pacckages
if(!require(googlesheets4)){install.packages("googlesheets4")}
if(!require(AICcmodavg)){install.packages("AICcmodavg")}
if(!require(ggplot2)){install.packages("ggplot2")}
#
library(googlesheets4); gs4_deauth()
library(AICcmodavg)
library(ggplot2)
sheet="factoriesgo"
range="B4:J400"
roe <- read_sheet("https://docs.google.com/spreadsheets/d/1fBIBUpp8gCwPIyo_Hr1wPXshPDIWXYHrDXY-UcF-s7I/edit?usp=sharing",
col_names = TRUE,
sheet=sheet,
range=range,
col_types = NULL,
na= "NA")
Reading from "Copia de Factores de riesgo"
Range "'factoriesgo'!B4:J400"
dim(roe)
[1] 396 9
head(roe)
roe$piso <- as.factor(roe$piso)
roe$pared <- as.factor(roe$pared)
roe$rest.alim <- as.factor(roe$rest.alim)
roe$rest.alim.F <- as.factor(roe$rest.alim)
roe$techo <- as.factor(roe$techo)
roe$sitio <- as.factor(roe$sitio)
roe$pres.roe.F <- as.factor(roe$pres.roe)
roe$pres.dog.F <- as.factor(roe$pres.dog)
roe$pres.cat.F <- as.factor(roe$pres.cat)
#
dim(roe)
[1] 396 13
names(roe)
[1] "hh.id" "piso" "pared" "rest.alim" "techo" "sitio"
[7] "pres.roe" "pres.dog" "pres.cat" "rest.alim.F" "pres.roe.F" "pres.dog.F"
[13] "pres.cat.F"
summary(roe)
hh.id piso pared rest.alim techo sitio
Min. : 1.00 A.Tyles : 42 1.Block :198 No : 91 conc_zinc_teja: 11 A:148
1st Qu.: 99.75 Concrete:183 adobe : 43 Si :288 zinc :385 B: 83
Median :198.50 Dirt :171 Wood-Cane : 50 NA's: 17 C:165
Mean :198.50 Wood_other: 54
3rd Qu.:297.25 zinc_other: 51
Max. :396.00
pres.roe pres.dog pres.cat rest.alim.F pres.roe.F pres.dog.F
Min. :0.0000 Min. :0.000 Min. :0.0000 No : 91 0:277 0:120
1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000 Si :288 1:119 1:276
Median :0.0000 Median :1.000 Median :0.0000 NA's: 17
Mean :0.3005 Mean :0.697 Mean :0.4141
3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:1.0000
Max. :1.0000 Max. :1.000 Max. :1.0000
pres.cat.F
0:232
1:164
## PLOT Sitio ####
ggplot(aes(x= sitio, y= as.factor(pres.roe) ,
fill= as.factor(pres.roe) ), data= roe ) +
geom_col()
ggplot(aes(x= sitio, y= as.factor(pres.roe) , fill= as.factor(pres.roe) ),
data= roe ) +
geom_point(size= 0.5, position= position_jitter(width= 0.2 , height =0.1 ))
#### chiqs.test
a <- chisq.test(table(roe$sitio, roe$pres.roe));a; a$stdres
Pearson's Chi-squared test
data: table(roe$sitio, roe$pres.roe)
X-squared = 12.589, df = 2, p-value = 0.001847
0 1
A -1.025216 1.025216
B -2.708528 2.708528
C 3.242188 -3.242188
## Según la tabla de valores esperados de la Chi2 arriba, los sitios B y C tienen más y menos (respectivamente) proporción de lo "esperado" bajo un modelo nulo.
