hllinas

1 Librerías

library(aplore3)     #Base de datos para los ejemplos
library(lsm)         #Base de datos para ejemplos y estimaciones del Log-verosimilitud
library(tidyverse)   #Incluye a dplyr y ggplot2

2 Introducción

Los métodos de regresión se han convertido en un componente integral de cualquier análisis de datos preocupado por describir la relación entre una variable de respuesta y una o variables más explicativas. Muy a menudo, la variable de resultado es discreta, tomando un valor de dos o más valores posibles. El modelo de regresión logística es el más modelo de regresión de mayor uso frecuente para el análisis de estos datos.

En el documento Rpbus :: Modelos lineales generalizados se explicó que estos modelos hacen parte de los modelos lineales generalizados y en Rpbus :: Regresión Logística binaria se explicó el caso binario. En este documento se explicará el caso multinomial, en donde la variable de respuesta toma uno de tres valores posibles. Para conocer con profundidad estos modelos, también es importante estudiar los siguientes cuatro tipos de modelos:

  • Modelo de Bernoulli.

  • Modelo completo.

  • Modelo nulo.

  • Modelo saturado.

En el documento Rpbus :: Modelos completo, nulo y saturado se describieron sus propiedades, con los ejemplos correspondientes. En este documento, se utilizarán las notaciones utilizados allá, así como los resultados encontrados en los ejemplos aplicados en esos documentos. A pesar de ello, se hará una breve descripción del modelo saturado, el cual será base para la teoría que se explicará posteriormente.

3 Datasets

Para las aplicaciones, se utilizará la base datos hbsdemo (UCLA: Stat Consulting Group (2021)):

library(repmis)
source_data("https://github.com/hllinas/DatosPublicos/blob/main/hsbdemo.Rdata?raw=false")
Datos <- hsbdemo
attach(Datos)
names(Datos)
## [1] "hsbdemo"

El conjunto de datos contiene variables sobre 200 estudiantes. Los estudiantes que ingresan a la escuela secundaria hacen la elección de un programa de tres posibles: general, vocacional y académico. Su elección puede ser modelada usando algunas variables predictoras. A continuación, se describen las variables:

  1. Student y ID, el estudiante y su código de identificación.

  2. gender, el género del estudiante: female, male.

  3. ses, el estrato socioeconómico: low, middle, high.

  4. schtype, el tipo de escuela: private, public.

  5. prog, el tipo de programa elegido por el estudiante: 0=general, 1=vocacional y 2=académico, la cual será nuestra variable de respuesta.

  6. read, write, math, science y socst son variables continuas que representan los puntajes en lectura, esscritura, matemática, ciencia y sociales, respectivamente.

  7. Honors, estado de honores: enrolled, not enrolled.

  8. awards, número de premios recibidos: de 0 a 9.

  9. cid, puntaje no especificado: de 0 a 20.

  10. prog0, variable binaria: 1=si prog=general, 0= de otro modo.

  11. prog1, variable binaria: 1=si prog=vocation, 0= de otro modo.

  12. prog2, variable binaria: 1=si prog=academic, 0= de otro modo.

Las primeras 10 observaciones son:

Student id gender ses schtyp prog read write math science socst honors awards cid prog0 prog1 prog2
1 45 female low public vocation 34 35 41 29 26 not enrolled 0 1 0 1 0
2 108 male middle public general 34 33 41 36 36 not enrolled 0 1 1 0 0
3 15 male high public vocation 39 39 44 26 42 not enrolled 0 1 0 1 0
4 67 male low public vocation 37 37 42 33 32 not enrolled 0 1 0 1 0
5 153 male middle public vocation 39 31 40 39 51 not enrolled 0 1 0 1 0
6 51 female high public general 42 36 42 31 39 not enrolled 0 1 1 0 0
7 164 male middle public vocation 31 36 46 39 46 not enrolled 0 1 0 1 0
8 133 male middle public vocation 50 31 40 34 31 not enrolled 0 1 0 1 0
9 2 female middle public vocation 39 41 33 42 41 not enrolled 0 1 0 1 0
10 53 male middle public vocation 34 37 46 39 31 not enrolled 0 1 0 1 0

Algunas estadísticas descriptivas relacionadas con nuestra variable de respuesta de interés (prog) son las que se indican en el ejemplo siguiente.

