knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble 3.0.4 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(knitr)
#reading in merged Suspensions File -- with only the columns needed
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
filesus <- "Suspensions.csv"
getwd()
## [1] "C:/Users/BlaiseSevier/Desktop/R Work"
sus.sch <- read.csv(filesus)
### How to set your working directory
## In quotation marks, ("C: /Users/BlaiseSevier/Desktop/R Work")
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
###NEW Enrol Numbers
els.k12 <- 5296951
tot.el.f <- 2435176
tot.el.m <- 2861775
nonel.k12 <- 45625450
tot.nonel.f <- 22315711
tot.nonel.m <- 23309739
For more information about the school form see: https://www2.ed.gov/about/offices/list/ocr/docs/2017-18-crdc-school-form.pdf.
#Code to susnge the -9s to 0s
sus.sch[sus.sch==-8]<-0
sus.sch[sus.sch==-9]<-0
sus.sch[sus.sch==-8]<-0
sus.sch[sus.sch==-6]<-0
sus.sch[sus.sch==-5]<-0
sus.sch[sus.sch==-3]<-0
# Reserve code value
# Definition
# -3 | Skip Logic Failure
# -5 | Action Plan
# -6 | Force Certified
# -8 | EDFacts Missing Data
# -9 | Not Applicable / Skipped
# -11 | Suppressed Data
TOT_DISCWODIS_SINGOOS_M Total number of students without disabilities who received only one out-of-school suspension: Calculated Male Total TOT_DISCWODIS_SINGOOS_F Total number of students without disabilities who received only one out-of-school suspension: Calculated Female Total SCH_DISCWODIS_SINGOOS_LEP_M Students without disabilities who received only one out-of-school suspension: LEP Male SCH_DISCWODIS_SINGOOS_SCH_DISCWODIS_SINGOOS_LEP_F Students without disabilities who received only one out-of-school suspension: LEP Female
#Computes the total number of a non-English Learner male students Suspensions
#dat$NonELM<- (dat$TOT_ENR_M - dat$TOT_LEPENR_M)
sus.sch$NonELM <- (sus.sch$TOT_DISCWODIS_SINGOOS_M - sus.sch$SCH_DISCWODIS_SINGOOS_LEP_M)
sum(sus.sch$NonELM)
## [1] 709756
#There are 709,756 Non-English Learner Male Students Suspensions
#Total female non-EL
#dat$NonELF <-dat$TOT_ENR_F-dat$TOT_LEPENR_F
sus.sch$NonELF <- (sus.sch$TOT_DISCWODIS_SINGOOS_F - sus.sch$SCH_DISCWODIS_SINGOOS_LEP_F)
sum(sus.sch$NonELF)
## [1] 374897
#There are 374,897 Non-English Learner Females Enrolled Suspensions .
#total non EL
#dat$NonEL<-dat$NonELF + dat$NonELM
sus.sch$NonEL <- sus.sch$NonELF + sus.sch$NonELM
non.el.sus <- sum(sus.sch$NonEL)
non.el.sus
## [1] 1084653
#There are 1,084,653 Non-English Learners Enrolled Suspensions
#Total Lep Male Suspensions
#dat$ELMGT <- dat$SCH_GTENR_SCH_DISCWODIS_SINGOOS_LEP_M
sus.sch$ELM.sus <- sus.sch$SCH_DISCWODIS_SINGOOS_LEP_M
sum(sus.sch$SCH_DISCWODIS_SINGOOS_LEP_M)
## [1] 67462
sum(sus.sch$ELM.sus)
## [1] 67462
## There is 67,462 English Learner Males Suspensions
#Total LEP Female in GT
#dat$ELFGT <- dat$SCH_GTENR_SCH_DISCWODIS_SINGOOS_LEP_F
sus.sch$ELF.sus <- sus.sch$SCH_DISCWODIS_SINGOOS_LEP_F
sum(sus.sch$ELF.sus)
## [1] 26376
## There are 26,376 EL Females Suspensions
#dat$ELEnrol <- dat$TOT_LEPENR_M + dat$TOT_LEPENR_F
sus.sch$ELEnrolsus<- sus.sch$ELM.sus + sus.sch$ELF.sus
els.sus <- sum(sus.sch$ELEnrolsus)
sum(els.sus)
## [1] 93838
## There is 93,838 English learners Suspensions
#Percentage of ELs in Suspensions in K-12 1.77%
round(els.sus/els.k12*100,2)
## [1] 1.77
#Percentage of non-ELs Suspensions in K-12 is 2.38%
round(non.el.sus/nonel.k12*100,2)
## [1] 2.38
#all els
#Percentage of ELs in Suspensions in K-12 1%
round(els.sus/els.k12*100,2)
## [1] 1.77
#Females 1.08% of al English Learner Females recieved only one out of school suspension
el.sus.f <- sum(sus.sch$ELF.sus)
el.sus.f/tot.el.f*100
## [1] 1.083125
#male els: 2.3% of EL males recieved one out of school suspension
el.sus.m <- sum(sus.sch$ELM.sus)
el.sus.m/tot.el.m*100
