 2406 2017 2 906 2017 3 4218 2017 4 77 2017 NA NA NA 6 97 2017 7 32 2017 Tocopilla 246615.3 2017 2301 25186 6211253937
02302 1 410 2017 2 4 2017 3 963 2017 4 2 2017 5 1 2017 6 23 2017 7 3 2017 María Elena 466266.9 2017 2302 6457 3010685220
03101 1 8019 2017 2 3664 2017 3 32996 2017 4 222 2017 5 29 2017 6 216 2017 7 40 2017 Copiapó 330075.2 2017 3101 153937 50810778473
03102 1 1014 2017 2 79 2017 3 4371 2017 4 32 2017 5 15 2017 6 52 2017 7 16 2017 Caldera 299314.8 2017 3102 17662 5286498241
03103 1 239 2017 2 5 2017 3 3488 2017 4 12 2017 5 16 2017 6 13 2017 7 5 2017 Tierra Amarilla 314643.9 2017 3103 14019 4410992711
03201 1 229 2017 2 71 2017 3 3267 2017 4 31 2017 5 3 2017 6 59 2017 7 5 2017 Chañaral 286389.3 2017 3201 12219 3499391196
03202 1 646 2017 2 670 2017 3 3111 2017 4 5 2017 5 1 2017 6 29 2017 7 5 2017 Diego de Almagro 336256.8 2017 3202 13925 4682376047
03301 1 4699 2017 2 318 2017 3 10268 2017 4 98 2017 5 30 2017 6 181 2017 7 35 2017 Vallenar 304336.7 2017 3301 51917 15800246795
03302 1 214 2017 2 1 2017 3 1445 2017 4 13 2017 5 31 2017 6 27 2017 7 7 2017 Alto del Carmen 227130.4 2017 3302 5299 1203563833
03303 1 315 2017 2 3 2017 3 1886 2017 4 8 2017 5 2 2017 6 23 2017 7 3 2017 Freirina 253086.7 2017 3303 7041 1781983257
03304 1 531 2017 2 48 2017 3 2640 2017 4 33 2017 5 1 2017 6 48 2017 7 7 2017 Huasco 287406.6 2017 3304 10149 2916889629
04101 1 23191 2017 2 6839 2017 3 36623 2017 4 264 2017 5 12 2017 6 143 2017 7 42 2017 La Serena 270221.9 2017 4101 221054 59733627577
04102 1 19353 2017 2 3376 2017 3 43825 2017 4 380 2017 5 16 2017 6 180 2017 7 49 2017 Coquimbo 261852.6 2017 4102 227730 59631700074
04103 1 420 2017 2 2 2017 3 2980 2017 4 29 2017 5 1 2017 6 10 2017 7 5 2017 Andacollo 248209.3 2017 4103 11044 2741223967
04104 1 163 2017 NA NA NA 3 1238 2017 4 23 2017 NA NA NA 6 25 2017 7 3 2017 La Higuera 228356.8 2017 4104 4241 968461330
04105 1 146 2017 2 1 2017 3 1424 2017 4 4 2017 5 2 2017 6 8 2017 7 4 2017 Paiguano 205942.1 2017 4105 4497 926121774
04106 1 981 2017 2 26 2017 3 7609 2017 4 27 2017 5 4 2017 6 37 2017 7 9 2017 Vicuña 211431.9 2017 4106 27771 5871675449
04201 1 696 2017 2 75 2017 3 9311 2017 4 20 2017 NA NA NA 6 18 2017 7 5 2017 Illapel 238674.4 2017 4201 30848 7362627007
04202 1 122 2017 2 4 2017 3 3223 2017 4 6 2017 5 6 2017 6 6 2017 7 9 2017 Canela 207933.6 2017 4202 9093 1890740321
04203 1 945 2017 2 14 2017 3 6188 2017 4 25 2017 5 2 2017 6 11 2017 7 2 2017 Los Vilos 255200.4 2017 4203 21382 5456695139
04204 1 775 2017 2 96 2017 3 7732 2017 4 18 2017 5 2 2017 6 24 2017 7 8 2017 Salamanca 242879.5 2017 4204 29347 7127783272
04301 1 5460 2017 2 755 2017 3 27922 2017 4 179 2017 5 14 2017 6 105 2017 7 22 2017 Ovalle 266522.9 2017 4301 111272 29656533187
04302 1 217 2017 2 2 2017 3 4603 2017 4 7 2017 5 3 2017 6 12 2017 7 9 2017 Combarbalá 210409.7 2017 4302 13322 2803077721
