describe(ds$media_1, na.rm = T) #NTTimes = 3.78
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 18 3.78 2.76 4 3.88 2.97 -2 8 10 -0.1 -0.68 0.65
describe(ds$media_2, na.rm = T) #WSJ = -1.38
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 -1.38 4.94 -2 -1.57 4.45 -8 8 16 0.76 -0.69 1.23
describe(ds$media_3, na.rm = T) #WashPost = 1.88
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 1.88 4.22 2 1.86 2.97 -6 10 16 0.39 -0.34 1.06
describe(ds$media_4, na.rm = T) #USA today = 1.67
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 12 1.67 3.8 0 1.2 1.48 -2 10 12 1.09 -0.25 1.1
describe(ds$media_5, na.rm = T) #Fox News = -6.78
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 18 -6.78 4.76 -8 -7.25 1.48 -10 4 14 1.53 0.64 1.12
describe(ds$media_6, na.rm = T) #CNN = 5.56
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 18 5.56 2.91 6 5.56 2.97 1 10 9 0.09 -1.3 0.69
describe(ds$media_7, na.rm = T) #MSNBC = 5.17
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 18 5.17 3.76 6 5.31 5.19 -2 10 12 -0.32 -1.25 0.89
describe(ds$media_8, na.rm = T) #Yahoo = 1.92
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 12 1.92 3.82 0 1.5 2.22 -2 10 12 0.92 -0.58 1.1
describe(ds$media_9, na.rm = T) #HuffPost = 5.56
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 5.56 3.16 6 5.79 2.97 -2 10 12 -0.9 0.02 0.79
describe(ds$media_10, na.rm = T) #AOL = 2
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 7 2 4.32 0 2 0 -2 10 12 0.85 -1.08 1.63
describe(ds$media_11, na.rm = T) #NPR = 3.5
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 14 3.5 3.67 2 3.25 2.97 0 10 10 0.51 -1.53 0.98
describe(ds$media_12, na.rm = T) #ABC = 0.81
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 0.81 2.01 1 0.79 1.48 -2 4 6 -0.13 -1.2 0.5
describe(ds$media_13, na.rm = T) #NBC = 2.18
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 17 2.18 3.38 2 2.07 1.48 -4 10 14 0.62 0.13 0.82
describe(ds$media_14, na.rm = T) #CBS = 3.24
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 17 3.24 3.4 2 3.13 2.97 -2 10 12 0.59 -0.94 0.82
describe(ds$media_15, na.rm = T) #PBS = 1.38
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 1.38 2.13 0 1.14 0 0 6 6 1.26 0.05 0.53
kripp.alpha(as.matrix(ds), method = c("interval"))
## Krippendorff's alpha
##
## Subjects = 16
## Raters = 18
## alpha = 0.466
describe(d$mediaIndex, na.rm = T)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1207 5.03 2.36 5.08 5.01 2.45 0.13 11.75 11.62 0.06 -0.51 0.07
hist(d$mediaIndex)
Yes, there is a sig interaction between party ID and media type watched in effect on confidence in own vote counted.
simple effects for media index:
Dems: B = .18, p < .001(M = .30)
Reps: B = .09, p < .001 (M = -.24)
Inds: B .24, p < .001 (M = -.65)
ma <- lm(ownvote.c ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
tab_model(ma)
| ownvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.19 | -0.28 – -0.11 | <0.001 |
| mediaIndex.c | 0.17 | 0.13 – 0.21 | <0.001 |
| pDem_Rep | -0.54 | -0.72 – -0.35 | <0.001 |
| pInd_Not | 0.68 | 0.48 – 0.87 | <0.001 |
| mediaIndex.c * pDem_Rep | -0.09 | -0.17 – -0.01 | 0.023 |
| mediaIndex.c * pInd_Not | -0.10 | -0.20 – 0.00 | 0.055 |
| Observations | 1202 | ||
| R2 / R2 adjusted | 0.202 / 0.198 | ||
summary(ma)
##
## Call:
## lm(formula = ownvote.c ~ mediaIndex.c * (pDem_Rep + pInd_Not),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4141 -0.9061 0.1746 0.8278 2.8186
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.19255 0.04340 -4.436 9.99e-06 ***
## mediaIndex.c 0.17151 0.02041 8.402 < 2e-16 ***
## pDem_Rep -0.53610 0.09598 -5.585 2.88e-08 ***
## pInd_Not 0.67660 0.10053 6.730 2.62e-11 ***
## mediaIndex.c:pDem_Rep -0.08963 0.03943 -2.273 0.0232 *
## mediaIndex.c:pInd_Not -0.09837 0.05112 -1.924 0.0545 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.207 on 1196 degrees of freedom
## (34 observations deleted due to missingness)
## Multiple R-squared: 0.2018, Adjusted R-squared: 0.1984
## F-statistic: 60.46 on 5 and 1196 DF, p-value: < 2.2e-16
maa <- lm(ownvote.c ~ mediaIndex.c * (party_factor), data = d)
plot_model(maa, type = "pred", terms = c("mediaIndex.c", "party_factor"))
mai <- lm(ownvote.c ~ mediaIndex.c * (pDemR + pDemI), data = d)
tab_model(mai)
| ownvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.30 | 0.17 – 0.43 | <0.001 |
| mediaIndex.c | 0.18 | 0.13 – 0.24 | <0.001 |
| pDemR | -0.54 | -0.72 – -0.35 | <0.001 |
| pDemI | -0.94 | -1.16 – -0.73 | <0.001 |
| mediaIndex.c * pDemR | -0.09 | -0.17 – -0.01 | 0.023 |
| mediaIndex.c * pDemI | 0.05 | -0.06 – 0.16 | 0.334 |
| Observations | 1202 | ||
| R2 / R2 adjusted | 0.202 / 0.198 | ||
summary(mai)
##
## Call:
## lm(formula = ownvote.c ~ mediaIndex.c * (pDemR + pDemI), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4141 -0.9061 0.1746 0.8278 2.8186
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29878 0.06543 4.567 5.47e-06 ***
