系統參數設定

Sys.setlocale(category = "LC_ALL", locale = "zh_TW.UTF-8") # 避免中文亂碼
## [1] "zh_TW.UTF-8/zh_TW.UTF-8/zh_TW.UTF-8/C/zh_TW.UTF-8/zh_TW.UTF-8"

安裝需要的packages

packages = c("readr", "data.table", "dplyr","jiebaR", "tidyr", "tidytext", "igraph", "topicmodels", "ggplot2", "stringr", "reshape2","wordcloud2","purrr")
existing = as.character(installed.packages()[,1])
for(pkg in packages[!(packages %in% existing)]) install.packages(pkg)

讀進library

library(readr)
library(data.table)
library(dplyr)
library(jiebaR)
library(tidyr)
library(tidytext)
library(igraph)
library(topicmodels)
library(stringr)
library(ggplot2)
library(reshape2)
library(wordcloud2)
library(purrr)
library(networkD3)

資料基本介紹

  • 資料來源: 文字分析平台收集PTT Gossip版文章、回覆
  • 資料集: 0611_work_articleMetaData.csv、0611_work_articleReviews.csv
  • 關鍵字:分流、異地辦公、居家辦公、居家上班、一休一、各半對調、值2休2、正常上班、輪流上班、分組上班、WFH
  • 排除字:台電、防疫旅館、機師、逃兵、諾富特、建構式數學、呼吸器、騷擾、女權主義者、醫院、科學班、火化、市場分流、分隔島、道路設計、身分證分流、停電、尖石五峰 浪費水、車票、尾數
  • 資料時間:2021-05-01 ~ 2021-06-11

研究動機:隨著Covid-19疫情肆虐、全國宣布三級警戒,各公司紛紛採行相關措施來因應降低員工染疫風險,像是「居家辦公」、「AB組分流」。究竟群眾對於這些因應措施有什麼看法?態度為何?是我們這組想要探討的目標。

1. 資料前處理

在本篇分析中,我們希望建構特定議題的社群網路圖,並分析網路中討論的議題主題

我們需要兩種資料: (1) 每篇文章的主題分類(LDA) (2) 社群網路圖的link和nodes

載入文章和網友回覆資料

posts <- read_csv("/Applications/RStudio.app/Homework14v3/data/0611_work_articleMetaData.csv") # 文章 680筆
count(posts)
## # A tibble: 1 x 1
##       n
##   <int>
## 1   680
reviews <- read_csv("/Applications/RStudio.app/Homework14v3/data/0611_work_articleReviews.csv") # 回覆 32155筆
count(reviews)
## # A tibble: 1 x 1
##       n
##   <int>
## 1 32155
#觀察文章內容,再刪除一些非本主題相關的關鍵字
keywords = c('冰店妹','食藥署','正咩')
toMatch = paste(keywords,collapse="|")
print(toMatch)
## [1] "冰店妹|食藥署|正咩"
posts = posts %>%
  filter(!grepl(toMatch,.$artTitle) == TRUE)

count(posts)# 總文數共章 678筆
## # A tibble: 1 x 1
##       n
##   <int>
## 1   678

從時間軸看討論聲量 > 由此可以看出5/16時,po文數量瞬間飆高。 > 6/6又再一次提高討論

posts %>% 
  mutate(artDate = as.Date(artDate)) %>%
  group_by(artDate) %>%
  summarise(count = n())%>%
  ggplot(aes(artDate,count))+
    geom_line(color="#FF6619",size = 1)+
    geom_point(color="#401A06")

2.LDA 主題分類

(1) LDA 主題分類

文章斷句

# 文章斷句("\n\n"取代成"。")
covid_meta <- posts %>%
mutate(sentence=gsub("[\n]{2,}", "。", sentence))

## 以全形或半形 驚歎號、問號、分號 以及 全形句號 爲依據進行斷句
 covid_sentences <- strsplit(covid_meta$sentence,"[。!;?!?;]")
 
# 將每句句子,與他所屬的文章連結配對起來,整理成一個dataframe
 covid_sentences <- data.frame(
                        artUrl = rep(covid_meta$artUrl,sapply(covid_sentences,length)), 
                          sentence = unlist(covid_sentences)
                       ) %>%
                       filter(!str_detect(sentence, regex("^(\t|\n| )*$"))) 
#                       如果有\t或\n就去掉
 
covid_sentences$sentence <- as.character(covid_sentences$sentence)

文章斷詞

## 文章斷詞
# load covid_lexicon(特定要斷開的詞,像是user_dict)
covid_lexicon <- scan(file = "/Applications/RStudio.app/Homework14v3/dict/covid_lexicon.txt", what=character(),sep='\n',
                   encoding='utf-8',fileEncoding='utf-8')
# load stop words
stop_words <- scan(file = "/Applications/RStudio.app/Homework14v3/dict/stop_words.txt", what=character(),sep='\n',
                   encoding='utf-8',fileEncoding='utf-8')

# 使用默認參數初始化一個斷詞引擎
jieba_tokenizer = worker()

# 使用covid-19字典重新斷詞
new_user_word(jieba_tokenizer, c(covid_lexicon))
## [1] TRUE
# tokenize function
chi_tokenizer <- function(t) {
  lapply(t, function(x) {
         if(nchar(x)>1){
      tokens <- segment(x, jieba_tokenizer)
      tokens <- tokens[!tokens %in% stop_words]
      # 去掉字串長度爲1詞彙
      tokens <- tokens[nchar(tokens)>1]
      return(tokens)
     }
   })
 }
 