## PLOT restos alimentos ####
ggplot(aes(x= rest.alim.F, y= as.factor(pres.roe) ,
fill= as.factor(pres.roe) ), data= roe ) +
geom_col()
ggplot(aes(x= rest.alim.F, y= as.factor(pres.roe) , fill= as.factor(pres.roe) ),
data= roe ) +
geom_point(size= 0.5, position= position_jitter(width= 0.2 , height =0.1 ))
## PLOT piso ####
ggplot(aes(x= piso, y= as.factor(pres.roe) ,
fill= as.factor(pres.roe) ), data= roe ) +
geom_col()
ggplot(aes(x= piso, y= as.factor(pres.roe) , fill= as.factor(pres.roe) ),
data= roe ) +
geom_point(size= 0.5, position= position_jitter(width= 0.2 , height =0.1 ))
## PLOT pared ####
ggplot(aes(x= pared, y= as.factor(pres.roe) ,
fill= as.factor(pres.roe) ), data= roe ) +
geom_col()
ggplot(aes(x= pared, y= as.factor(pres.roe) , fill= as.factor(pres.roe) ),
data= roe ) +
geom_point(size= 0.5, position= position_jitter(width= 0.2 , height =0.1 ))
# chiqs.test
a <- chisq.test(table(roe$pared, roe$pres.roe));a; a$stdres
Pearson's Chi-squared test
data: table(roe$pared, roe$pres.roe)
X-squared = 9.639, df = 4, p-value = 0.04697
0 1
1.Block -0.3288179 0.3288179
adobe -1.7890592 1.7890592
Wood-Cane 0.9983159 -0.9983159
Wood_other 2.3083089 -2.3083089
zinc_other -1.2022716 1.2022716
## PLOT techo ####
ggplot(aes(x= techo, y= as.factor(pres.roe) ,
fill= as.factor(pres.roe) ), data= roe ) +
geom_col()
ggplot(aes(x= techo, y= as.factor(pres.roe) , fill= as.factor(pres.roe) ),
data= roe ) +
geom_point(size= 0.5, position= position_jitter(width= 0.2 , height =0.1 ))
#### Asociaci[on entre la presencia de gatos y el sitio
a <- chisq.test(table(roe$sitio, roe$pres.cat)); a
Pearson's Chi-squared test
data: table(roe$sitio, roe$pres.cat)
X-squared = 43.636, df = 2, p-value = 3.347e-10
a$stdres
0 1
A 3.646605 -3.646605
B 3.602760 -3.602760
C -6.552865 6.552865
## Sitio ####
m.sitio <- glm( pres.roe ~ sitio, family= binomial, data=roe)
summary(m.sitio)
Call:
glm(formula = pres.roe ~ sitio, family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0466 -0.8968 -0.6905 1.3141 1.7610
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.7033 0.1747 -4.026 5.66e-05 ***
sitioB 0.3874 0.2827 1.371 0.1705
sitioC -0.6089 0.2584 -2.356 0.0185 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 471.49 on 393 degrees of freedom
AIC: 477.49
Number of Fisher Scoring iterations: 4
#### pres.ROe ~ BUILDING ####
# piso
m.piso <- glm( pres.roe ~ piso, family= binomial, data=roe) ### piso
summary(m.piso)
Call:
glm(formula = pres.roe ~ piso, family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.8908 -0.8908 -0.8270 1.4942 1.6942
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1632 0.3623 -3.211 0.00132 **
pisoConcrete 0.2659 0.3973 0.669 0.50326
pisoDirt 0.4436 0.3972 1.117 0.26416
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 482.64 on 393 degrees of freedom
AIC: 488.64
Number of Fisher Scoring iterations: 4
# pared
m.pared <- glm( pres.roe ~ pared, family= binomial, data=roe) ### pared
summary(m.pared)
Call:
glm(formula = pres.roe ~ pared, family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0415 -0.8582 -0.7409 1.4053 1.8930
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8091 0.1539 -5.257 1.47e-07 ***
paredadobe 0.4806 0.3453 1.392 0.1640
