Cognitive Function Variables

Initial Extraction of Exponents

## Principal Components Analysis
## Call: principal(r = CtrCogdat, nfactors = 11, rotate = "none", scores = TRUE, 
##     missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10
## BVRtot         -0.62  0.25  0.21  0.29  0.33 -0.19  0.51  0.13 -0.04  0.03
## CVLtca          0.74  0.55  0.09 -0.04  0.08 -0.02 -0.06 -0.08 -0.13  0.33
## CVLfrs          0.72  0.63  0.00  0.00 -0.01 -0.03  0.01  0.05  0.09 -0.12
## CVLfrl          0.73  0.60  0.00 -0.04 -0.03  0.02  0.06  0.10 -0.02 -0.19
## FluencyWord     0.38 -0.06 -0.58  0.63  0.22 -0.14 -0.13 -0.04  0.16  0.02
## DigitSpanBck    0.66 -0.28  0.43  0.08 -0.29 -0.24  0.13  0.01  0.36  0.07
## DigitSpanFwd    0.61 -0.34  0.40  0.36 -0.01 -0.26 -0.14 -0.08 -0.33 -0.10
## Attention       0.58 -0.27  0.28 -0.16  0.60  0.27 -0.02 -0.19  0.13 -0.05
## TrailsAtestSec -0.58  0.40  0.22  0.39 -0.22  0.27  0.02 -0.43  0.05 -0.03
## TrailsBtestSec -0.62  0.25  0.42  0.23  0.12  0.11 -0.41  0.33  0.10  0.02
## StroopMixed     0.62 -0.29 -0.02  0.31 -0.17  0.55  0.21  0.24 -0.08  0.05
##                 PC11 h2       u2 com
## BVRtot         -0.01  1 -2.2e-16 4.1
## CVLtca          0.03  1  4.4e-16 2.5
## CVLfrs         -0.24  1  0.0e+00 2.3
## CVLfrl          0.21  1  6.7e-16 2.4
## FluencyWord     0.03  1 -1.3e-15 3.3
## DigitSpanBck    0.03  1  6.7e-16 3.9
## DigitSpanFwd   -0.02  1  1.2e-15 4.7
## Attention       0.01  1  0.0e+00 3.9
## TrailsAtestSec  0.01  1  1.2e-15 4.9
## TrailsBtestSec  0.01  1  1.4e-15 4.4
## StroopMixed    -0.02  1  6.7e-16 3.9
## 
##                        PC1  PC2  PC3  PC4  PC5  PC6  PC7  PC8  PC9 PC10 PC11
## SS loadings           4.38 1.70 1.04 0.95 0.69 0.64 0.54 0.43 0.33 0.18 0.11
## Proportion Var        0.40 0.15 0.09 0.09 0.06 0.06 0.05 0.04 0.03 0.02 0.01
## Cumulative Var        0.40 0.55 0.65 0.73 0.80 0.86 0.90 0.94 0.97 0.99 1.00
## Proportion Explained  0.40 0.15 0.09 0.09 0.06 0.06 0.05 0.04 0.03 0.02 0.01
## Cumulative Proportion 0.40 0.55 0.65 0.73 0.80 0.86 0.90 0.94 0.97 0.99 1.00
## 
## Mean item complexity =  3.6
## Test of the hypothesis that 11 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0 
##  with the empirical chi square  0  with prob <  NA 
## 
## Fit based upon off diagonal values = 1
## 
## Loadings:
##                PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8    PC9   
## BVRtot         -0.622  0.245  0.212  0.290  0.331 -0.188  0.510  0.127       
## CVLtca          0.738  0.549                                           -0.134
## CVLfrs          0.721  0.630                                                 
## CVLfrl          0.735  0.599                                                 
## FluencyWord     0.383        -0.580  0.634  0.217 -0.137 -0.135         0.157
## DigitSpanBck    0.662 -0.284  0.426        -0.289 -0.236  0.127         0.362
## DigitSpanFwd    0.612 -0.343  0.402  0.363        -0.261 -0.137        -0.334
## Attention       0.577 -0.273  0.284 -0.161  0.597  0.270        -0.193  0.126
## TrailsAtestSec -0.578  0.398  0.219  0.386 -0.218  0.267        -0.432       
## TrailsBtestSec -0.622  0.254  0.421  0.234  0.118  0.108 -0.414  0.331  0.101
## StroopMixed     0.615 -0.291         0.308 -0.168  0.552  0.206  0.238       
##                PC10   PC11  
## BVRtot                      
## CVLtca          0.330       
## CVLfrs         -0.122 -0.240
## CVLfrl         -0.193  0.214
## FluencyWord                 
## DigitSpanBck                
## DigitSpanFwd                
## Attention                   
## TrailsAtestSec              
## TrailsBtestSec              
## StroopMixed                 
## 
##                  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10
## SS loadings    4.384 1.702 1.039 0.952 0.694 0.641 0.536 0.432 0.330 0.183
## Proportion Var 0.399 0.155 0.094 0.087 0.063 0.058 0.049 0.039 0.030 0.017
## Cumulative Var 0.399 0.553 0.648 0.734 0.797 0.856 0.904 0.944 0.974 0.990
##                 PC11
## SS loadings    0.108
## Proportion Var 0.010
## Cumulative Var 1.000

