The Consumer Price Index (CPI) is a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services. Indexes are available for the U.S. and various geographic areas. Average price data for select utility, automotive fuel, and food items are also available.
CPI for All Urban Consumers (CPI-U)
Series Title : All items in U.S. city average, all urban consumers, not seasonally adjusted Series ID : CUUR0000SA0 Seasonality : Not Seasonally Adjusted Survey Name : CPI for All Urban Consumers (CPI-U) Measure Data Type : All items Area : U.S. city average Item : All items
Consumer Price Index for All Urban Consumers: All Items in U.S. City Average (CPIAUCNS)
indicator <-fredr_series_observations(series_id = "CPIAUCNS",
observation_start = as.Date("2010-01-01"))
indicator2 <- indicator%>% mutate(Difference=value-lag(value,default=value[[1]]),
Percent=100*(Difference/lag(value,default=value[[1]])))
tail(indicator2[,c(1,7)],n=12) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(1:2, T, color = "blue" )
date
|
Percent
|
2020-06-01
|
0.54720
|
2020-07-01
|
0.50582
|
2020-08-01
|
0.31532
|
2020-09-01
|
0.13927
|
2020-10-01
|
0.04149
|
2020-11-01
|
-0.06106
|
2020-12-01
|
0.09415
|
2021-01-01
|
0.42538
|
2021-02-01
|
0.54744
|
2021-03-01
|
0.70833
|
2021-04-01
|
0.82189
|
2021-05-01
|
0.80171
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "",
y = "Index Dec 1985 = 100",
title = "Consumer Price Index for All Urban Consumers: All Items",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Consumer Price Index for All Urban Consumers: Food and Beverages in U.S. City Average (CPIFABNS)
symbol <-fredr_series_observations(series_id = "CPIFABNS",
observation_start = as.Date("2010-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2:3, T, color = "blue" )
|
date
|
value
|
132
|
2020-12-01
|
269.38
|
133
|
2021-01-01
|
270.26
|
134
|
2021-02-01
|
270.67
|
135
|
2021-03-01
|
271.13
|
136
|
2021-04-01
|
272.37
|
137
|
2021-05-01
|
273.44
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Index 1982-1984=100",
title = "CPI: Food and Beverages in U.S. City Average",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Index 1982-1984=100",
title = "CPI: Food and Beverages in U.S. City Average",
subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Discharges for General Medical and Surgical Hospitals, All Establishments (DISC6221ALLEST176QNSA)
symbol <-fredr_series_observations(series_id = "DISC6221ALLEST176QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
30
|
2019-10-01
|
9169
|
31
|
2020-01-01
|
8958
|
32
|
2020-04-01
|
7526
|
33
|
2020-07-01
|
8326
|
34
|
2020-10-01
|
8305
|
35
|
2021-01-01
|
8196
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Thousands of Patents",
title = " Total Discharges for General Medical and Surgical Hospitals",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Thousands of Patents",
title = "Total Discharges for General Medical and Surgical Hospitals _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Expense for Ambulatory Health Care Services, All Establishments (EXP621ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "EXP621ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
44
|
2019-10-01
|
258316
|
45
|
2020-01-01
|
244116
|
46
|
2020-04-01
|
214401
|
47
|
2020-07-01
|
244732
|
48
|
2020-10-01
|
262083
|
49
|
2021-01-01
|
247008
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Total Expense for Ambulatory Health Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Ambulatory Health Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Total Expense for Child Day Care Services, All Establishments (EXP6244ALLEST144QNSA)
symbol <-fredr_series_observations(series_id = "EXP6244ALLEST144QNSA",
observation_start = as.Date("2000-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
44
|
2019-10-01
|
11082
|
45
|
2020-01-01
|
11067
|
46
|
2020-04-01
|
7634
|
47
|
2020-07-01
|
9130
|
48
|
2020-10-01
|
10204
|
49
|
2021-01-01
|
9989
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = " Total Expense for Child Day Care Services",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Quarterly",
y = "Millions of Dollars",
title = "Total Expense for Child Day Care Services _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Consumer Price Index for All Urban Consumers: Airline Fares in U.S. City Average (CUUR0000SETG01)
symbol <-fredr_series_observations(series_id = "CUUR0000SETG01",
observation_start = as.Date("2010-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
132
|
2020-12-01
|
205.98
|
133
|
2021-01-01
|
200.82
|
134
|
2021-02-01
|
197.20
|
135
|
2021-03-01
|
197.13
|
136
|
2021-04-01
|
222.95
|
137
|
2021-05-01
|
250.21
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Index 1982-1984=100",
title = "Airline Fares in U.S. City Average (CUUR0000SETG01)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Index 1982-1984=100",
title = "Airline Fares in U.S. City Average (CUUR0000SETG01) _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

Consumer Price Index for All Urban Consumers: Gasoline (All Types) in U.S. City Average (CUUR0000SETB01)
symbol <-fredr_series_observations(series_id = "CUUR0000SETB01",
observation_start = as.Date("2010-01-01"))
indicator <-as.data.frame(symbol)[,c(1,3)]
tail(indicator) %>% kable() %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
column_spec(2, T, color = "red" )
|
date
|
value
|
132
|
2020-12-01
|
193.99
|
133
|
2021-01-01
|
207.41
|
134
|
2021-02-01
|
221.69
|
135
|
2021-03-01
|
247.65
|
136
|
2021-04-01
|
252.60
|
137
|
2021-05-01
|
263.17
|
indicator %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Index 1982-1984=100",
title = "Gasoline (All Types) in U.S. City Average (CUUR0000SETB01)",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")
indicator2 %>%
ggplot(aes(x = date, y = value)) +
geom_line(color = "dodgerblue4",size=.8) +
labs(
x = "Monthly",
y = "Index 1982-1984=100",
title = "Gasoline (All Types) in U.S. City Average (CUUR0000SETB01) _ Short Term Trend",
subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") +
theme_economist()