paredWood-Cane -0.3436 0.3652 -0.941 0.3468
paredWood_other -0.8003 0.3963 -2.020 0.0434 *
paredzinc_other 0.2878 0.3280 0.878 0.3802
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 474.14 on 391 degrees of freedom
AIC: 484.14
Number of Fisher Scoring iterations: 4
# techo
m.techo <- glm( pres.roe ~ techo, family= binomial, data=roe) ### techo
summary(m.techo)
Call:
glm(formula = pres.roe ~ techo, family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.9508 -0.8424 -0.8424 1.5546 1.5546
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5596 0.6268 -0.893 0.372
techozinc -0.2939 0.6366 -0.462 0.644
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 483.94 on 394 degrees of freedom
AIC: 487.94
Number of Fisher Scoring iterations: 4
# restos de alimento
m.rest.alim <- glm( pres.roe ~ rest.alim, family= binomial, data=roe) ### rest.alim
summary(m.rest.alim)
Call:
glm(formula = pres.roe ~ rest.alim, family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.9127 -0.8246 -0.8246 1.4676 1.5774
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.6604 0.2212 -2.985 0.00283 **
rest.alimSi -0.2438 0.2566 -0.950 0.34206
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 463.54 on 378 degrees of freedom
Residual deviance: 462.65 on 377 degrees of freedom
(17 observations deleted due to missingness)
AIC: 466.65
Number of Fisher Scoring iterations: 4
m.house <- glm( pres.roe ~ piso + pared + rest.alim + roe$techo, family= binomial, data=roe)
summary(m.house)
Call:
glm(formula = pres.roe ~ piso + pared + rest.alim + roe$techo,
family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1838 -0.9037 -0.7275 1.3689 1.9550
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8620 0.7357 -1.172 0.2413
pisoConcrete 0.4638 0.4214 1.101 0.2710
pisoDirt 0.7126 0.4599 1.550 0.1213
paredadobe 0.3029 0.3898 0.777 0.4371
paredWood-Cane -0.6199 0.4578 -1.354 0.1757
paredWood_other -0.9278 0.4313 -2.151 0.0315 *
paredzinc_other -0.0077 0.3763 -0.020 0.9837
rest.alimSi -0.1385 0.2675 -0.518 0.6047
roe$techozinc -0.2864 0.6562 -0.436 0.6625
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 463.54 on 378 degrees of freedom
Residual deviance: 451.04 on 370 degrees of freedom
(17 observations deleted due to missingness)
AIC: 469.04
Number of Fisher Scoring iterations: 4
### pres.roe ~ DOMESTIC_ANIMAL ####
m.cat <- glm( pres.roe ~ pres.cat, family= binomial, data=roe) ### gatos
summary(m.cat)
Call:
glm(formula = pres.roe ~ pres.cat, family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0406 -1.0406 -0.5367 1.3206 2.0044
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3306 0.1331 -2.483 0.013 *
pres.cat -1.5342 0.2650 -5.790 7.04e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 444.66 on 394 degrees of freedom
AIC: 448.66
Number of Fisher Scoring iterations: 4
m.dog <- glm( pres.roe ~ pres.dog, family= binomial, data=roe) ### perros
summary(m.dog)
Call:
glm(formula = pres.roe ~ pres.dog, family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.9282 -0.8088 -0.8088 1.4490 1.5979
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.6190 0.1914 -3.234 0.00122 **
pres.dog -0.3305 0.2338 -1.414 0.15745
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 482.17 on 394 degrees of freedom
