library('ggplot2')
#str(mpg)
mpg1999<-subset(mpg,mpg$class=='suv' & mpg$year==1999)
mpg1999<- mpg1999[complete.cases(mpg1999), ]
# normalizar
mpg1999N <- scale(mpg1999[,c(3,5,8,9)])
# nombrar las filas
rownames(mpg1999N) <- mpg1999$model
# Calcular las distancias
mpg1999D <- dist(mpg1999N)
#mpg1999D
library(reshape2)
mpg1999DLong <- melt(data.matrix(mpg1999D))
grafico <- ggplot(mpg1999DLong, aes(Var1,Var2,fill=value))
grafico <- grafico + geom_tile()
#grafico <- grafico + scale_fill_distiller(palette='Oranges')
grafico <- grafico + scale_fill_viridis_c(option='cividis')
#grafico <- grafico + theme(axis.text.x=element_text(angle=90))
grafico

## Dendrograma
mpg1999Clusters <- hclust(mpg1999D)
library(ggdendro)
grafico <- ggdendrogram(mpg1999Clusters,size=2)
grafico