## mediaIndex.c 0.18387 0.02917 6.304 4.07e-10 ***
## pDemR -0.53610 0.09598 -5.585 2.88e-08 ***
## pDemI -0.94465 0.10993 -8.593 < 2e-16 ***
## mediaIndex.c:pDemR -0.08963 0.03943 -2.273 0.0232 *
## mediaIndex.c:pDemI 0.05356 0.05545 0.966 0.3343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.207 on 1196 degrees of freedom
## (34 observations deleted due to missingness)
## Multiple R-squared: 0.2018, Adjusted R-squared: 0.1984
## F-statistic: 60.46 on 5 and 1196 DF, p-value: < 2.2e-16
maii <- lm(ownvote.c ~ mediaIndex.c * (pRepD + pRepI), data = d)
tab_model(maii)
| ownvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.24 | -0.38 – -0.10 | 0.001 |
| mediaIndex.c | 0.09 | 0.04 – 0.15 | <0.001 |
| pRepD | 0.54 | 0.35 – 0.72 | <0.001 |
| pRepI | -0.41 | -0.63 – -0.19 | <0.001 |
| mediaIndex.c * pRepD | 0.09 | 0.01 – 0.17 | 0.023 |
| mediaIndex.c * pRepI | 0.14 | 0.04 – 0.25 | 0.008 |
| Observations | 1202 | ||
| R2 / R2 adjusted | 0.202 / 0.198 | ||
summary(maii)
##
## Call:
## lm(formula = ownvote.c ~ mediaIndex.c * (pRepD + pRepI), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4141 -0.9061 0.1746 0.8278 2.8186
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.23732 0.07023 -3.379 0.000750 ***
## mediaIndex.c 0.09424 0.02654 3.551 0.000398 ***
## pRepD 0.53610 0.09598 5.585 2.88e-08 ***
## pRepI -0.40854 0.11285 -3.620 0.000307 ***
## mediaIndex.c:pRepD 0.08963 0.03943 2.273 0.023204 *
## mediaIndex.c:pRepI 0.14318 0.05412 2.646 0.008254 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.207 on 1196 degrees of freedom
## (34 observations deleted due to missingness)
## Multiple R-squared: 0.2018, Adjusted R-squared: 0.1984
## F-statistic: 60.46 on 5 and 1196 DF, p-value: < 2.2e-16
maiii <- lm(ownvote.c ~ mediaIndex.c * (pIndD + pIndR), data = d)
tab_model(maiii)
| ownvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.65 | -0.82 – -0.47 | <0.001 |
| mediaIndex.c | 0.24 | 0.14 – 0.33 | <0.001 |
| pIndD | 0.94 | 0.73 – 1.16 | <0.001 |
| pIndR | 0.41 | 0.19 – 0.63 | <0.001 |
| mediaIndex.c * pIndD | -0.05 | -0.16 – 0.06 | 0.334 |
| mediaIndex.c * pIndR | -0.14 | -0.25 – -0.04 | 0.008 |
| Observations | 1202 | ||
| R2 / R2 adjusted | 0.202 / 0.198 | ||
summary(maiii)
##
## Call:
## lm(formula = ownvote.c ~ mediaIndex.c * (pIndD + pIndR), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4141 -0.9061 0.1746 0.8278 2.8186
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.64587 0.08834 -7.311 4.82e-13 ***
## mediaIndex.c 0.23742 0.04716 5.034 5.54e-07 ***
## pIndD 0.94465 0.10993 8.593 < 2e-16 ***
## pIndR 0.40854 0.11285 3.620 0.000307 ***
## mediaIndex.c:pIndD -0.05356 0.05545 -0.966 0.334320
## mediaIndex.c:pIndR -0.14318 0.05412 -2.646 0.008254 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.207 on 1196 degrees of freedom
## (34 observations deleted due to missingness)
## Multiple R-squared: 0.2018, Adjusted R-squared: 0.1984
## F-statistic: 60.46 on 5 and 1196 DF, p-value: < 2.2e-16
There is again a significant interaction for Party ID and mediaIndex for effect on trust in national vote counted. Slope steepness move from Reps, Dems, to Indeps.
Simple effects for mediaIndex:
Dems: B = .17, p < .001 (M = .56)
Reps: B = .26, p < .001 (M = -.40)
Ind: B = .34, p < .001 (M = -.33)
mb <- lm(overallvote.c ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
summary(mb)
##
## Call:
## lm(formula = overallvote.c ~ mediaIndex.c * (pDem_Rep + pInd_Not),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3221 -0.8638 0.0721 0.8326 3.3625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05265 0.04027 -1.307 0.1913
## mediaIndex.c 0.25740 0.01899 13.553 < 2e-16 ***
## pDem_Rep -0.95450 0.08897 -10.728 < 2e-16 ***
## pInd_Not 0.40725 0.09334 4.363 1.39e-05 ***
## mediaIndex.c:pDem_Rep 0.09057 0.03655 2.478 0.0134 *
## mediaIndex.c:pInd_Not -0.11847 0.04764 -2.487 0.0130 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.119 on 1195 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.3894, Adjusted R-squared: 0.3868
## F-statistic: 152.4 on 5 and 1195 DF, p-value: < 2.2e-16
tab_model(mb)
| overallvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.05 | -0.13 – 0.03 | 0.191 |
| mediaIndex.c | 0.26 | 0.22 – 0.29 | <0.001 |
| pDem_Rep | -0.95 | -1.13 – -0.78 | <0.001 |
| pInd_Not | 0.41 | 0.22 – 0.59 | <0.001 |
| mediaIndex.c * pDem_Rep | 0.09 | 0.02 – 0.16 | 0.013 |
| mediaIndex.c * pInd_Not | -0.12 | -0.21 – -0.03 | 0.013 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.389 / 0.387 | ||
maa <- lm(overallvote.c ~ mediaIndex.c * (party_factor), data = d)
plot_model(maa, type = "pred", terms = c("mediaIndex.c", "party_factor"))
mbi <- lm(overallvote.c ~ mediaIndex.c * (pDemR + pDemI), data = d)
summary(mbi)
##
## Call:
## lm(formula = overallvote.c ~ mediaIndex.c * (pDemR + pDemI),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3221 -0.8638 0.0721 0.8326 3.3625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.55900 0.06065 9.217 < 2e-16 ***
## mediaIndex.c 0.17302 0.02704 6.400 2.23e-10 ***
## pDemR -0.95450 0.08897 -10.728 < 2e-16 ***
## pDemI -0.88450 0.10204 -8.669 < 2e-16 ***
## mediaIndex.c:pDemR 0.09057 0.03655 2.478 0.01335 *
## mediaIndex.c:pDemI 0.16375 0.05164 3.171 0.00156 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.119 on 1195 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.3894, Adjusted R-squared: 0.3868
## F-statistic: 152.4 on 5 and 1195 DF, p-value: < 2.2e-16
tab_model(mbi)
| overallvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.56 | 0.44 – 0.68 | <0.001 |
| mediaIndex.c | 0.17 | 0.12 – 0.23 | <0.001 |
| pDemR | -0.95 | -1.13 – -0.78 | <0.001 |
| pDemI | -0.88 | -1.08 – -0.68 | <0.001 |
| mediaIndex.c * pDemR | 0.09 | 0.02 – 0.16 | 0.013 |
| mediaIndex.c * pDemI | 0.16 | 0.06 – 0.27 | 0.002 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.389 / 0.387 | ||
mbii <- lm(overallvote.c ~ mediaIndex.c * (pRepD + pRepI), data = d)
summary(mbii)
##
## Call:
## lm(formula = overallvote.c ~ mediaIndex.c * (pRepD + pRepI),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3221 -0.8638 0.0721 0.8326 3.3625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.39551 0.06510 -6.075 1.66e-09 ***
## mediaIndex.c 0.26360 0.02460 10.716 < 2e-16 ***
## pRepD 0.95450 0.08897 10.728 < 2e-16 ***
## pRepI 0.07000 0.10474 0.668 0.5040
## mediaIndex.c:pRepD -0.09057 0.03655 -2.478 0.0134 *
## mediaIndex.c:pRepI 0.07318 0.05040 1.452 0.1468
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.119 on 1195 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.3894, Adjusted R-squared: 0.3868
## F-statistic: 152.4 on 5 and 1195 DF, p-value: < 2.2e-16
tab_model(mbii)
| overallvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.40 | -0.52 – -0.27 | <0.001 |
| mediaIndex.c | 0.26 | 0.22 – 0.31 | <0.001 |
| pRepD | 0.95 | 0.78 – 1.13 | <0.001 |
| pRepI | 0.07 | -0.14 – 0.28 | 0.504 |
| mediaIndex.c * pRepD | -0.09 | -0.16 – -0.02 | 0.013 |
| mediaIndex.c * pRepI | 0.07 | -0.03 – 0.17 | 0.147 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.389 / 0.387 | ||
mbiii <- lm(overallvote.c ~ mediaIndex.c * (pIndD + pIndR), data = d)
summary(mbiii)
##
## Call:
## lm(formula = overallvote.c ~ mediaIndex.c * (pIndD + pIndR),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3221 -0.8638 0.0721 0.8326 3.3625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.32550 0.08205 -3.967 7.71e-05 ***
## mediaIndex.c 0.33678 0.04399 7.655 3.96e-14 ***
## pIndD 0.88450 0.10204 8.669 < 2e-16 ***
## pIndR -0.07000 0.10474 -0.668 0.50403
## mediaIndex.c:pIndD -0.16375 0.05164 -3.171 0.00156 **
## mediaIndex.c:pIndR -0.07318 0.05040 -1.452 0.14679
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.119 on 1195 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.3894, Adjusted R-squared: 0.3868
## F-statistic: 152.4 on 5 and 1195 DF, p-value: < 2.2e-16
tab_model(mbiii)
| overallvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.33 | -0.49 – -0.16 | <0.001 |
| mediaIndex.c | 0.34 | 0.25 – 0.42 | <0.001 |
| pIndD | 0.88 | 0.68 – 1.08 | <0.001 |
| pIndR | -0.07 | -0.28 – 0.14 | 0.504 |
| mediaIndex.c * pIndD | -0.16 | -0.27 – -0.06 | 0.002 |
| mediaIndex.c * pIndR | -0.07 | -0.17 – 0.03 | 0.147 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.389 / 0.387 | ||
there is no sig. interaction between DvR and MediaIndex, but there is for IvDR and mediaIndex - the steepness of the slope is smaller for DR than for Indep.
Simple effects of mediaIndex:
Dems: B = .18, p < .001 (M = .43)
Reps: B = .18, p < .001 (M = -.32)
Ind: B = .28, p < .001 (M = -.48)
mc <- lm(voteLegit.c ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
tab_model(mc)
| voteLegit.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.12 | -0.20 – -0.05 | 0.002 |
| mediaIndex.c | 0.21 | 0.18 – 0.25 | <0.001 |
| pDem_Rep | -0.75 | -0.91 – -0.58 | <0.001 |
| pInd_Not | 0.54 | 0.36 – 0.71 | <0.001 |
| mediaIndex.c * pDem_Rep | 0.00 | -0.07 – 0.07 | 0.989 |
| mediaIndex.c * pInd_Not | -0.11 | -0.20 – -0.02 | 0.021 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.319 / 0.316 | ||
summary(mc)
##
## Call:
## lm(formula = voteLegit.c ~ mediaIndex.c * (pDem_Rep + pInd_Not),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3393 -0.7781 0.1391 0.7875 2.8425
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1226780 0.0386485 -3.174 0.00154 **
## mediaIndex.c 0.2134940 0.0182274 11.713 < 2e-16 ***
## pDem_Rep -0.7453025 0.0853933 -8.728 < 2e-16 ***
## pInd_Not 0.5387997 0.0895802 6.015 2.39e-09 ***
## mediaIndex.c:pDem_Rep 0.0004742 0.0350811 0.014 0.98922
## mediaIndex.c:pInd_Not -0.1054936 0.0457196 -2.307 0.02120 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.074 on 1195 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.3186, Adjusted R-squared: 0.3157
## F-statistic: 111.7 on 5 and 1195 DF, p-value: < 2.2e-16
maa <- lm(voteLegit.c ~ mediaIndex.c * (party_factor), data = d)
plot_model(maa, type = "pred", terms = c("mediaIndex.c", "party_factor"))
mci <- lm(voteLegit.c ~ mediaIndex.c * (pDemR + pDemI), data = d)
tab_model(mci)
| voteLegit.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.43 | 0.31 – 0.54 | <0.001 |
| mediaIndex.c | 0.18 | 0.13 – 0.23 | <0.001 |
| pDemR | -0.75 | -0.91 – -0.58 | <0.001 |
| pDemI | -0.91 | -1.10 – -0.72 | <0.001 |
| mediaIndex.c * pDemR | 0.00 | -0.07 – 0.07 | 0.989 |
| mediaIndex.c * pDemI | 0.11 | 0.01 – 0.20 | 0.033 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.319 / 0.316 | ||
summary(mci)
##
## Call:
## lm(formula = voteLegit.c ~ mediaIndex.c * (pDemR + pDemI), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3393 -0.7781 0.1391 0.7875 2.8425
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4277772 0.0582096 7.349 3.69e-13 ***