AIC: 486.17
Number of Fisher Scoring iterations: 4
m.dom.anim <- glm( pres.roe ~ pres.dog * pres.cat, family= binomial, data=roe)
summary(m.dom.anim)
Call:
glm(formula = pres.roe ~ pres.dog * pres.cat, family = binomial,
data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.066 -1.025 -0.553 1.293 2.146
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2683 0.2127 -1.261 0.20726
pres.dog -0.1021 0.2728 -0.374 0.70813
pres.cat -1.9290 0.6446 -2.992 0.00277 **
pres.dog:pres.cat 0.4988 0.7114 0.701 0.48315
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 444.13 on 392 degrees of freedom
AIC: 452.13
Number of Fisher Scoring iterations: 4
### combinaciones ####
m.pared.cat <- glm( pres.roe ~ pared + pres.cat , family= binomial, data=roe)
summary(m.pared.cat)
Call:
glm(formula = pres.roe ~ pared + pres.cat, family = binomial,
data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1740 -1.0341 -0.5521 1.2363 2.2317
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.34679 0.17338 -2.000 0.0455 *
paredadobe 0.33872 0.35988 0.941 0.3466
paredWood-Cane -0.09434 0.38499 -0.245 0.8064
paredWood_other -0.59978 0.41179 -1.457 0.1453
paredzinc_other 0.20941 0.34239 0.612 0.5408
pres.cat -1.45707 0.26913 -5.414 6.16e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 440.31 on 390 degrees of freedom
AIC: 452.31
Number of Fisher Scoring iterations: 4
#
m.pared.sitio <- glm( pres.roe ~ pared + sitio, family= binomial, data=roe)
summary(m.pared.sitio)
Call:
glm(formula = pres.roe ~ pared + sitio, family = binomial, data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1512 -0.8797 -0.7207 1.3197 1.9334
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.74987 0.20954 -3.579 0.000345 ***
paredadobe -0.01518 0.44640 -0.034 0.972875
paredWood-Cane -0.02271 0.41078 -0.055 0.955916
paredWood_other -0.50866 0.42207 -1.205 0.228140
paredzinc_other 0.25143 0.34591 0.727 0.467314
sitioB 0.43655 0.37779 1.156 0.247871
sitioC -0.44299 0.31267 -1.417 0.156536
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 469.07 on 389 degrees of freedom
AIC: 483.07
Number of Fisher Scoring iterations: 4
#
m.cat.sitio <- glm( pres.roe ~ + pres.cat + sitio, family= binomial, data=roe)
summary(m.cat.sitio)
Call:
glm(formula = pres.roe ~ +pres.cat + sitio, family = binomial,
data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1685 -0.9390 -0.5017 1.1864 2.0663
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3632 0.1873 -1.939 0.0525 .
pres.cat -1.4184 0.2753 -5.151 2.59e-07 ***
sitioB 0.3421 0.2929 1.168 0.2428
sitioC -0.2273 0.2762 -0.823 0.4105
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 441.33 on 392 degrees of freedom
AIC: 449.33
Number of Fisher Scoring iterations: 4
### MODELO GLOBAL ####
global <- glm( pres.roe ~ pared + pres.cat + sitio, family= binomial, data=roe)
summary(global)
Call:
glm(formula = pres.roe ~ pared + pres.cat + sitio, family = binomial,
data = roe)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1712 -0.9846 -0.5302 1.1925 2.2263
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.41783 0.22311 -1.873 0.0611 .
paredadobe 0.02078 0.46202 0.045 0.9641
paredWood-Cane -0.02297 0.42824 -0.054 0.9572
paredWood_other -0.49926 0.43769 -1.141 0.2540