Scree Plot

##  [1] 4.3836260 1.7023500 1.0391424 0.9524832 0.6938079 0.6409679 0.5359233
##  [8] 0.4318366 0.3297051 0.1826104 0.1075472

Rotation to Final Solution

#Rotation with 2-factor solution

## 
## Factor analysis with Call: principal(r = CtrCogdat, nfactors = 2, rotate = "promax", scores = TRUE, 
##     missing = TRUE, impute = "median")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 34  and the objective function was  0.84 
## The number of observations was  238  with Chi Square =  193.68  with prob <  3e-24 
## 
## The root mean square of the residuals (RMSA) is  0.08 
## 
##  With component correlations of 
##      RC1  RC2
## RC1 1.00 0.44
## RC2 0.44 1.00
## Principal Components Analysis
## Call: principal(r = CtrCogdat, nfactors = 2, rotate = "promax", scores = TRUE, 
##     missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                  RC1   RC2   h2    u2 com
## BVRtot         -0.64 -0.05 0.45 0.553 1.0
## CVLtca          0.03  0.91 0.85 0.154 1.0
## CVLfrs         -0.05  0.98 0.92 0.084 1.0
## CVLfrl         -0.01  0.95 0.90 0.101 1.0
## FluencyWord     0.32  0.12 0.15 0.849 1.3
## DigitSpanBck    0.71  0.03 0.52 0.480 1.0
## DigitSpanFwd    0.72 -0.05 0.49 0.508 1.0
## Attention       0.64  0.00 0.41 0.592 1.0
## TrailsAtestSec -0.75  0.12 0.49 0.507 1.1
## TrailsBtestSec -0.65 -0.04 0.45 0.549 1.0
## StroopMixed     0.68  0.00 0.46 0.537 1.0
## 
##                        RC1  RC2
## SS loadings           3.38 2.71
## Proportion Var        0.31 0.25
## Cumulative Var        0.31 0.55
## Proportion Explained  0.55 0.45
## Cumulative Proportion 0.55 1.00
## 
##  With component correlations of 
##      RC1  RC2
## RC1 1.00 0.44
## RC2 0.44 1.00
## 
## Mean item complexity =  1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.08 
##  with the empirical chi square  179.18  with prob <  1.2e-21 
## 
## Fit based upon off diagonal values = 0.95
## 
## Loadings:
##                RC1    RC2   
## BVRtot         -0.644       
## CVLtca                 0.905
## CVLfrs                 0.978
## CVLfrl                 0.954
## FluencyWord     0.320  0.121
## DigitSpanBck    0.706       
## DigitSpanFwd    0.722       
## Attention       0.638       
## TrailsAtestSec -0.747  0.122
## TrailsBtestSec -0.652       
## StroopMixed     0.679       
## 
##                  RC1   RC2
## SS loadings    3.391 2.725
## Proportion Var 0.308 0.248
## Cumulative Var 0.308 0.556