## mediaIndex.c 0.1784440 0.0259480 6.877 9.83e-12 ***
## pDemR -0.7453025 0.0853933 -8.728 < 2e-16 ***
## pDemI -0.9114510 0.0979284 -9.307 < 2e-16 ***
## mediaIndex.c:pDemR 0.0004742 0.0350811 0.014 0.9892
## mediaIndex.c:pDemI 0.1057307 0.0495571 2.134 0.0331 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.074 on 1195 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.3186, Adjusted R-squared: 0.3157
## F-statistic: 111.7 on 5 and 1195 DF, p-value: < 2.2e-16
mcii <- lm(voteLegit.c ~ mediaIndex.c * (pRepD + pRepI), data = d)
tab_model(mcii)
| voteLegit.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.32 | -0.44 – -0.19 | <0.001 |
| mediaIndex.c | 0.18 | 0.13 – 0.23 | <0.001 |
| pRepD | 0.75 | 0.58 – 0.91 | <0.001 |
| pRepI | -0.17 | -0.36 – 0.03 | 0.099 |
| mediaIndex.c * pRepD | -0.00 | -0.07 – 0.07 | 0.989 |
| mediaIndex.c * pRepI | 0.11 | 0.01 – 0.20 | 0.030 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.319 / 0.316 | ||
summary(mcii)
##
## Call:
## lm(formula = voteLegit.c ~ mediaIndex.c * (pRepD + pRepI), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3393 -0.7781 0.1391 0.7875 2.8425
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3175253 0.0624793 -5.082 4.33e-07 ***
## mediaIndex.c 0.1789183 0.0236090 7.578 6.99e-14 ***
## pRepD 0.7453025 0.0853933 8.728 < 2e-16 ***
## pRepI -0.1661485 0.1005250 -1.653 0.0986 .
## mediaIndex.c:pRepD -0.0004742 0.0350811 -0.014 0.9892
## mediaIndex.c:pRepI 0.1052565 0.0483735 2.176 0.0298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.074 on 1195 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.3186, Adjusted R-squared: 0.3157
## F-statistic: 111.7 on 5 and 1195 DF, p-value: < 2.2e-16
mciii <- lm(voteLegit.c ~ mediaIndex.c * (pIndD + pIndR), data = d)
tab_model(mciii)
| voteLegit.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.48 | -0.64 – -0.33 | <0.001 |
| mediaIndex.c | 0.28 | 0.20 – 0.37 | <0.001 |
| pIndD | 0.91 | 0.72 – 1.10 | <0.001 |
| pIndR | 0.17 | -0.03 – 0.36 | 0.099 |
| mediaIndex.c * pIndD | -0.11 | -0.20 – -0.01 | 0.033 |
| mediaIndex.c * pIndR | -0.11 | -0.20 – -0.01 | 0.030 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.319 / 0.316 | ||
summary(mciii)
##
## Call:
## lm(formula = voteLegit.c ~ mediaIndex.c * (pIndD + pIndR), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3393 -0.7781 0.1391 0.7875 2.8425
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.48367 0.07875 -6.142 1.11e-09 ***
## mediaIndex.c 0.28417 0.04222 6.731 2.62e-11 ***
## pIndD 0.91145 0.09793 9.307 < 2e-16 ***
## pIndR 0.16615 0.10053 1.653 0.0986 .
## mediaIndex.c:pIndD -0.10573 0.04956 -2.134 0.0331 *
## mediaIndex.c:pIndR -0.10526 0.04837 -2.176 0.0298 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.074 on 1195 degrees of freedom
## (35 observations deleted due to missingness)
## Multiple R-squared: 0.3186, Adjusted R-squared: 0.3157
## F-statistic: 111.7 on 5 and 1195 DF, p-value: < 2.2e-16
There is an interactin between mediaIndex and DvR but not IvDR. The slope of Reps is steeper than for Dems – the more liberal media they watch the more risk they see covid has to economy and themselves.
Simple effect for mediaIndex:
Dem: B = .10, p < .001 (M = 4.37)
Rep: B = .22, p < .001 (M = 4.07)
Ind: B = .18, p < .001 (M = 4.05)
#risk3 = severity of health consequences of covid
#risk4 = severity of economic consequences of covid
#risk5 = severity of personal economic consequences of covid
psych::alpha(d[,c("risk3",
"risk4",
"risk5"
)])
##
## Reliability analysis
## Call: psych::alpha(x = d[, c("risk3", "risk4", "risk5")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.65 0.67 0.58 0.4 2 0.017 4.1 1.2 0.38
##
## lower alpha upper 95% confidence boundaries
## 0.62 0.65 0.69
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## risk3 0.53 0.55 0.38 0.38 1.2 0.026 NA 0.38
## risk4 0.50 0.50 0.34 0.34 1.0 0.028 NA 0.34
## risk5 0.65 0.66 0.49 0.49 1.9 0.020 NA 0.49
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## risk3 1226 0.78 0.79 0.62 0.48 4.5 1.6
## risk4 1226 0.77 0.80 0.65 0.52 4.9 1.4
## risk5 1227 0.77 0.74 0.50 0.41 3.0 1.8
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## risk3 0.05 0.09 0.11 0.17 0.27 0.20 0.11 0.01
## risk4 0.02 0.04 0.08 0.19 0.30 0.26 0.11 0.01
## risk5 0.29 0.21 0.12 0.17 0.09 0.07 0.04 0.01
#alpha = .65
d$riskSeverity <- (d$risk3 + d$risk4 + d$risk5)/3
psych::describeBy(d$risk3, list(d$party_factor))
##
## Descriptive statistics by group
## : Democrat
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 564 5.29 1.22 5 5.38 1.48 1 7 6 -0.65 0.38 0.05
## ------------------------------------------------------------
## : Republican
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 466 3.76 1.66 4 3.76 1.48 1 7 6 0.04 -0.89 0.08
## ------------------------------------------------------------
## : Independent
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 194 4.24 1.66 4 4.29 1.48 1 7 6 -0.25 -0.7 0.12
psych::describeBy(d$risk4, list(d$party_factor))