paredzinc_other 0.26597 0.36019 0.738 0.4603
pres.cat -1.41924 0.27629 -5.137 2.79e-07 ***
sitioB 0.38238 0.39197 0.976 0.3293
sitioC -0.05416 0.33325 -0.163 0.8709
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 484.14 on 395 degrees of freedom
Residual deviance: 439.10 on 388 degrees of freedom
AIC: 455.1
Number of Fisher Scoring iterations: 4
## models
n.= length(roe$pres.roe)
## extracting AICc
extractAIC(global)[2]
[1] 455.0989
k=AICc(global, return.K = TRUE)
AICc.global <- extractAIC(global)[2] + (((2*k)*(k+1))/(n.-k-1))
k1=AICc(global, return.K = TRUE)
extractAIC(m.cat)[2]
[1] 448.6635
k=AICc(m.cat, return.K = TRUE)
AICc.m.cat <- extractAIC(m.cat)[2] + (((2*k)*(k+1))/(n.-k-1))
k2=AICc(m.cat, return.K = TRUE)
extractAIC(m.pared)[2]
[1] 484.1374
k=AICc(m.pared, return.K = TRUE)
AICc.m.pared <- extractAIC(m.pared)[2] + (((2*k)*(k+1))/(n.-k-1))
k3=AICc(m.pared, return.K = TRUE)
extractAIC(m.sitio)[2]
[1] 477.4893
k=AICc(m.sitio, return.K = TRUE)
AICc.m.sitio <- extractAIC(m.sitio)[2] + (((2*k)*(k+1))/(n.-k-1))
k4=AICc(m.sitio, return.K = TRUE)
extractAIC(m.pared.cat)[2]
[1] 452.3076
k=AICc(m.pared.cat, return.K = TRUE)
AICc.m.pared.cat <- extractAIC(m.pared.cat)[2] + (((2*k)*(k+1))/(n.-k-1))
k5=AICc(m.pared.cat, return.K = TRUE)
extractAIC(m.pared.sitio)[2]
[1] 483.0708
k=AICc(m.pared.sitio, return.K = TRUE)
AICc.m.pared.sitio <- extractAIC(m.pared.sitio)[2] + (((2*k)*(k+1))/(n.-k-1))
k6=AICc(m.pared.sitio, return.K = TRUE)
extractAIC(m.cat.sitio)[2]
[1] 449.3316
k=AICc(m.cat.sitio, return.K = TRUE)
AICc.m.cat.sitio <- extractAIC(m.cat.sitio)[2] + (((2*k)*(k+1))/(n.-k-1))
k7=AICc(m.cat.sitio, return.K = TRUE)
########## AIC table #####
aics<- data.frame(paste("m",c("Global", "Gato", "Pared", "Sitio", "pared.gato", "pared.sitio", "gato.sitio"),sep=""),
c(AICc.global,AICc.m.cat,AICc.m.pared, AICc.m.sitio, AICc.m.pared.cat, AICc.m.pared.sitio, AICc.m.cat.sitio),
c(k1,k2,k3,k4,k5,k6,k7),
row.names=NULL)
colnames(aics) <- c("model","AICc", "k")
# sort according to AIC
aics<-aics[order(aics$AICc),]
for(i in 1:dim(aics)[1]){
aics$deltaAIC[i]<-aics$AICc[1]-aics$AICc[i]}
wi<-exp(aics$deltaAIC/2)
wi <- wi/sum(wi)
aics$wi <- round(wi/sum(wi), 3)
aics
Gato+Pared+Sitio
sacando (ó incluyendo) cada factor?###
global$formula; AICc(global) ###### GATO + PARED
pres.roe ~ pared + pres.cat + sitio
[1] 455.471
########################## Contribution
m.pared.sitio$formula; AICc(m.pared.sitio); AICc(global) - AICc(m.pared.sitio) ### 'GATO' contribution
pres.roe ~ pared + sitio
[1] 483.3595
[1] -27.88845
m.cat.sitio$formula; AICc(m.cat.sitio); AICc(global)- AICc(m.cat.sitio) ### 'Pared' contribution
pres.roe ~ +pres.cat + sitio
[1] 449.4339
[1] 6.037145
m.pared.cat$formula; AICc(m.pared.cat); AICc(global)- AICc(m.pared.cat) ### 'Sitio' contribution
pres.roe ~ pared + pres.cat
[1] 452.5235
[1] 2.947494
#
DeltaAics <- as.data.frame(cbind("Model"= c("global","Gato", "Pared", "Sitio"),
"Delta.AIC"= c(0,AICc(global) - AICc(m.pared.sitio), AICc(global)- AICc(m.cat.sitio),AICc(global)- AICc(m.pared.cat))))
DeltaAics$Delta.AIC <- as.numeric(DeltaAics$Delta.AIC)
DeltaAics$Delta.AIC <- round(DeltaAics$Delta.AIC,2)
DeltaAics
El incluir pared
y Sitio
de hecho hace que el modelo empeore (aumenta el AICc)