Health Behavior Variables

Initial Extraction of Exponents

## Principal Components Analysis
## Call: principal(r = CtrHealthdat, nfactors = 5, rotate = "none", scores = TRUE, 
##     missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                       PC1   PC2   PC3   PC4   PC5 h2       u2 com
## CigaretteEver        0.75  0.00 -0.10  0.16  0.64  1 -8.9e-16 2.1
## AlcEver              0.59 -0.23  0.65 -0.42 -0.07  1  7.8e-16 3.0
## DrugUse              0.72 -0.03  0.07  0.55 -0.41  1  4.4e-16 2.5
## PSQglobal            0.06  0.97  0.25 -0.02  0.01  1  6.7e-16 1.1
## hei2010_total_score -0.62 -0.15  0.60  0.43  0.22  1  4.4e-16 3.2
## 
##                        PC1  PC2  PC3  PC4  PC5
## SS loadings           1.82 1.01 0.85 0.69 0.63
## Proportion Var        0.36 0.20 0.17 0.14 0.13
## Cumulative Var        0.36 0.57 0.74 0.87 1.00
## Proportion Explained  0.36 0.20 0.17 0.14 0.13
## Cumulative Proportion 0.36 0.57 0.74 0.87 1.00
## 
## Mean item complexity =  2.4
## Test of the hypothesis that 5 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0 
##  with the empirical chi square  0  with prob <  NA 
## 
## Fit based upon off diagonal values = 1
## 
## Loadings:
##                     PC1    PC2    PC3    PC4    PC5   
## CigaretteEver        0.747                0.164  0.636
## AlcEver              0.589 -0.229  0.646 -0.423       
## DrugUse              0.723                0.548 -0.415
## PSQglobal                   0.966  0.248              
## hei2010_total_score -0.622 -0.152  0.596  0.431  0.219
## 
##                  PC1   PC2   PC3   PC4   PC5
## SS loadings    1.820 1.010 0.848 0.692 0.630
## Proportion Var 0.364 0.202 0.170 0.138 0.126
## Cumulative Var 0.364 0.566 0.736 0.874 1.000

Scree Plot

## [1] 1.8199843 1.0100661 0.8484243 0.6917252 0.6298002

Rotation to Final Solution

#Rotation with 2-factor solution

## 
## Factor analysis with Call: principal(r = CtrHealthdat, nfactors = 2, rotate = "promax", 
##     scores = TRUE, missing = TRUE, impute = "median")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 1  and the objective function was  0.28 
## The number of observations was  238  with Chi Square =  65.05  with prob <  7.3e-16 
## 
## The root mean square of the residuals (RMSA) is  0.15 
## 
##  With component correlations of 
##      RC1  RC2
## RC1 1.00 0.01
## RC2 0.01 1.00
## Principal Components Analysis
## Call: principal(r = CtrHealthdat, nfactors = 2, rotate = "promax", 
##     scores = TRUE, missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                       RC1   RC2   h2    u2 com
## CigaretteEver        0.75  0.02 0.56 0.441 1.0
## AlcEver              0.60 -0.21 0.40 0.600 1.2
## DrugUse              0.72  0.00 0.52 0.476 1.0
## PSQglobal            0.02  0.97 0.94 0.062 1.0
## hei2010_total_score -0.61 -0.17 0.41 0.590 1.2
## 
##                        RC1  RC2
## SS loadings           1.82 1.01
## Proportion Var        0.36 0.20
## Cumulative Var        0.36 0.57
## Proportion Explained  0.64 0.36
## Cumulative Proportion 0.64 1.00
## 
##  With component correlations of 
##      RC1  RC2
## RC1 1.00 0.01
## RC2 0.01 1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.15 
##  with the empirical chi square  109.72  with prob <  1.1e-25 
## 
## Fit based upon off diagonal values = 0.5
## 
## Loadings:
##                     RC1    RC2   
## CigaretteEver        0.747       
## AlcEver              0.600 -0.207
## DrugUse              0.724       
## PSQglobal                   0.968
## hei2010_total_score -0.614 -0.175
## 
##                  RC1   RC2
## SS loadings    1.818 1.011
## Proportion Var 0.364 0.202
## Cumulative Var 0.364 0.566