##
## Descriptive statistics by group
## : Democrat
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 564 5.16 1.2 5 5.22 1.48 1 7 6 -0.64 0.52 0.05
## ------------------------------------------------------------
## : Republican
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 466 4.73 1.48 5 4.81 1.48 1 7 6 -0.49 -0.35 0.07
## ------------------------------------------------------------
## : Independent
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 194 4.68 1.56 5 4.79 1.48 1 7 6 -0.59 0.01 0.11
psych::describeBy(d$risk5, list(d$party_factor))
##
## Descriptive statistics by group
## : Democrat
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 565 3.14 1.82 3 2.98 1.48 1 7 6 0.5 -0.81 0.08
## ------------------------------------------------------------
## : Republican
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 466 2.67 1.71 2 2.45 1.48 1 7 6 0.79 -0.43 0.08
## ------------------------------------------------------------
## : Independent
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 194 3.09 1.91 3 2.92 2.97 1 7 6 0.49 -0.96 0.14
describe(d$riskSeverity)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1226 4.14 1.25 4 4.12 0.99 1 7 6 0.04 0 0.04
psych::describeBy(d$riskSeverity, list(d$party_factor))
##
## Descriptive statistics by group
## : Democrat
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 564 4.53 1.08 4.33 4.51 0.99 1 7 6 0.13 0.19 0.05
## ------------------------------------------------------------
## : Republican
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 466 3.72 1.23 3.67 3.68 0.99 1 7 6 0.3 0.01 0.06
## ------------------------------------------------------------
## : Independent
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 194 4.01 1.37 4 4 0.99 1 7 6 0 -0.02 0.1
md <- lm(riskSeverity ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
tab_model(md)
| riskSeverity | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.17 | 4.09 – 4.25 | <0.001 |
| mediaIndex.c | 0.17 | 0.13 – 0.21 | <0.001 |
| pDem_Rep | -0.29 | -0.47 – -0.12 | 0.001 |
| pInd_Not | 0.17 | -0.01 – 0.36 | 0.065 |
| mediaIndex.c * pDem_Rep | 0.12 | 0.04 – 0.19 | 0.002 |
| mediaIndex.c * pInd_Not | -0.02 | -0.12 – 0.07 | 0.619 |
| Observations | 1205 | ||
| R2 / R2 adjusted | 0.164 / 0.160 | ||
summary(md)
##
## Call:
## lm(formula = riskSeverity ~ mediaIndex.c * (pDem_Rep + pInd_Not),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8442 -0.7581 -0.0771 0.6807 3.9349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.16619 0.04086 101.956 < 2e-16 ***
## mediaIndex.c 0.17068 0.01918 8.896 < 2e-16 ***
## pDem_Rep -0.29493 0.09056 -3.257 0.00116 **
## pInd_Not 0.17435 0.09451 1.845 0.06531 .
## mediaIndex.c:pDem_Rep 0.11599 0.03721 3.117 0.00187 **
## mediaIndex.c:pInd_Not -0.02385 0.04795 -0.497 0.61893
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.138 on 1199 degrees of freedom
## (31 observations deleted due to missingness)
## Multiple R-squared: 0.1636, Adjusted R-squared: 0.1602
## F-statistic: 46.92 on 5 and 1199 DF, p-value: < 2.2e-16
maa <- lm(riskSeverity ~ mediaIndex.c * (party_factor), data = d)
plot_model(maa, type = "pred", terms = c("mediaIndex.c", "party_factor"))
mdi <- lm(riskSeverity ~ mediaIndex.c * (pDemR + pDemI), data = d)
tab_model(mdi)
| riskSeverity | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.37 | 4.25 – 4.49 | <0.001 |
| mediaIndex.c | 0.10 | 0.05 – 0.16 | <0.001 |
| pDemR | -0.29 | -0.47 – -0.12 | 0.001 |
| pDemI | -0.32 | -0.52 – -0.12 | 0.002 |
| mediaIndex.c * pDemR | 0.12 | 0.04 – 0.19 | 0.002 |
| mediaIndex.c * pDemI | 0.08 | -0.02 – 0.18 | 0.116 |
| Observations | 1205 | ||
| R2 / R2 adjusted | 0.164 / 0.160 | ||
summary(mdi)
##
## Call:
## lm(formula = riskSeverity ~ mediaIndex.c * (pDemR + pDemI), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8442 -0.7581 -0.0771 0.6807 3.9349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.37118 0.06177 70.769 < 2e-16 ***
## mediaIndex.c 0.10481 0.02755 3.804 0.000149 ***
## pDemR -0.29493 0.09056 -3.257 0.001159 **
## pDemI -0.32181 0.10342 -3.112 0.001905 **
## mediaIndex.c:pDemR 0.11599 0.03721 3.117 0.001868 **
## mediaIndex.c:pDemI 0.08185 0.05208 1.572 0.116268
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.138 on 1199 degrees of freedom
## (31 observations deleted due to missingness)
## Multiple R-squared: 0.1636, Adjusted R-squared: 0.1602
## F-statistic: 46.92 on 5 and 1199 DF, p-value: < 2.2e-16
mdii <- lm(riskSeverity ~ mediaIndex.c * (pRepD + pRepI), data = d)
tab_model(mdii)
| riskSeverity | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.08 | 3.95 – 4.21 | <0.001 |
| mediaIndex.c | 0.22 | 0.17 – 0.27 | <0.001 |
| pRepD | 0.29 | 0.12 – 0.47 | 0.001 |
| pRepI | -0.03 | -0.24 – 0.18 | 0.800 |
| mediaIndex.c * pRepD | -0.12 | -0.19 – -0.04 | 0.002 |
| mediaIndex.c * pRepI | -0.03 | -0.13 – 0.07 | 0.501 |
| Observations | 1205 | ||
| R2 / R2 adjusted | 0.164 / 0.160 | ||
summary(mdii)
##
## Call:
## lm(formula = riskSeverity ~ mediaIndex.c * (pRepD + pRepI), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8442 -0.7581 -0.0771 0.6807 3.9349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.07626 0.06623 61.549 < 2e-16 ***
## mediaIndex.c 0.22080 0.02501 8.828 < 2e-16 ***
## pRepD 0.29493 0.09056 3.257 0.00116 **
## pRepI -0.02688 0.10615 -0.253 0.80011
## mediaIndex.c:pRepD -0.11599 0.03721 -3.117 0.00187 **
## mediaIndex.c:pRepI -0.03414 0.05078 -0.672 0.50148
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.138 on 1199 degrees of freedom
