This is a second attempt, as I’m not sure that the data I selected the first time was relevant to the calculations made. Hopefully this attempt was better.

library(Zelig)
library(foreign)
library(knitr)
library(stargazer)
library(dplyr)
library(car)
library(DescTools)
library(lme4)
library(texreg)

The dataset I am working with is of a 1988 Bangladesh Fertility study. The dataset has 1934 women in 60 districts. Here I will be using the data to show how contraceptive use, location, and age may affect the amount of children a woman has.

N <- read.table("/Users/laurenberkowitz/Downloads/datasets/bang.txt")
fertility <- select(N, "womanid"=V1, "district"=V2, "contrause"=V3, "livchild"=V4, "age"=V5, "urbanres"=V6, "constant"=V7)
names(fertility)
## [1] "womanid"   "district"  "contrause" "livchild"  "age"       "urbanres" 
## [7] "constant"

womanid=the id number of each woman studied

district = the district grouping of each woman studied

contrause = if the woman used contraceptives or not

livchild = the number of living children each woman has

age = the age of the woman

urbanres = if the urban lived in an urban location (versus a rural location)

contant = a constant of 1

fertility <- na.omit(fertility)

We decided that our dependent variable will be contraceptive use, athe amount of children based on contraceptive use by location. Locations are grouped by district, and identified as urban or rural.

m2_lme <- lmer(contrause ~ livchild + (livchild|urbanres), data = fertility)
summary(m2_lme)
## Linear mixed model fit by REML ['lmerMod']
## Formula: contrause ~ livchild + (livchild | urbanres)
##    Data: fertility
## 
## REML criterion at convergence: 2646.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2202 -0.8715 -0.5172  1.1705  1.5768 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. Corr 
##  urbanres (Intercept) 2.100e-02 0.14490       
##           livchild    4.264e-05 0.00653  -1.00
##  Residual             2.281e-01 0.47755       
## Number of obs: 1934, groups:  urbanres, 2
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 0.292191   0.105693   2.765
## livchild    0.051818   0.009889   5.240
## 
## Correlation of Fixed Effects:
##          (Intr)
## livchild -0.646

We see that with every child there is 2.100e-02 to describe variance related to contraceptive use, with 2.100e-02 designated to the intercept of urban residence affecting contraceptive use, with a residual of 2.281e-01. To see about additional factors, we also consider age on contraceptive use

m3_lme <- lmer(contrause ~ livchild + (livchild|urbanres) + age, data = fertility)
m4_lme <- lmer(contrause ~ livchild*age + (livchild|urbanres), data = fertility)
screenreg(list(m3_lme, m4_lme))
## 
## ==========================================================
##                                 Model 1       Model 2     
## ----------------------------------------------------------
## (Intercept)                         0.21          0.27 ** 
##                                    (0.11)        (0.11)   
## livchild                            0.08 ***      0.07 ***
##                                    (0.01)        (0.01)   
## age                                -0.01 ***      0.01 *  
##                                    (0.00)        (0.00)   
## livchild:age                                     -0.01 ***
##                                                  (0.00)   
## ----------------------------------------------------------
## AIC                              2656.76       2648.26    
## BIC                              2695.73       2692.80    
## Log Likelihood                  -1321.38      -1316.13    
## Num. obs.                        1934          1934       
## Num. groups: urbanres               2             2       
## Variance: urbanres.(Intercept)      0.02          0.02    
## Variance: urbanres.livchild         0.00          0.00    
## Variance: Residual                  0.23          0.22    
## ==========================================================
## *** p < 0.001, ** p < 0.01, * p < 0.05

We see that age does appear to have a significant effect on the use of contraception for this model. The next step is to center the data:

library(magrittr)
fertility %<>% mutate(meanage = age - mean(age))
m5_lme <- lmer(contrause ~ livchild*meanage + (livchild|urbanres), data = fertility)
screenreg(list(m4_lme, m5_lme))
## 
## ==========================================================
##                                 Model 1       Model 2     
## ----------------------------------------------------------
## (Intercept)                         0.27 **       0.27 ** 
##                                    (0.11)        (0.11)   
## livchild                            0.07 ***      0.07 ***
##                                    (0.01)        (0.01)   
## age                                 0.01 *                
##                                    (0.00)                 
## livchild:age                       -0.01 ***              
##                                    (0.00)                 
## meanage                                           0.01 *  
##                                                  (0.00)   
## livchild:meanage                                 -0.01 ***
##                                                  (0.00)   
## ----------------------------------------------------------
## AIC                              2648.26       2648.26    
## BIC                              2692.80       2692.80    
## Log Likelihood                  -1316.13      -1316.13    
## Num. obs.                        1934          1934       
## Num. groups: urbanres               2             2       
## Variance: urbanres.(Intercept)      0.02          0.02    
## Variance: urbanres.livchild         0.00          0.00    
## Variance: Residual                  0.22          0.22    
## ==========================================================
## *** p < 0.001, ** p < 0.01, * p < 0.05

We see that .07 means that when an average age of a mother is calculated, she will use conraception by .07. When not accounting for the age of the mother, the likelihood of using contraception is also .07 and these are statistically signficant calculations. I think it could also be helpful to see if the number of children is actually related to contraceptive use.

m6_lme <- lmer(contrause ~ 1 + (1|urbanres), data=fertility)
summary(m6_lme)
## Linear mixed model fit by REML ['lmerMod']
## Formula: contrause ~ 1 + (1 | urbanres)
##    Data: fertility
## 
## REML criterion at convergence: 2676.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0654 -0.7111 -0.7111  1.0088  1.3632 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  urbanres (Intercept) 0.01488  0.1220  
##  Residual             0.23242  0.4821  
## Number of obs: 1934, groups:  urbanres, 2
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  0.42822    0.08709   4.917

We calculate the Interclass Correlation:

ICC <- ((0.01488)/(0.01488+0.23242))
ICC
## [1] 0.06016983

The small number shows that only 6% of the determining for contraceptive use has to do with whether or not women live in an urban location. This also explains the very low numbers we had for all of the related variables.