# 用剛剛初始化的斷詞器把sentence斷開
# tokens <- covid_sentences %>%
#      mutate(sentence = gsub("[[:punct:]]", "",sentence)) %>%
#        mutate(sentence = gsub("[0-9a-zA-Z]", "",sentence)) %>%
#        unnest_tokens(word, sentence, token=chi_tokenizer) %>%
#       count(artUrl, word) %>% # 計算每篇文章出現的字頻
#     rename(count=n)
# tokens
# save.image(file = "../data/token_result3.rdata")

#斷詞結果可以先存起來,就不用再重跑一次

load("/Applications/RStudio.app/Homework14v3/data/token_result3.rdata")

清理斷詞結果

。根據詞頻,選擇只出現3字以上的字
。整理成url,word,n的格式之後,就可以轉dtm
。文字雲: 可以看出資料內容皆為疫情時公司討論文章

P.S. groupby by之後原本的字詞結構會不見,把詞頻另存在一個reserved_word裡面

freq = 3
# 依據字頻挑字
reserved_word <- tokens %>% 
  group_by(word) %>% 
  count() %>% 
  filter(n > freq) %>% 
  unlist()

covid_removed <- tokens %>% 
  filter(word %in% reserved_word)

# 繪製整體文字雲
tokens_count <- covid_removed %>% 
  group_by(word) %>% 
  summarise(sum = n()) %>% 
  filter(sum>10) %>%
  arrange(desc(sum))
tokens_count %>% wordcloud2()
# 過濾'上班''八卦'字詞
tokens_count_filter <- tokens_count %>%
  filter(.$word != c('上班','八卦')) 
## Warning in .$word != c("上班", "八卦"): 較長的物件長度並非較短物件長度的倍數
tokens_count_filter %>% wordcloud2()
#covid_dtm 裡面 nrow:幾篇文章 ; ncol:幾個字
covid_dtm <- covid_removed %>% cast_dtm(artUrl, word, count) 

(2) 找出最佳主題數

 # ldas = c()
 # topics_1 = c(2,4,6,10,15)
 # for(topic in topics_1){
 #    start_time <- Sys.time()
 #    lda <- LDA(covid_dtm, k = topic, control = list(seed = 2021))
 #    ldas =c(ldas,lda)
 #    print(paste(topic ,paste("topic(s) and use time is ", Sys.time() -start_time)))
 #    save(ldas,file = "../data/ldas_result2.rdata") # 將模型輸出成檔案
 #  }
load("/Applications/RStudio.app/Homework14v3/data/ldas_result2.rdata")

利用perplexity找出主題數量

#library(dplyr)
#library(topicmodels)
#library(purrr)
topics_1 = c(2,4,6,10,15)
data_frame(k = topics_1, perplex = map_dbl(ldas, topicmodels::perplexity)) %>%
  ggplot(aes(k, perplex)) +
  geom_point() +
  geom_line() +
  labs(title = "Evaluating LDA topic models",
       subtitle = "Optimal number of topics (smaller is better)",
       x = "Number of topics",
       y = "Perplexity")
## Warning: `data_frame()` was deprecated in tibble 1.1.0.
## Please use `tibble()` instead.

(2) LDA 主題分析

將剛處理好的dtm放入LDA函式分析

# LDA分成4個主題
covid_lda <- LDA(covid_dtm, k = 4, control = list(seed = 123))

p.s. 。tidy(covid_lda, matrix = “beta”) # 取字 topic term beta值 。tidy(covid_lda, matrix=“gamma”) # 取主題 document topic gamma

取出代表字詞(term)

removed_word = c("上班","有沒有")


# 看各群的常用詞彙
par(family="NotoSansCJKtc-Medium")
tidy(covid_lda, matrix = "beta") %>% # 取出topic term beta值
  filter(! term %in% removed_word) %>% 
  group_by(topic) %>%
  top_n(10, beta) %>% # beta值前10的字
  ungroup() %>%
  mutate(topic = as.factor(topic),
         term = reorder_within(term, beta, topic)) %>%
  ggplot(aes(term, beta, fill = topic)) +  
  theme(text = element_text(family = "Heiti TC Light")) + 
  geom_col(show.legend = FALSE) +
  facet_wrap(~ topic, scales = "free") +
  coord_flip() +
  scale_x_reordered()

> 可以歸納出
topic1、topic 3、topic4内容與我們所在意題比較相關,topic 1與topic 4內容接近 topic 1 = “政府疫情措施、上班族與失業問題討論”
topic 2 = “關於確診等相關議題討論”
topic 3 = “勞工補貼、紓困貸款等議題討論”
topic 4 = “居家辦公與分流等議題探討”

取出代表主題(topic)