Cardiometabolic Risk Factors

Initial Extraction of Exponents

## Principal Components Analysis
## Call: principal(r = CtrCRFdat, nfactors = 8, rotate = "none", scores = TRUE, 
##     missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##               PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8 h2       u2 com
## BPsitMeanDia 0.73 -0.50 -0.04  0.15 -0.04  0.03 -0.29  0.32  1  1.1e-16 2.7
## BPsitMeansys 0.82 -0.41 -0.09  0.07 -0.02  0.03 -0.10 -0.37  1  2.1e-15 2.0
## HgbA1C       0.35  0.52  0.44 -0.34  0.35  0.05 -0.42 -0.02  1  5.6e-16 5.4
## Chol         0.16 -0.12  0.85  0.40 -0.02  0.01  0.28  0.01  1  2.1e-15 1.8
## BMI          0.55  0.41 -0.16  0.20  0.09 -0.66  0.13  0.03  1  1.9e-15 3.2
## CRP          0.13  0.51 -0.28  0.69  0.13  0.39 -0.06 -0.01  1 -2.2e-16 3.1
## IMTmean      0.43  0.46  0.07 -0.18 -0.74  0.12  0.01  0.02  1  1.0e-15 2.6
## PWV          0.64  0.07 -0.14 -0.38  0.29  0.29  0.50  0.08  1  1.6e-15 3.7
## 
##                        PC1  PC2  PC3  PC4  PC5  PC6  PC7  PC8
## SS loadings           2.28 1.35 1.05 0.99 0.79 0.69 0.62 0.25
## Proportion Var        0.28 0.17 0.13 0.12 0.10 0.09 0.08 0.03
## Cumulative Var        0.28 0.45 0.58 0.71 0.81 0.89 0.97 1.00
## Proportion Explained  0.28 0.17 0.13 0.12 0.10 0.09 0.08 0.03
## Cumulative Proportion 0.28 0.45 0.58 0.71 0.81 0.89 0.97 1.00
## 
## Mean item complexity =  3.1
## Test of the hypothesis that 8 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0 
##  with the empirical chi square  0  with prob <  NA 
## 
## Fit based upon off diagonal values = 1
## 
## Loadings:
##              PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8   
## BPsitMeanDia  0.733 -0.499         0.150               -0.289  0.319
## BPsitMeansys  0.823 -0.405                                    -0.368
## HgbA1C        0.346  0.522  0.438 -0.335  0.353        -0.418       
## Chol          0.164 -0.115  0.848  0.402                0.281       
## BMI           0.548  0.414 -0.163  0.203        -0.658  0.134       
## CRP           0.128  0.510 -0.275  0.690  0.134  0.388              
## IMTmean       0.428  0.462        -0.178 -0.743  0.124              
## PWV           0.644        -0.143 -0.376  0.285  0.285  0.498       
## 
##                  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8
## SS loadings    2.276 1.350 1.047 0.992 0.786 0.686 0.617 0.245
## Proportion Var 0.285 0.169 0.131 0.124 0.098 0.086 0.077 0.031
## Cumulative Var 0.285 0.453 0.584 0.708 0.806 0.892 0.969 1.000