## (31 observations deleted due to missingness)
## Multiple R-squared: 0.1636, Adjusted R-squared: 0.1602
## F-statistic: 46.92 on 5 and 1199 DF, p-value: < 2.2e-16
mdiii <- lm(riskSeverity ~ mediaIndex.c * (pIndD + pIndR), data = d)
tab_model(mdiii)
| riskSeverity | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 4.05 | 3.89 – 4.21 | <0.001 |
| mediaIndex.c | 0.19 | 0.10 – 0.27 | <0.001 |
| pIndD | 0.32 | 0.12 – 0.52 | 0.002 |
| pIndR | 0.03 | -0.18 – 0.24 | 0.800 |
| mediaIndex.c * pIndD | -0.08 | -0.18 – 0.02 | 0.116 |
| mediaIndex.c * pIndR | 0.03 | -0.07 – 0.13 | 0.501 |
| Observations | 1205 | ||
| R2 / R2 adjusted | 0.164 / 0.160 | ||
summary(mdiii)
##
## Call:
## lm(formula = riskSeverity ~ mediaIndex.c * (pIndD + pIndR), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8442 -0.7581 -0.0771 0.6807 3.9349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.04937 0.08295 48.815 < 2e-16 ***
## mediaIndex.c 0.18666 0.04419 4.224 2.58e-05 ***
## pIndD 0.32181 0.10342 3.112 0.0019 **
## pIndR 0.02688 0.10615 0.253 0.8001
## mediaIndex.c:pIndD -0.08185 0.05208 -1.572 0.1163
## mediaIndex.c:pIndR 0.03414 0.05078 0.672 0.5015
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.138 on 1199 degrees of freedom
## (31 observations deleted due to missingness)
## Multiple R-squared: 0.1636, Adjusted R-squared: 0.1602
## F-statistic: 46.92 on 5 and 1199 DF, p-value: < 2.2e-16
There is a sig interaction between DvR and mediaIndex (not IvDR though) on whether risk of covid is ahead or behind us. Reps think the worst is ahead more when they watch more liberal tv compared with Dems.
Simple effects for media index:
Dem: B = .10, p =.007 (M = 1.13)
Rep: B = .31, p < .001 (M = .59)
Ind: B = .19, p = .001 (M = .93)
# risk6 = worst of covid ahead or behind?
# (-3 = completely behind, 0 = in the worst, +3 = completely ahead)
describe(d$risk6)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1227 0.76 1.63 1 0.88 1.48 -3 3 6 -0.46 -0.42 0.05
psych::describeBy(d$risk6, list(d$party_factor))
##
## Descriptive statistics by group
## : Democrat
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 565 1.27 1.3 1 1.36 1.48 -3 3 6 -0.47 -0.17 0.05
## ------------------------------------------------------------
## : Republican
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 466 0.09 1.76 0 0.11 1.48 -3 3 6 -0.07 -0.87 0.08
## ------------------------------------------------------------
## : Independent
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 194 0.89 1.59 1 1.01 1.48 -3 3 6 -0.43 -0.35 0.11
me <- lm(risk6 ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
tab_model(me)
| risk6 | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.88 | 0.78 – 0.99 | <0.001 |
| mediaIndex.c | 0.20 | 0.15 – 0.25 | <0.001 |
| pDem_Rep | -0.54 | -0.77 – -0.31 | <0.001 |
| pInd_Not | -0.07 | -0.31 – 0.17 | 0.580 |
| mediaIndex.c * pDem_Rep | 0.22 | 0.12 – 0.31 | <0.001 |
| mediaIndex.c * pInd_Not | 0.01 | -0.11 – 0.13 | 0.835 |
| Observations | 1206 | ||
| R2 / R2 adjusted | 0.186 / 0.183 | ||
summary(me)
##
## Call:
## lm(formula = risk6 ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2012 -1.1139 -0.0428 0.9612 3.9182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.88396 0.05291 16.706 < 2e-16 ***
## mediaIndex.c 0.20101 0.02484 8.091 1.44e-15 ***
## pDem_Rep -0.54306 0.11716 -4.635 3.96e-06 ***
## pInd_Not -0.06774 0.12245 -0.553 0.580
## mediaIndex.c:pDem_Rep 0.21718 0.04812 4.514 7.00e-06 ***
## mediaIndex.c:pInd_Not 0.01295 0.06213 0.208 0.835
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.475 on 1200 degrees of freedom
## (30 observations deleted due to missingness)
## Multiple R-squared: 0.1861, Adjusted R-squared: 0.1828
## F-statistic: 54.89 on 5 and 1200 DF, p-value: < 2.2e-16
maa <- lm(risk6 ~ mediaIndex.c * (party_factor), data = d)
plot_model(maa, type = "pred", terms = c("mediaIndex.c", "party_factor"))
mei <- lm(risk6 ~ mediaIndex.c * (pDemR + pDemI), data = d)
tab_model(mei)
| risk6 | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 1.13 | 0.98 – 1.29 | <0.001 |
| mediaIndex.c | 0.10 | 0.03 – 0.17 | 0.007 |
| pDemR | -0.54 | -0.77 – -0.31 | <0.001 |
| pDemI | -0.20 | -0.47 – 0.06 | 0.128 |
| mediaIndex.c * pDemR | 0.22 | 0.12 – 0.31 | <0.001 |
| mediaIndex.c * pDemI | 0.10 | -0.04 – 0.23 | 0.156 |
| Observations | 1206 | ||
| R2 / R2 adjusted | 0.186 / 0.183 | ||
summary(mei)
##
## Call:
## lm(formula = risk6 ~ mediaIndex.c * (pDemR + pDemI), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2012 -1.1139 -0.0428 0.9612 3.9182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.13314 0.07973 14.212 < 2e-16 ***
## mediaIndex.c 0.09669 0.03555 2.719 0.00663 **
## pDemR -0.54306 0.11716 -4.635 3.96e-06 ***
## pDemI -0.20379 0.13386 -1.522 0.12817
## mediaIndex.c:pDemR 0.21718 0.04812 4.514 7.00e-06 ***
## mediaIndex.c:pDemI 0.09564 0.06742 1.419 0.15630
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.475 on 1200 degrees of freedom