每篇文章拿gamma值最大的topic當該文章的topic

# 在tidy function中使用參數"gamma"來取得 theta矩陣
covid_topics <- tidy(covid_lda, matrix="gamma") %>% # document topic gamma
                  group_by(document) %>%
                  top_n(1, wt=gamma)
covid_topics
## # A tibble: 678 x 3
## # Groups:   document [678]
##    document                                                 topic gamma
##    <chr>                                                    <int> <dbl>
##  1 https://www.ptt.cc/bbs/Gossiping/M.1619922088.A.DB8.html     1 0.708
##  2 https://www.ptt.cc/bbs/Gossiping/M.1619937243.A.359.html     1 0.339
##  3 https://www.ptt.cc/bbs/Gossiping/M.1620136776.A.BB7.html     1 0.553
##  4 https://www.ptt.cc/bbs/Gossiping/M.1620323161.A.0D3.html     1 0.515
##  5 https://www.ptt.cc/bbs/Gossiping/M.1620526171.A.235.html     1 0.955
##  6 https://www.ptt.cc/bbs/Gossiping/M.1620605432.A.A62.html     1 0.745
##  7 https://www.ptt.cc/bbs/Gossiping/M.1620711625.A.507.html     1 0.963
##  8 https://www.ptt.cc/bbs/Gossiping/M.1620792189.A.38A.html     1 0.402
##  9 https://www.ptt.cc/bbs/Gossiping/M.1620794365.A.633.html     1 0.560
## 10 https://www.ptt.cc/bbs/Gossiping/M.1620805422.A.0A2.html     1 0.767
## # … with 668 more rows

3.資料內容探索

posts_topic <- merge(x = posts, y = covid_topics, by.x = "artUrl", by.y="document")

# 看一下各主題在說甚麼
set.seed(123)
posts_topic %>% # 主題一
  filter(topic==1) %>%
  select(artTitle) %>%
  unique() %>%
  sample_n(10)
##                                        artTitle
## 1               Re:[問卦]租屋族失業了會回家鄉嗎
## 2   [問卦]上班擠火車不危險vs連假返鄉搭火車危險?
## 3                  [問卦]一般上班族是不是很絕望
## 4              [問卦]端午節連假該上班可不可行?
## 5                 [問卦]端午節上班薪水有2倍嗎??
## 6                [問卦]上班是不是會上到腦筋壞掉
## 7                              [問卦]報復性上班
## 8       [問卦]今天在哭上班危險的你為何不辭工作?
## 9  [問卦]病毒看到上班族就繞道這個笑話政府點解?
## 10                [問卦]失業缺錢還不主動找工作?
posts_topic %>% # 主題二
  filter(topic==2) %>%
  select(artTitle) %>%
  unique() %>%
  sample_n(10)
##                                                   artTitle
## 1              [新聞]獨/新光三越站前店3櫃姐確診!上班20天
## 2               [新聞]出門上班注意! 蔡英文分享防疫指引:
## 3               [新聞]中和某工業區傳確診老闆下令「照常上班
## 4                         [問卦]在醫院上班真的會被歧視嗎?
## 5             [新聞]最夯台劇真實上演!23歲消防員親揭上班24
## 6         [新聞]北畜分流居家上班經理遭投訴未依規定在家辦公
## 7                 Re:[問卦]聽說武漢肺炎上班時間傳染性為0?
## 8             [新聞]確診者在北車某大樓上班 柯文哲突脫口:
## 9  [新聞]防疫升級!王雪紅急令HTC啟動在家上班僅保留最低人力
## 10              [新聞]家庭防疫補貼拚上路 紓困「六寶爸媽」
posts_topic %>% # 主題三
  filter(topic==3) %>%
  select(artTitle) %>%
  unique() %>%
  sample_n(10)
##                                         artTitle
## 1        [問卦]申請紓困貸款,要108年度50萬以下?
## 2                           勞工紓困方案的八掛?
## 3    [新聞]快訊/新北紓困方案出爐!「月收低於3.9
## 4     [新聞]10萬勞工紓困貸款下周起跑新增排富門檻
## 5  Re:[新聞]10萬勞工紓困貸款下周起跑新增排富門檻
## 6       [問卦]有沒有紓困貸款是在雪上加霜的八卦?
## 7                   [問卦]紓困貸款!行員很慘!!
## 8           [問卦]如果紗路因為疫情失業能活多久?
## 9                   [問卦]居家辦公算失業嗎???
## 10    [問卦]現在疫情會不會造成以後很多人失業呢??
posts_topic %>% # 主題四
  filter(topic==4) %>%
  select(artTitle) %>%
  unique() %>%
  sample_n(10)
##                                      artTitle
## 1              [問卦]居家上班無法專心怎麼辦?
## 2          [問卦]慟!居家一個禮拜明天要上班了
## 3                      [問卦]誰還沒有在家上班
## 4              [問卦]週一大家還是在家上班嗎?
## 5      [問卦]當兵收假跟上班收假哪個比較痛苦?
## 6    [問卦]早上上班機車壞了機車行沒開怎麼處理
## 7                [問卦]在家上班可以打手槍嗎??
## 8            [問卦]有人週一也會照常上班的嗎?
## 9  [問卦]明天台北新北沒分流要到公司上班的進來
## 10 Re:[問卦]禁止室內5人以上聚會但可以上班課?