Scree Plot

## [1] 2.2761408 1.3502587 1.0471759 0.9916668 0.7862415 0.6864357 0.6167865
## [8] 0.2452941

Rotation to Final Solution

#Rotation with 2-factor solution

## 
## Factor analysis with Call: principal(r = CtrCRFdat, nfactors = 2, rotate = "promax", scores = TRUE, 
##     missing = TRUE, impute = "median")
## 
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 13  and the objective function was  0.39 
## The number of observations was  238  with Chi Square =  91.48  with prob <  7.3e-14 
## 
## The root mean square of the residuals (RMSA) is  0.12 
## 
##  With component correlations of 
##      RC1  RC2
## RC1 1.00 0.24
## RC2 0.24 1.00
## Principal Components Analysis
## Call: principal(r = CtrCRFdat, nfactors = 2, rotate = "promax", scores = TRUE, 
##     missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##                RC1   RC2   h2   u2 com
## BPsitMeanDia  0.90 -0.08 0.79 0.21 1.0
## BPsitMeansys  0.90  0.05 0.84 0.16 1.0
## HgbA1C       -0.10  0.64 0.39 0.61 1.1
## Chol          0.20 -0.02 0.04 0.96 1.0
## BMI           0.13  0.65 0.47 0.53 1.1
## CRP          -0.26  0.52 0.28 0.72 1.5
## IMTmean       0.00  0.63 0.40 0.60 1.0
## PWV           0.43  0.39 0.42 0.58 2.0
## 
##                        RC1  RC2
## SS loadings           1.96 1.66
## Proportion Var        0.25 0.21
## Cumulative Var        0.25 0.45
## Proportion Explained  0.54 0.46
## Cumulative Proportion 0.54 1.00
## 
##  With component correlations of 
##      RC1  RC2
## RC1 1.00 0.24
## RC2 0.24 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.12 
##  with the empirical chi square  177.71  with prob <  5e-31 
## 
## Fit based upon off diagonal values = 0.71
## 
## Loadings:
##              RC1    RC2   
## BPsitMeanDia  0.903       
## BPsitMeansys  0.905       
## HgbA1C       -0.104  0.643
## Chol          0.204       
## BMI           0.125  0.647
## CRP          -0.260  0.523
## IMTmean              0.629
## PWV           0.435  0.389
## 
##                  RC1   RC2
## SS loadings    1.959 1.662
## Proportion Var 0.245 0.208
## Cumulative Var 0.245 0.453

Affect Variables

Initial Extraction of Exponents

## Principal Components Analysis
## Call: principal(r = CtrAffectdat, nfactors = 5, rotate = "none", scores = TRUE, 
##     missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##               PC1   PC2   PC3   PC4   PC5 h2       u2 com
## CES          0.87 -0.16 -0.03 -0.41  0.23  1 -1.8e-15 1.7
## acasiPTSD    0.87 -0.19 -0.17 -0.05 -0.41  1  1.0e-15 1.7
## acasiPDSQanx 0.85 -0.11 -0.31  0.35  0.21  1  2.2e-16 1.8
## acasiAnger   0.73  0.68 -0.01 -0.03 -0.03  1  4.4e-16 2.0
## acasiPerStr  0.80 -0.11  0.57  0.15  0.00  1  5.6e-16 1.9
## 
##                        PC1  PC2  PC3  PC4  PC5
## SS loadings           3.40 0.56 0.45 0.32 0.27
## Proportion Var        0.68 0.11 0.09 0.06 0.05
## Cumulative Var        0.68 0.79 0.88 0.95 1.00
## Proportion Explained  0.68 0.11 0.09 0.06 0.05
## Cumulative Proportion 0.68 0.79 0.88 0.95 1.00
## 
## Mean item complexity =  1.8
## Test of the hypothesis that 5 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0 
##  with the empirical chi square  0  with prob <  NA 
## 
## Fit based upon off diagonal values = 1
## 
## Loadings:
##              PC1    PC2    PC3    PC4    PC5   
## CES           0.865 -0.164        -0.411  0.235
## acasiPTSD     0.870 -0.195 -0.173        -0.415
## acasiPDSQanx  0.850 -0.112 -0.311  0.354  0.208
## acasiAnger    0.728  0.684                     
## acasiPerStr   0.801 -0.115  0.567  0.152       
## 
##                 PC1   PC2   PC3   PC4   PC5
## SS loadings    3.40 0.559 0.450 0.321 0.271
## Proportion Var 0.68 0.112 0.090 0.064 0.054
## Cumulative Var 0.68 0.792 0.882 0.946 1.000