04303 1 586 2017 2 14 2017 3 9507 2017 4 29 2017 5 2 2017 6 35 2017 7 5 2017 Monte Patria 211907.9 2017 4303 30751 6516380780
04304 1 213 2017 2 6 2017 3 3471 2017 4 9 2017 5 1 2017 6 25 2017 7 4 2017 Punitaqui 194997.8 2017 4304 10956 2136395349
04305 1 108 2017 NA NA NA 3 1529 2017 4 4 2017 5 1 2017 6 30 2017 NA NA NA Río Hurtado 182027.2 2017 4305 4278 778712384
05101 1 19178 2017 2 13731 2017 3 61208 2017 4 259 2017 5 17 2017 6 2398 2017 7 89 2017 Valparaíso 298720.7 2017 5101 296655 88616992249
05102 1 1525 2017 2 350 2017 3 6690 2017 4 31 2017 NA NA NA 6 50 2017 7 7 2017 Casablanca 312802.7 2017 5102 26867 8404070481
05103 1 4320 2017 2 2589 2017 3 6576 2017 4 72 2017 5 2 2017 6 52 2017 7 4 2017 Concón 318496.3 2017 5103 42152 13425257057
05104 1 45 2017 NA NA NA 3 302 2017 NA NA NA NA NA NA 6 1 2017 NA NA NA NA NA NA NA NA NA
05105 1 1369 2017 2 56 2017 3 4850 2017 4 35 2017 5 3 2017 6 23 2017 7 8 2017 Puchuncaví 288737.2 2017 5105 18546 5354920887
05107 1 2717 2017 2 503 2017 3 6985 2017 4 49 2017 5 2 2017 6 53 2017 7 19 2017 Quintero 316659.1 2017 5107 31923 10108709691
05109 1 23960 2017 2 29228 2017 3 60722 2017 4 259 2017 5 13 2017 6 1061 2017 7 96 2017 Viña del Mar 337006.1 2017 5109 334248 112643604611
05201 1 245 2017 2 4 2017 3 2159 2017 4 7 2017 NA NA NA 6 15 2017 7 1 2017 NA NA NA NA NA NA
05301 1 5144 2017 2 1233 2017 3 13952 2017 4 51 2017 5 6 2017 6 56 2017 7 19 2017 Los Andes 338182.5 2017 5301 66708 22559476922
05302 1 1013 2017 2 31 2017 3 3555 2017 4 23 2017 NA NA NA 6 14 2017 7 1 2017 Calle Larga 245165.4 2017 5302 14832 3636293159


Correlacionamos entre:

\[ \frac{Freq.x}{personas} \ e \ Ingresos\_expandidos \]

1 Tejas o tejuelas de arcilla, metálicas, de cemento, de madera, asfálticas o plásticas

dat1 <- data.frame(df_2017_2$Freq.x/df_2017_2$personas, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

2 Losa hormigón

dat1 <- data.frame(df_2017_2$Freq.y/df_2017_2$personas, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

3 Planchas metálicas de zinc, cobre, etc. o fibrocemento (tipo pizarreño)

dat1 <- data.frame(df_2017_2$Freq.x.1/df_2017_2$personas, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

4 Fonolita o plancha de fieltro embreado

dat1 <- data.frame(df_2017_2$Freq.y.1/df_2017_2$personas, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

5 Paja, coirón, totora o caña

dat1 <- data.frame(df_2017_2$Freq.x.2/df_2017_2$personas, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

6 Materiales precarios (lata, cartón, plásticos, etc.)

dat1 <- data.frame(df_2017_2$Freq.y.2/df_2017_2$personas, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)

7 Sin cubierta sólida de techo

dat1 <- data.frame(df_2017_2$Freq/df_2017_2$personas, df_2017_2$Ingresos_expandidos)
chart.Correlation(dat1)