過濾第二篇文章

removed_topics <- posts_topic

我們把討論焦點放在疫情與上班影響的討論上,從主題分布大概可以看到有三類討論:

主題一: 看到關鍵字「端午」、「火車」,主要與政府因應連假調整上班相關政策等相關討論,如「上班擠火車不危險vs連假返」、「端午節上班薪水有2倍嗎??」、「端午節連假該上班可不可行? 」等議題。

主題三: 主要與紓困相關議題討論,如「勞工紓困方案的八掛?」、「居家辦公算失業嗎???」等議題。

主題四: 大部分是針對WFH在家上班等議題討論,如「居家上班無法專心怎麼辦? 」、「誰還沒有在家上班」。

日期主題分布

畫出每天topic的分布,主題4比例為最高,主題2則是在特定時間點比例較高,隨著時間主題1與主題3比例逐漸升高。

posts_topic %>%
  mutate(artDate = as.Date(artDate)) %>% 
  group_by(artDate,topic) %>%
  summarise(sum =sum(topic)) %>%
  ggplot(aes(x= artDate,y=sum,fill=as.factor(topic))) +
  geom_col(position="fill") 
## `summarise()` has grouped output by 'artDate'. You can override using the `.groups` argument.

posts_topic %>%
  group_by(artCat,topic) %>%
  summarise(sum = n())  %>%
  ggplot(aes(x= artCat,y=sum,fill=as.factor(topic))) +
  geom_col(position="dodge") 
## `summarise()` has grouped output by 'artCat'. You can override using the `.groups` argument.

#write.csv(posts_topic,"posts_topic.csv",row.names = FALSE)

4. 社群網路圖

資料合併

# 針對主題1、3、4的文章和留言
reviews <- reviews %>%
      select(artUrl, cmtPoster, cmtStatus, cmtContent)
posts_Reviews <- merge(x = posts, y = reviews, by = "artUrl")

# 把文章和topic
posts_Reviews <- merge(x = posts_Reviews, y = covid_topics, by.x = "artUrl", by.y="document")
head(posts_Reviews,3)
##                                                     artUrl
## 1 https://www.ptt.cc/bbs/Gossiping/M.1619854261.A.B1D.html
## 2 https://www.ptt.cc/bbs/Gossiping/M.1619854261.A.B1D.html
## 3 https://www.ptt.cc/bbs/Gossiping/M.1619854261.A.B1D.html
##                           artTitle    artDate  artTime artPoster    artCat
## 1 [問卦]有沒有上班不累的八卦(神人) 2021-05-01 07:30:55  simoncha Gossiping
## 2 [問卦]有沒有上班不累的八卦(神人) 2021-05-01 07:30:55  simoncha Gossiping
## 3 [問卦]有沒有上班不累的八卦(神人) 2021-05-01 07:30:55  simoncha Gossiping
##   commentNum push boo
## 1          4    1   1
## 2          4    1   1
## 3          4    1   1
##                                                                                                               sentence
## 1 上班就想著下班\n\n除非有一個好理由\n\n讓上班是實現夢想不是為錢\nhttps://sendvid.com/nulxmtcw\n順便問一下女主角是誰\n
## 2 上班就想著下班\n\n除非有一個好理由\n\n讓上班是實現夢想不是為錢\nhttps://sendvid.com/nulxmtcw\n順便問一下女主角是誰\n
## 3 上班就想著下班\n\n除非有一個好理由\n\n讓上班是實現夢想不是為錢\nhttps://sendvid.com/nulxmtcw\n順便問一下女主角是誰\n
##   cmtPoster cmtStatus                cmtContent topic    gamma
## 1    frommr        推 :財富自由上班上身體健康ㄉ     4 0.934135
## 2 deep77092        →   :這我家巷尾的女店員ㄚ:D     4 0.934135
## 3      O300        噓                 :樓下幫點     4 0.934135

取出 cmtPoster(回文者)、artPoster(發文者)、artUrl(文章連結) 三個欄位

link <- posts_Reviews %>% select(cmtPoster, artPoster, artUrl)
head(link,3)
##   cmtPoster artPoster                                                   artUrl
## 1    frommr  simoncha https://www.ptt.cc/bbs/Gossiping/M.1619854261.A.B1D.html
## 2 deep77092  simoncha https://www.ptt.cc/bbs/Gossiping/M.1619854261.A.B1D.html
## 3      O300  simoncha https://www.ptt.cc/bbs/Gossiping/M.1619854261.A.B1D.html

基本網路圖

建立網路關係

reviewNetwork <- graph_from_data_frame(d=link, directed=T)
reviewNetwork
## IGRAPH f59b2e9 DN-- 12895 31148 -- 
## + attr: name (v/c), artUrl (e/c)
## + edges from f59b2e9 (vertex names):
##  [1] frommr    ->simoncha   deep77092 ->simoncha   O300      ->simoncha  
##  [4] i7851     ->simoncha   hiyuy     ->s523698    somanyee  ->s523698   
##  [7] somanyee  ->s523698    johnwu    ->andrew5106 Merkle    ->andrew5106
## [10] KobeRice  ->andrew5106 wtfman    ->andrew5106 XDDXDD    ->andrew5106
## [13] railman   ->andrew5106 linda17a3 ->andrew5106 c88tm     ->andrew5106
## [16] invidia   ->andrew5106 zephyr105 ->andrew5106 GetMoney  ->andrew5106
## [19] akumo     ->andrew5106 cwh0105   ->kwinner    hidewin200->parkinque 
## [22] apcr1115  ->parkinque  kc        ->parkinque  lpsobig   ->parkinque 
## + ... omitted several edges

如果沒有經過篩選,顯示出來的資訊會非常的密集,較難理解,所以需要再一次篩選,讓關係資訊更容易被閱讀.