Scree Plot

## [1] 3.4000005 0.5587627 0.4495647 0.3205335 0.2711386

Rotation to Final Solution

## 
## Factor analysis with Call: principal(r = CtrAffectdat, nfactors = 1, rotate = "promax", 
##     scores = TRUE, missing = TRUE, impute = "median")
## 
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 5  and the objective function was  0.13 
## The number of observations was  238  with Chi Square =  29.48  with prob <  1.9e-05 
## 
## The root mean square of the residuals (RMSA) is  0.08
## Principal Components Analysis
## Call: principal(r = CtrAffectdat, nfactors = 1, rotate = "promax", 
##     scores = TRUE, missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##               PC1   h2   u2 com
## CES          0.87 0.75 0.25   1
## acasiPTSD    0.87 0.76 0.24   1
## acasiPDSQanx 0.85 0.72 0.28   1
## acasiAnger   0.73 0.53 0.47   1
## acasiPerStr  0.80 0.64 0.36   1
## 
##                 PC1
## SS loadings    3.40
## Proportion Var 0.68
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 component is sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.08 
##  with the empirical chi square  33.83  with prob <  2.6e-06 
## 
## Fit based upon off diagonal values = 0.98
## 
## Loadings:
##              PC1  
## CES          0.865
## acasiPTSD    0.870
## acasiPDSQanx 0.850
## acasiAnger   0.728
## acasiPerStr  0.801
## 
##                 PC1
## SS loadings    3.40
## Proportion Var 0.68

Social Support Variables

Initial Extraction of Exponents

## Principal Components Analysis
## Call: principal(r = CtrSocSupdat, nfactors = 3, rotate = "none", scores = TRUE, 
##     missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##               PC1  PC2   PC3 h2       u2 com
## acasiEmoSup  0.86 0.28  0.43  1  0.0e+00 1.7
## acasiInsSup -0.66 0.75  0.01  1  5.6e-16 2.0
## acasiSocInt  0.85 0.30 -0.42  1 -2.2e-16 1.7
## 
##                        PC1  PC2  PC3
## SS loadings           1.91 0.73 0.36
## Proportion Var        0.64 0.24 0.12
## Cumulative Var        0.64 0.88 1.00
## Proportion Explained  0.64 0.24 0.12
## Cumulative Proportion 0.64 0.88 1.00
## 
## Mean item complexity =  1.8
## Test of the hypothesis that 3 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0 
##  with the empirical chi square  0  with prob <  NA 
## 
## Fit based upon off diagonal values = 1

Scree Plot

## [1] 1.9093573 0.7277056 0.3629371

Rotation to Final Solution

## 
## Factor analysis with Call: principal(r = CtrSocSupdat, nfactors = 1, rotate = "promax", 
##     scores = TRUE, missing = TRUE, impute = "median")
## 
## Test of the hypothesis that 1 factor is sufficient.
## The degrees of freedom for the model is 0  and the objective function was  0.17 
## The number of observations was  238  with Chi Square =  40.69  with prob <  NA 
## 
## The root mean square of the residuals (RMSA) is  0.19
## Principal Components Analysis
## Call: principal(r = CtrSocSupdat, nfactors = 1, rotate = "promax", 
##     scores = TRUE, missing = TRUE, impute = "median")
## Standardized loadings (pattern matrix) based upon correlation matrix
##               PC1   h2   u2 com
## acasiEmoSup  0.86 0.74 0.26   1
## acasiInsSup -0.66 0.44 0.56   1
## acasiSocInt  0.85 0.73 0.27   1
## 
##                 PC1
## SS loadings    1.91
## Proportion Var 0.64
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 component is sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.19 
##  with the empirical chi square  49.26  with prob <  NA 
## 
## Fit based upon off diagonal values = 0.84
## 
## Loadings:
##             PC1   
## acasiEmoSup  0.860
## acasiInsSup -0.664
## acasiSocInt  0.854
## 
##                  PC1
## SS loadings    1.909
## Proportion Var 0.636