## [1] 2.357348
#Percentage of non-ELs Suspensions in K-12 is 2.38%
round(non.el.sus/nonel.k12*100,2)
## [1] 2.38
#NonEL Females 1.6% of non-English learner Females are suspended one out-of-school
non.el.sus.f <-sum(sus.sch$NonELF)
non.el.sus.f/tot.nonel.f*100
## [1] 1.679969
#NonEL males 3% of non-English learner Males are suspended one out-of-school
non.el.sus.m <-sum(sus.sch$NonELM)
non.el.sus.m/tot.nonel.m*100
## [1] 3.04489
TOT_DISCWODIS_MULTOOS_M Total number of students without disabilities who received more than one out-of-school suspension: Calculated Male Total TOT_DISCWODIS_MULTOOS_F Total number of students without disabilities who received more than one out-of-school suspension: Calculated Female Total SCH_DISCWODIS_MULTOOS_LEP_M Students without disabilities who received more than one out-of-school suspension: LEP Male SCH_DISCWODIS_MULTOOS_LEP_F Students without disabilities who received more than one out-of-school suspension: LEP Female
#Computes the total number of a non-English Learner male students Suspensions
#dat$NonELM<- (dat$TOT_ENR_M - dat$TOT_LEPENR_M)
sus.sch$NonELM_2_sus <- (sus.sch$TOT_DISCWODIS_MULTOOS_M - sus.sch$SCH_DISCWODIS_MULTOOS_LEP_M)
sum(sus.sch$NonELM_2_sus)
## [1] 403285
#There are 403,285 Non-English Learner Male Students two or more Suspensions
#Total female non-EL
#dat$NonELF <-dat$TOT_ENR_F-dat$TOT_LEPENR_F
sus.sch$NonELF_2_sus <- (sus.sch$TOT_DISCWODIS_SINGOOS_F - sus.sch$SCH_DISCWODIS_MULTOOS_LEP_F)
sum(sus.sch$NonELF_2_sus)
## [1] 391735
#There are 391,735 Non-English Learner Females two or more Suspensions .
#total non EL
#dat$NonEL<-dat$NonELF + dat$NonELM
sus.sch$NonEL_2_sus <- sus.sch$NonELF_2_sus + sus.sch$NonELM_2_sus
non.el.sus_2_sus <- sum(sus.sch$NonEL_2_sus)
non.el.sus_2_sus
## [1] 795020
#There are 795,020 Non-English Learners two or more Suspensions
#Total Lep Male Suspensions
#dat$ELMGT <- dat$SCH_GTENR_SCH_DISCWODIS_SINGOOS_LEP_M
sus.sch$ELM.sus_2_sus <- sus.sch$SCH_DISCWODIS_MULTOOS_LEP_M
sum(sus.sch$SCH_DISCWODIS_MULTOOS_LEP_M)
## [1] 32463
sum(sus.sch$ELM.sus_2_sus)
## [1] 32463
## There is 32,463 English Learner Males with two or more Suspensions
#Total LEP Female in GT
#dat$ELFGT <- dat$SCH_GTENR_SCH_DISCWODIS_SINGOOS_LEP_F
sus.sch$ELF.sus_2_sus <- sus.sch$SCH_DISCWODIS_MULTOOS_LEP_F
sum(sus.sch$ELF.sus_2_sus)
## [1] 9538
## There are 9,538 EL Females two or more Suspensions
#dat$ELEnrol <- dat$TOT_LEPENR_M + dat$TOT_LEPENR_F
sus.sch$ELEnrolsus_2_sus<- sus.sch$ELM.sus_2_sus + sus.sch$ELF.sus_2_sus
els.sus_2_sus <- sum(sus.sch$ELEnrolsus_2_sus)
sum(els.sus_2_sus)
## [1] 42001
## There is 42,001 English learners two or more Suspensions
#Percentage of ELs in Suspensions in K-12 0.77%
round(sum(els.sus_2_sus)/els.k12*100,2)
## [1] 0.79
#Percentage of non-ELs Suspensions in K-12 is 1.74%
round((non.el.sus_2_sus)/nonel.k12*100,2)
## [1] 1.74
#all els
#Percentage of ELs in one or more Suspensions in K-12 0.8%
round(sum(els.sus_2_sus)/els.k12*100,2)
## [1] 0.79
#Females 0.39% of al English Learner Females recieved one or more out of school suspension
el.sus.f_2_sus <- sum(sus.sch$ELF.sus_2_sus)
el.sus.f_2_sus/tot.el.f*100
## [1] 0.391676
#male els: 1.13% of EL males recieved one out of school suspension
el.sus.m_2_sus <- sum(sus.sch$ELM.sus_2_sus)
el.sus.m_2_sus/tot.el.m*100
## [1] 1.134366
#Percentage of non-ELs Suspensions in K-12 is 1.74%
round(non.el.sus_2_sus/nonel.k12*100,2)
## [1] 1.74
#NonEL Females 1.75% of non-English learner Females are suspended one out-of-school
non.el.sus.f_2_sus <-sum(sus.sch$NonELF_2_sus)
non.el.sus.f_2_sus/tot.nonel.f*100
## [1] 1.755422
#NonEL males 3% of non-English learner Males are suspended one out-of-school
non.el.sus.m_2_sus <-sum(sus.sch$NonELM_2_sus)
non.el.sus.m_2_sus/tot.nonel.m*100
## [1] 1.730114