 #畫出網路圖(密集恐懼警告)
  plot(reviewNetwork)

  plot(reviewNetwork, vertex.size=2, edge.arrow.size=.2,vertex.label=NA)

資料篩選

資料篩選的方式: + 文章:文章日期、留言數(commentNum) + link、node:degree

# 看一下留言數大概都多少(方便後面篩選)
posts %>%
#  filter(commentNum<100) %>%
  ggplot(aes(x=commentNum)) + geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

依據發文數或回文數篩選post和review

## 帳號發文篇數
 post_count = posts %>%
   group_by(artPoster) %>%
   summarise(count = n()) %>%
   arrange(desc(count)) 
 post_count
## # A tibble: 570 x 2
##    artPoster    count
##    <chr>        <int>
##  1 miss80423        7
##  2 Bastille         4
##  3 foreverthink     4
##  4 ptt987654321     4
##  5 Ram5566          4
##  6 zxc2331189       4
##  7 AgentSkye56      3
##  8 avexgroup        3
##  9 Darvish903       3
## 10 freertos         3
## # … with 560 more rows
## 帳號回覆總數
 review_count = reviews %>%
   group_by(cmtPoster) %>%
   summarise(count = n()) %>%
   arrange(desc(count)) 
 review_count
## # A tibble: 12,933 x 2
##    cmtPoster    count
##    <chr>        <int>
##  1 IBIZA          223
##  2 plus203ft      177
##  3 KCKCLIN        137
##  4 LoveMakeLove   101
##  5 babyMclaren     84
##  6 NaoGaTsu        76
##  7 ev331           70
##  8 zakijudelo      68
##  9 tudou5566       67
## 10 BaRanKa         60
## # … with 12,923 more rows
## 發文者
 poster_select <- post_count %>% filter(count >= 2)
 posts <- posts %>%  filter(posts$artPoster %in% poster_select$artPoster)
 
## 回文者
 reviewer_select <- review_count %>%  filter(count >= 20)
 reviews <- reviews %>%  filter(reviews$cmtPoster %in% reviewer_select$cmtPoster)
# 檢視參與人數
length(unique(posts_Reviews$artPoster)) # 發文者數量 569
## [1] 569
length(unique(posts_Reviews$cmtPoster)) # 回文者數量 12596
## [1] 12596
allPoster <- c(posts_Reviews$artPoster, posts_Reviews$cmtPoster) # 總參與人數 12895
length(unique(allPoster))
## [1] 12895

標記所有出現過得使用者

。poster:只發過文、發過文+留過言 。replyer:只留過言

userList <- data.frame(user=unique(allPoster)) %>%
              mutate(type=ifelse(user%in%posts$artPoster, "poster", "replyer"))
head(userList,3)
##         user    type
## 1   simoncha replyer
## 2    s523698 replyer
## 3 andrew5106 replyer

以日期篩選社群

5/16發文量大增,我們挑出當天的文章和回覆看看

link <- posts_Reviews %>%
      group_by(cmtPoster, artUrl) %>% 
      filter(n()>3) %>% 
      filter(commentNum > 50) %>%
      filter(artCat=="Gossiping") %>% 
      filter(artDate == as.Date('2021-05-16')) %>%
      select(cmtPoster, artPoster, artUrl) %>% 
      unique()
link
## # A tibble: 42 x 3
## # Groups:   cmtPoster, artUrl [42]
##    cmtPoster    artPoster artUrl                                                
##    <chr>        <chr>     <chr>                                                 
##  1 stevelovkaka lynos     https://www.ptt.cc/bbs/Gossiping/M.1621133634.A.911.h…
##  2 fransiceyho  lynos     https://www.ptt.cc/bbs/Gossiping/M.1621133634.A.911.h…
##  3 Hunterrr     lynos     https://www.ptt.cc/bbs/Gossiping/M.1621133634.A.911.h…
##  4 babyMclaren  lynos     https://www.ptt.cc/bbs/Gossiping/M.1621133634.A.911.h…
##  5 babyMclaren  clessea   https://www.ptt.cc/bbs/Gossiping/M.1621145865.A.666.h…
##  6 KCKCLIN      jkf790207 https://www.ptt.cc/bbs/Gossiping/M.1621150985.A.8F4.h…
##  7 pttnew       judas666  https://www.ptt.cc/bbs/Gossiping/M.1621154123.A.0CD.h…
##  8 tonyparker18 judas666  https://www.ptt.cc/bbs/Gossiping/M.1621154123.A.0CD.h…
##  9 magic1104    judas666  https://www.ptt.cc/bbs/Gossiping/M.1621154123.A.0CD.h…
## 10 babyMclaren  judas666  https://www.ptt.cc/bbs/Gossiping/M.1621154123.A.0CD.h…
## # … with 32 more rows

篩選在link裡面有出現的使用者

filtered_user <- userList %>%
          filter(user%in%link$cmtPoster | user%in%link$artPoster) %>%
          arrange(desc(type))
head(filtered_user,3)
##        user    type
## 1     lynos replyer
## 2 jkf790207 replyer
## 3    swommy replyer

這邊要篩選link中有出現的使用者,如果用沒篩過的userList(igraph中graph_from_data_frame的v參數吃的那個東西),圖上就會出現沒有在link裡面的nodes,圖片就會變得沒有意義

p.s.想要看會變怎麼樣的人可以跑下面的code

## 警告!有密集恐懼症的人請小心使用
 v = userList
reviewNetwork <- graph_from_data_frame(d=link, v=userList, directed=T)
plot(reviewNetwork, vertex.size=3, edge.arrow.size=0.3,vertex.label=NA)