## (30 observations deleted due to missingness)
## Multiple R-squared: 0.1861, Adjusted R-squared: 0.1828
## F-statistic: 54.89 on 5 and 1200 DF, p-value: < 2.2e-16
meii <- lm(risk6 ~ mediaIndex.c * (pRepD + pRepI), data = d)
tab_model(meii)
| risk6 | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.59 | 0.42 – 0.76 | <0.001 |
| mediaIndex.c | 0.31 | 0.25 – 0.38 | <0.001 |
| pRepD | 0.54 | 0.31 – 0.77 | <0.001 |
| pRepI | 0.34 | 0.07 – 0.61 | 0.014 |
| mediaIndex.c * pRepD | -0.22 | -0.31 – -0.12 | <0.001 |
| mediaIndex.c * pRepI | -0.12 | -0.25 – 0.01 | 0.065 |
| Observations | 1206 | ||
| R2 / R2 adjusted | 0.186 / 0.183 | ||
summary(meii)
##
## Call:
## lm(formula = risk6 ~ mediaIndex.c * (pRepD + pRepI), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2012 -1.1139 -0.0428 0.9612 3.9182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59007 0.08585 6.873 1.00e-11 ***
## mediaIndex.c 0.31387 0.03242 9.681 < 2e-16 ***
## pRepD 0.54306 0.11716 4.635 3.96e-06 ***
## pRepI 0.33927 0.13759 2.466 0.0138 *
## mediaIndex.c:pRepD -0.21718 0.04812 -4.514 7.00e-06 ***
## mediaIndex.c:pRepI -0.12154 0.06582 -1.847 0.0651 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.475 on 1200 degrees of freedom
## (30 observations deleted due to missingness)
## Multiple R-squared: 0.1861, Adjusted R-squared: 0.1828
## F-statistic: 54.89 on 5 and 1200 DF, p-value: < 2.2e-16
meiii <- lm(risk6 ~ mediaIndex.c * (pIndD + pIndR), data = d)
tab_model(meiii)
| risk6 | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.93 | 0.72 – 1.14 | <0.001 |
| mediaIndex.c | 0.19 | 0.08 – 0.30 | 0.001 |
| pIndD | 0.20 | -0.06 – 0.47 | 0.128 |
| pIndR | -0.34 | -0.61 – -0.07 | 0.014 |
| mediaIndex.c * pIndD | -0.10 | -0.23 – 0.04 | 0.156 |
| mediaIndex.c * pIndR | 0.12 | -0.01 – 0.25 | 0.065 |
| Observations | 1206 | ||
| R2 / R2 adjusted | 0.186 / 0.183 | ||
summary(meiii)
##
## Call:
## lm(formula = risk6 ~ mediaIndex.c * (pIndD + pIndR), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2012 -1.1139 -0.0428 0.9612 3.9182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.92934 0.10753 8.643 < 2e-16 ***
## mediaIndex.c 0.19233 0.05728 3.357 0.000811 ***
## pIndD 0.20379 0.13386 1.522 0.128172
## pIndR -0.33927 0.13759 -2.466 0.013811 *
## mediaIndex.c:pIndD -0.09564 0.06742 -1.419 0.156301
## mediaIndex.c:pIndR 0.12154 0.06582 1.847 0.065059 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.475 on 1200 degrees of freedom
## (30 observations deleted due to missingness)
## Multiple R-squared: 0.1861, Adjusted R-squared: 0.1828
## F-statistic: 54.89 on 5 and 1200 DF, p-value: < 2.2e-16
There is a sig interacton betwen DvR and mediaIndex on willingness to get vaxxed, but not int for IvDR and mediaIndex. As Dems and Inds watch more liberal media they are more willing to get vaxxed, but there is no change in Reps based on media.
Simple Effects for mediaIndex:
Dems: B = .32, p < .001 (M = .34)
Reps: B = .05, p = .268 (M = .24)
Ind: B = .26, p = .001, (M =.14)
# vaxxAttitudes = would you get a covid vaxx?
# (-3 = def not, 0 = undecided, +3 = def would)
describe(d$vaxxAttitudes)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1217 0.4 2.14 0 0.5 2.97 -3 3 6 -0.32 -1.19 0.06
psych::describeBy(d$vaxxAttitude, list(d$party_factor, d$election_timing))
##
## Descriptive statistics by group
## : Democrat
## : Pre-election
## vars* n* mean* sd* median* trimmed* mad* min* max* range* skew* kurtosis* se*
## 1 NA NA NA NA NA NA NA NA NA NA NA NA NA
## ------------------------------------------------------------
## : Republican
## : Pre-election
## vars* n* mean* sd* median* trimmed* mad* min* max* range* skew* kurtosis* se*
## 1 NA NA NA NA NA NA NA NA NA NA NA NA NA
## ------------------------------------------------------------
## : Independent
## : Pre-election
## vars* n* mean* sd* median* trimmed* mad* min* max* range* skew* kurtosis* se*
## 1 NA NA NA NA NA NA NA NA NA NA NA NA NA
## ------------------------------------------------------------
## : Democrat
## : During-election
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 251 0.94 1.91 1 1.15 1.48 -3 3 6 -0.62 -0.67 0.12
## ------------------------------------------------------------
## : Republican
## : During-election
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 238 0.27 2.35 0 0.34 4.45 -3 3 6 -0.23 -1.47 0.15
## ------------------------------------------------------------
## : Independent
## : During-election
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 87 -0.16 1.82 0 -0.2 1.48 -3 3 6 0.01 -0.72 0.2
## ------------------------------------------------------------
## : Democrat
## : Post-election
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 309 0.68 2.02 1 0.84 1.48 -3 3 6 -0.54 -0.86 0.11
## ------------------------------------------------------------
## : Republican
## : Post-election
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 227 0.08 2.32 0 0.1 4.45 -3 3 6 -0.11 -1.49 0.15
## ------------------------------------------------------------
## : Independent
## : Post-election
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 104 -0.24 2.01 0 -0.3 2.97 -3 3 6 0.07 -1.1 0.2