因爲圖片箭頭有點礙眼,所以這裏我們先把關係的方向性拿掉,減少圖片中的不必要的資訊 set.seed 因為igraph呈現的方向是隨機的

set.seed(487)
# v=filtered_user

reviewNetwork = degree(reviewNetwork) > 2
reviewNetwork <- graph_from_data_frame(d=link, v=filtered_user, directed=F)
plot(reviewNetwork, vertex.size=3, edge.arrow.size=0.3,vertex.label=NA)

加上nodes的顯示資訊

用使用者的身份來區分點的顏色 + poster:gold(有發文) + replyer:lightblue(只有回覆文章)

set.seed(487)
V(reviewNetwork)$color <- ifelse(V(reviewNetwork)$type=="poster", "gold", "lightblue")
plot(reviewNetwork, vertex.size=3, edge.arrow.size=0.1,vertex.label=NA)

可以稍微看出圖中的點(人)之間有一定的關聯,不過目前只有單純圖形我們無法分析其中的內容。
因此以下我們將資料集中的資訊加到我們的圖片中。

為點加上帳號名字,用degree篩選要顯示出的使用者,以免圖形被密密麻麻的文字覆蓋

filter_degree = 20
set.seed(123)

# 設定 node 的 label/ color
labels <- degree(reviewNetwork) # 算出每個點的degree
V(reviewNetwork)$label <- names(labels)
V(reviewNetwork)$color <- ifelse(V(reviewNetwork)$type=="poster", "gold", "lightblue")

plot(
  reviewNetwork, 
  vertex.size=3, 
  edge.width=3, 
  vertex.label.dist=1,
  vertex.label=ifelse(degree(reviewNetwork) > filter_degree, V(reviewNetwork)$label, NA),vertex.label.font=2)

我們可以看到基本的使用者關係,但是我們希望能夠將更進階的資訊視覺化。
例如:使用者經常參與的文章種類,或是使用者在該社群網路中是否受到歡迎。

以主題篩選社群

  • 抓link

從挑選出2021-05-01至2021-06-11期間,選擇討論發文數量最多的2021-05-16當天的文章,篩選一篇文章回覆3次以上者,且文章留言數多於50則,文章主題則歸類為主題1(政府疫情措施、上班族與失業問題)、主題3(勞工補貼、紓困貸款等議題)與主題4(勞工補貼、紓困貸款等議題)者,欄位只取:cmtPoster(回覆者),artPoster(發文者),artUrl(文章連結),topic(主題)等4項。

# link <- posts_Reviews %>%
#       group_by(cmtPoster, artUrl) %>% 
#       filter(n()>3) %>% 
#       filter(commentNum > 50) %>%
#       filter(artCat=="Gossiping") %>% #PTT/Gossiping(八卦版)
#       filter(artDate == as.Date('2021-05-16')) %>%
#       filter(topic == 1 | topic == 3|topic == 4) %>% 
#       select(cmtPoster, artPoster, artUrl, topic) %>% 
#       unique()
# link

link <- posts_Reviews %>%
      group_by(cmtPoster, artUrl) %>% 
      filter(n()>3) %>% 
      filter(commentNum > 50) %>%
      filter(artCat=="Gossiping") %>% #PTT/Gossiping(八卦版)
      filter(artDate == as.Date('2021-05-16')) %>%
      filter(topic == 1 | topic == 3| topic == 4) %>% 
      select(cmtPoster, artPoster, artUrl, topic) %>% 
      unique()
link
## # A tibble: 33 x 4
## # Groups:   cmtPoster, artUrl [33]
##    cmtPoster    artPoster artUrl                                           topic
##    <chr>        <chr>     <chr>                                            <int>
##  1 stevelovkaka lynos     https://www.ptt.cc/bbs/Gossiping/M.1621133634.A…     1
##  2 fransiceyho  lynos     https://www.ptt.cc/bbs/Gossiping/M.1621133634.A…     1
##  3 Hunterrr     lynos     https://www.ptt.cc/bbs/Gossiping/M.1621133634.A…     1
##  4 babyMclaren  lynos     https://www.ptt.cc/bbs/Gossiping/M.1621133634.A…     1
##  5 babyMclaren  clessea   https://www.ptt.cc/bbs/Gossiping/M.1621145865.A…     4
##  6 KCKCLIN      jkf790207 https://www.ptt.cc/bbs/Gossiping/M.1621150985.A…     4
##  7 pttnew       judas666  https://www.ptt.cc/bbs/Gossiping/M.1621154123.A…     1
##  8 tonyparker18 judas666  https://www.ptt.cc/bbs/Gossiping/M.1621154123.A…     1
##  9 magic1104    judas666  https://www.ptt.cc/bbs/Gossiping/M.1621154123.A…     1
## 10 babyMclaren  judas666  https://www.ptt.cc/bbs/Gossiping/M.1621154123.A…     1
## # … with 23 more rows
  • 抓nodes 在所有的使用者裡面,篩選link中有出現的使用者
filtered_user <- userList %>%
          filter(user%in%link$cmtPoster | user%in%link$artPoster) %>%
          arrange(desc(type))
head(filtered_user,3)
##        user    type
## 1     lynos replyer
## 2 jkf790207 replyer
## 3 pichu5566 replyer

使用者經常參與的文章種類

filter_degree = 17

# 建立網路關係
reviewNetwork <- graph_from_data_frame(d=link, v=filtered_user, directed=F)

# 依據使用者身份對點進行上色
labels <- degree(reviewNetwork)
V(reviewNetwork)$label <- names(labels)
V(reviewNetwork)$color <- ifelse(V(reviewNetwork)$type=="poster", "gold", "lightblue")

print(E(reviewNetwork)$topic)
##  [1] 1 1 1 1 4 4 1 1 1 1 1 1 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
# 依據回覆發生的文章所對應的主題,對他們的關聯線進行上色
E(reviewNetwork)$color <- if (E(reviewNetwork)$topic == "1"){ "palevioletred"}  else {"lightgreen"}
## Warning in if (E(reviewNetwork)$topic == "1") {: 條件的長度 > 1,因此只能用其第
## 一元素
# 畫出社群網路圖(degree>7的才畫出來)
set.seed(5432)
plot(reviewNetwork, vertex.size=3, edge.width=3, vertex.label.dist=1,
     vertex.label=ifelse(degree(reviewNetwork) > filter_degree, V(reviewNetwork)$label, NA),vertex.label.font=2)

# 加入標示
par(family="STKaiti")
legend("bottomright", c("發文者","回覆者"), pch=21, 
  col="#777777", pt.bg=c("gold","lightblue"), pt.cex=1, cex=1)
legend("topleft", c("topic1","topic3","topic4"), 
       col=c("palevioletred", "lightgreen","blue"), lty=1, cex=1)

使用者是否受到歡迎

PTT的回覆有三種,推文、噓文、箭頭,我們只要看推噓就好,因此把箭頭清掉,這樣資料筆數較少,所以我們把篩選的條件放寬一些。

filter_degree = 7 # 使用者degree

# # 過濾留言者對發文者的推噓程度
# link <- posts_Reviews %>%
#       filter(artCat=="Gossiping") %>% 
#       filter(commentNum > 30) %>%
#       filter(cmtStatus!="→") %>%
#       group_by(cmtPoster, artUrl) %>%
#       filter( n() > 1) %>%
#       filter(artDate == as.Date('2021-05-16')) %>%
#       filter(topic == 1 | topic == 4) %>% 
#       ungroup() %>% 
#       select(cmtPoster, artPoster, artUrl, cmtStatus,artDate) %>% 
#       unique()
# link

# 過濾留言者對發文者的推噓程度
link <- posts_Reviews %>%
      filter(artCat=="Gossiping") %>% 
      filter(commentNum > 20) %>%
      filter(cmtStatus!="→") %>%
      group_by(cmtPoster, artUrl) %>%
      filter( n() > 1) %>%
      filter(artDate == as.Date('2021-06-06')) %>%
      filter(topic == 1 | topic == 3| topic == 4) %>% 
      ungroup() %>% 
      select(cmtPoster, artPoster, artUrl, cmtStatus,artDate) %>% 
      unique()
link
## # A tibble: 85 x 5
##    cmtPoster   artPoster artUrl                             cmtStatus artDate   
##    <chr>       <chr>     <chr>                              <chr>     <date>    
##  1 jileen      AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 推        2021-06-06
##  2 yukito76113 AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 噓        2021-06-06
##  3 sr20detll   AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 噓        2021-06-06
##  4 cosmos506   AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 噓        2021-06-06
##  5 kklighter   AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 噓        2021-06-06
##  6 kklighter   AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 推        2021-06-06
##  7 stinking    AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 噓        2021-06-06
##  8 neilss0088  AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 推        2021-06-06
##  9 m4su6747    AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 推        2021-06-06
## 10 cloudpart2  AJAPPLE   https://www.ptt.cc/bbs/Gossiping/… 推        2021-06-06
## # … with 75 more rows
# 接下來把網路圖畫出來,跟前面做的事都一樣,因此不再細述

# 篩選link中有出現的使用者
filtered_user <- userList %>%
          filter(user%in%link$cmtPoster | user%in%link$artPoster) %>%
          arrange(desc(type))

# 建立網路關係
reviewNetwork <- graph_from_data_frame(d=link, v=filtered_user, directed=F)

# 依據使用者身份對點進行上色
labels <- degree(reviewNetwork)
V(reviewNetwork)$label <- names(labels)
V(reviewNetwork)$color <- ifelse(V(reviewNetwork)$type=="poster", "gold", "lightblue")


# 依據回覆發生的文章所對應的主題,對他們的關聯線進行上色
E(reviewNetwork)$color <- ifelse(E(reviewNetwork)$cmtStatus == "推", "lightgreen", "palevioletred")

# 畫出社群網路圖
set.seed(5432)
plot(reviewNetwork, vertex.size=2, edge.width=3, vertex.label.dist=1,
     vertex.label=ifelse(degree(reviewNetwork) > filter_degree, V(reviewNetwork)$label, NA),vertex.label.font=2)

# 加入標示
par(family="STKaiti")
legend("bottomright", c("發文者","回文者"), pch=21,
  col="#777777", pt.bg=c("gold","lightblue"), pt.cex=1, cex=1)
legend("topleft", c("推文","噓文"), 
       col=c("lightgreen","palevioletred"), lty=1, cex=1)