mf <- lm(vaxxAttitudes ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
summary(mf)
##
## Call:
## lm(formula = vaxxAttitudes ~ mediaIndex.c * (pDem_Rep + pInd_Not),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7877 -1.7114 0.0725 1.7848 3.6912
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.14902 0.07424 2.007 0.0449 *
## mediaIndex.c 0.21198 0.03485 6.083 1.59e-09 ***
## pDem_Rep -0.09926 0.16441 -0.604 0.5461
## pInd_Not 0.43422 0.17177 2.528 0.0116 *
## mediaIndex.c:pDem_Rep -0.27155 0.06751 -4.022 6.12e-05 ***
## mediaIndex.c:pInd_Not -0.07821 0.08715 -0.897 0.3697
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 1198 degrees of freedom
## (32 observations deleted due to missingness)
## Multiple R-squared: 0.07324, Adjusted R-squared: 0.06938
## F-statistic: 18.94 on 5 and 1198 DF, p-value: < 2.2e-16
tab_model(mf)
| vaxxAttitudes | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.15 | 0.00 – 0.29 | 0.045 |
| mediaIndex.c | 0.21 | 0.14 – 0.28 | <0.001 |
| pDem_Rep | -0.10 | -0.42 – 0.22 | 0.546 |
| pInd_Not | 0.43 | 0.10 – 0.77 | 0.012 |
| mediaIndex.c * pDem_Rep | -0.27 | -0.40 – -0.14 | <0.001 |
| mediaIndex.c * pInd_Not | -0.08 | -0.25 – 0.09 | 0.370 |
| Observations | 1204 | ||
| R2 / R2 adjusted | 0.073 / 0.069 | ||
maa <- lm(vaxxAttitudes ~ mediaIndex.c * (party_factor), data = d)
plot_model(maa, type = "pred", terms = c("mediaIndex.c", "party_factor"))
mei <- lm(vaxxAttitudes ~ mediaIndex.c * (pDemR + pDemI), data = d)
summary(mei)
##
## Call:
## lm(formula = vaxxAttitudes ~ mediaIndex.c * (pDemR + pDemI),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7877 -1.7114 0.0725 1.7848 3.6912
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34195 0.11193 3.055 0.0023 **
## mediaIndex.c 0.32195 0.04987 6.455 1.57e-10 ***
## pDemR -0.09926 0.16441 -0.604 0.5461
## pDemI -0.48385 0.18782 -2.576 0.0101 *
## mediaIndex.c:pDemR -0.27155 0.06751 -4.022 6.12e-05 ***
## mediaIndex.c:pDemI -0.05756 0.09457 -0.609 0.5428
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 1198 degrees of freedom
## (32 observations deleted due to missingness)
## Multiple R-squared: 0.07324, Adjusted R-squared: 0.06938
## F-statistic: 18.94 on 5 and 1198 DF, p-value: < 2.2e-16
tab_model(mei)
| vaxxAttitudes | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.34 | 0.12 – 0.56 | 0.002 |
| mediaIndex.c | 0.32 | 0.22 – 0.42 | <0.001 |
| pDemR | -0.10 | -0.42 – 0.22 | 0.546 |
| pDemI | -0.48 | -0.85 – -0.12 | 0.010 |
| mediaIndex.c * pDemR | -0.27 | -0.40 – -0.14 | <0.001 |
| mediaIndex.c * pDemI | -0.06 | -0.24 – 0.13 | 0.543 |
| Observations | 1204 | ||
| R2 / R2 adjusted | 0.073 / 0.069 | ||
meii <- lm(vaxxAttitudes ~ mediaIndex.c * (pRepD + pRepI), data = d)
summary(meii)
##
## Call:
## lm(formula = vaxxAttitudes ~ mediaIndex.c * (pRepD + pRepI),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7877 -1.7114 0.0725 1.7848 3.6912
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24269 0.12043 2.015 0.0441 *
## mediaIndex.c 0.05040 0.04550 1.108 0.2682
## pRepD 0.09926 0.16441 0.604 0.5461
## pRepI -0.38459 0.19301 -1.993 0.0465 *
## mediaIndex.c:pRepD 0.27155 0.06751 4.022 6.12e-05 ***
## mediaIndex.c:pRepI 0.21399 0.09234 2.318 0.0206 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 1198 degrees of freedom
## (32 observations deleted due to missingness)
## Multiple R-squared: 0.07324, Adjusted R-squared: 0.06938
## F-statistic: 18.94 on 5 and 1198 DF, p-value: < 2.2e-16
tab_model(meii)
| vaxxAttitudes | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.24 | 0.01 – 0.48 | 0.044 |
| mediaIndex.c | 0.05 | -0.04 – 0.14 | 0.268 |
| pRepD | 0.10 | -0.22 – 0.42 | 0.546 |
| pRepI | -0.38 | -0.76 – -0.01 | 0.047 |
| mediaIndex.c * pRepD | 0.27 | 0.14 – 0.40 | <0.001 |
| mediaIndex.c * pRepI | 0.21 | 0.03 – 0.40 | 0.021 |
| Observations | 1204 | ||
| R2 / R2 adjusted | 0.073 / 0.069 | ||
meiii <- lm(vaxxAttitudes ~ mediaIndex.c * (pIndD + pIndR), data = d)
summary(meiii)
##
## Call:
## lm(formula = vaxxAttitudes ~ mediaIndex.c * (pIndD + pIndR),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7877 -1.7114 0.0725 1.7848 3.6912
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.14190 0.15082 -0.941 0.34696
## mediaIndex.c 0.26439 0.08035 3.290 0.00103 **
## pIndD 0.48385 0.18782 2.576 0.01011 *
## pIndR 0.38459 0.19301 1.993 0.04653 *
## mediaIndex.c:pIndD 0.05756 0.09457 0.609 0.54285
## mediaIndex.c:pIndR -0.21399 0.09234 -2.318 0.02064 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.069 on 1198 degrees of freedom
## (32 observations deleted due to missingness)
## Multiple R-squared: 0.07324, Adjusted R-squared: 0.06938
## F-statistic: 18.94 on 5 and 1198 DF, p-value: < 2.2e-16
tab_model(meiii)
| vaxxAttitudes | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.14 | -0.44 – 0.15 | 0.347 |
| mediaIndex.c | 0.26 | 0.11 – 0.42 | 0.001 |
| pIndD | 0.48 | 0.12 – 0.85 | 0.010 |
| pIndR | 0.38 | 0.01 – 0.76 | 0.047 |
| mediaIndex.c * pIndD | 0.06 | -0.13 – 0.24 | 0.543 |
| mediaIndex.c * pIndR | -0.21 | -0.40 – -0.03 | 0.021 |
| Observations | 1204 | ||
| R2 / R2 adjusted | 0.073 / 0.069 | ||