領袖候選人為DDDDRR、smallstitch等位 由上圖可以發現本次幾乎都是推文與噓文皆有,而DDDDRR則以推文居多取勝。

5.領袖候選人的留言文字雲

candidates <- c('smallstitch','AJAPPLE','DDDDRR')

can_data <- posts_Reviews %>%
  filter(artDate == as.Date('2021-06-06')) %>%
  filter(topic == 1 | topic == 3| topic == 4) %>%
  filter(.$artPoster %in% candidates) 

# 將每句句子,與他所屬的文章連結配對起來,整理成一個dataframe
can_sentences <- data.frame(
                        artPoster = rep(can_data$artPoster,sapply(can_data$cmtContent,length)), 
                          cmtContent = unlist(can_data$cmtContent)
                       ) 
 
can_sentences$cmtContent <- as.character(can_sentences$cmtContent)  

# 使用默認參數初始化一個斷詞引擎
jieba_tokenizer = worker()

# 使用covid-19字典重新斷詞
new_user_word(jieba_tokenizer, c(covid_lexicon))
## [1] TRUE
# tokenize function
chi_tokenizer <- function(t) {
  lapply(t, function(x) {
         if(nchar(x)>1){
      tokens <- segment(x, jieba_tokenizer)
      tokens <- tokens[!tokens %in% stop_words]
      # 去掉字串長度爲1詞彙
      tokens <- tokens[nchar(tokens)>1]
      return(tokens)
     }
   })
 }

# 用剛剛初始化的斷詞器把content斷開
# can_tokens <- can_sentences %>%
#     mutate(cmtContent = gsub("[[:punct:]]", "",cmtContent)) %>%
#       mutate(cmtContent = gsub("[0-9a-zA-Z]", "",cmtContent)) %>%
#       unnest_tokens(word, cmtContent, token=chi_tokenizer) %>%
#     count(artPoster, word) %>% # 計算每篇文章出現的字頻
#   rename(count=n)
# 
# save.image(file = "../data/can_token_result.rdata")

load("../data/can_token_result.rdata")

AJAPPLE留言的文字雲

AJAPPLE_tokens_count <- can_tokens%>%
  filter(.$artPoster=='AJAPPLE') %>%
  group_by(word) %>% 
  summarise(sum = sum(count)) %>% 
  filter(sum>1) %>%
  filter(word != '台灣') %>%
  arrange(desc(sum))

AJAPPLE_tokens_count %>% wordcloud2() 

smallstitch留言的文字雲

smallstitch_tokens_count <- can_tokens%>%
  filter(.$artPoster=='smallstitch') %>%
  group_by(word) %>% 
  summarise(sum = sum(count)) %>% 
  filter(sum>1) %>%
  filter(word != '上班') %>%
  arrange(desc(sum))
smallstitch_tokens_count %>% wordcloud2()

DDDDRR留言的文字雲

DDDDRR_tokens_count <- can_tokens%>%
  filter(.$artPoster=='DDDDRR') %>%
  group_by(word) %>% 
  summarise(sum = sum(count)) %>% 
  filter(sum>1) %>%
  filter(word != '上班') %>%
  arrange(desc(sum))
#DDDDRR_tokens_count %>% wordcloud2()
wordcloud2(DDDDRR_tokens_count)  

## 總結 >>1.有關八卦版針對疫情期間上班模式的探討 主要分為四種風向 1.(政府疫情措施 上班失業討論) 2.(確診新聞相關討論) 3.(勞工補貼 紓困貸款) 4.(居家辦公/分流議題)

2.討論風向 隨著時間(政府疫情措施 上班失業討論)以及(勞工補貼 紓困貸款)比例一直持續變化,有逐漸升高趨勢,討論(確診新聞相關討論)則在5月初及6月1號較有人討論,但主要風向還是以討論(居家辦公/分流議題)為主

因資料選取時間僅有40餘日,只要幾篇回覆量高的貼文,就有機會成為社群中心,在八卦版上,以報導討論為主的意見領袖有:[AJAPPLE] ( https://www.ptt.cc/bbs/Gossiping/M.1623022835.A.AE3.html ),回覆推噓皆有,以推文居多;調侃批評部分則有:[DDDDRR] ( https://www.ptt.cc/bbs/Gossiping/M.1623022835.A.AE3.html ),網友大多持正面推文為主。

補充:networkD3

Warning: package ‘networkD3’ was built under R version 4.0.5

links = link
nodes = filtered_user
nodes$id = 0:(length(nodes$user) - 1)

# 整理資料格式
nodes_complete <- data.frame(nodeID = unique(c(links$cmtPoster, links$artPoster)))
nodes_complete$group <- nodes$type[match(nodes_complete$nodeID, nodes$user)]
links$source <- match(links$cmtPoster, nodes_complete$nodeID) - 1
links$target <- match(links$artPoster, nodes_complete$nodeID) - 1

# 畫圖
library(networkD3)
forceNetwork(Links = links, Nodes = nodes_complete, Source = "source", 
             Target = "target", NodeID = "nodeID", Group = "group", 
             opacity = 0.8, fontSize = 10, zoom = TRUE,legend = TRUE, opacityNoHover = TRUE,
             
             colourScale = "d3.scaleOrdinal(d3.schemeCategory10);",
             linkColour = ifelse(links$cmtStatus == "推", "palegreen","lightcoral")  # 設定推噓顏色
             )
## Links is a tbl_df. Converting to a plain data frame.
## Links is a tbl_df. Converting to a plain data frame.
### Code Here ###