Example 3.1 Tenemos:

  1. Tabulación cruzada entre prog y ses.
Frecuencia <- xtabs(~ prog + ses, data = Datos)
Frecuencia <- cbind(Frecuencia, apply(Frecuencia,1,sum))
Frecuencia <- rbind(Frecuencia, apply(Frecuencia,2,sum))
rownames(Frecuencia)[4] <- c('Total')
colnames(Frecuencia)[4] <- c('Total')
Frecuencia
1 2 3 4
prog_ses high low middle Total
academic 42 19 44 105
general 9 16 20 45
vocation 7 12 31 50
Total 58 47 95 200
  1. Medidas estadísticas de write dentro de cada nivel de prog:
Datos %>%   group_by(prog)  %>% 
            summarise(n = length(as.numeric(write)),
             Minimo = min(as.numeric(write)),
             Maximo = max(as.numeric(write)),
             Promedio = mean(as.numeric(write)),
             Desviacion = sd(as.numeric(write)))
1 2 3 4 5 6
Programa Total Mínimo Máximo Promedio Desviación
academic 105 33 67 56.2571 7.9433
general 45 31 67 51.3333 9.3978
vocation 50 31 67 46.76 9.3188

4 Diferentes métodos de análisis

Considerando un datasets como el descrito anteriormente (u otro más complejo), se podrían intentar aplicar cualquiera de los siguientes métodos que se indican a continuación:

  1. Regresión logística multinomial, el objetivo principal de este documento.

  2. Regresión probit multinomial, el cual es muy similar a la regresión logística multinomial, pero con términos de error normal independientes.

  3. Análisis de función discriminante con múltiples grupos. Un método multivariado para variables de respuestas multinomiales.

  4. Análisis de regresión logística múltiple, uno para cada par de respuestas. Un problema con esta metodología es que cada análisis se ejecuta potencialmente en una muestra diferente. El otro problema es que, sin restringir los modelos logísticos, podríamos estimar la probabilidad de elegir todas las categorías de respuestas posibles mayor que 1.

  5. Reducir el número de categorías a dos y luego hacer una regresión logística. Esta propuesta tiene pérdida de información y, en general, se está cambiando las preguntas de investigación originales por otras muy diferentes.

  6. Regresión logística ordinal. Si la variable de respuesta tiene niveles ordenados y si también satisface el supuesto de probabilidades proporcionales, la aplicación de este método hará que el modelo sea más parsimonioso, es decir, se pueden encontrar un modelo con pocas variables y sin pérdida de información significativa.

  7. La regresión probit multinomial de alternativa específica. Permite diferentes estructuras de error, por lo tanto, permite relajar el supuesto de Independencia de Alternativas Irrevelantes (en inglés: Independence of Irrelevant Alternatives, IIA). Esto requiere que la estructura de datos sea específica para cada elección.

  8. El modelo logit anidado, que es otra forma de relajar el supuesto de IIA. También requiere que la estructura de datos sea específica de la elección.

5 Paquetes R para modelado multinomial

Existe una amplia gama de paquetes R disponibles para el modelado multinomial, algunos de los cuales incluso permiten la incorporación de efectos aleatorios (este tema de los efectos aleatorios no se explicar[a en este documento).

5.0.1 Efectos fijos

Los siguientes paquetes se utilizan con frecuencia y se citan para situaciones en las que solo se utilizan efectos fijos:

  1. La función multinom en la librería nnet (Venables & Ripley 2002). Es el paquete de mayor uso y se basa en redes neuronales.

  2. La función vglm en la librería VGAM (Yee 2021). Se basa en modelos con vectores generalizados aditivos, con una amplia gama de distribuciones para la variable de respuesta.

  3. La función polr en la librería MASS (Venables & Ripley 2002). También es útil para Variables de respuesta categórica ordenadas.

  4. LA función glmnet en la librería glmnet (Friedman et al. 2010). Utiliza métodos de contracción donde las estimaciones de coeficientes se pueden reducir a cero durante el procesoel modelo adecuado.

5.0.2 Efectos fijos y aleatorios

Curiosamente, un número creciente de paquetes también se ajusta a modelos multinomiales tanto con efectos como efectos aleatorios (modelos multinomiales de efectos mixtos), por ejemplo:

  1. La función bayesx en la librería R2BayesX (Belitz et al. 2017, Umlauf et al. 2015), utiliza un enfoque bayesiano para la estimación de parámetros.

  2. La función npmlt en la librería mixcat (Papageorgiou y Hinde 2012).

  3. La función clmm en la librería *ordinal8 (Christensen 2018), para categorías ordenadas de la variable de respuesta.

6 Modelo saturado

El modelo saturado está caracterizado por dos supuestos.

Hypothesis 6.1 (Supuesto 1 en el modelo saturado) Se supone que:

  1. Se tienen \(K\) variables explicativas \(X_1, \cdots, X_K\) (algunas pueden ser numéricas y otras categóricas) con valores \(x_{i1}, \cdots, x_{iK}\) para \(i=1, \cdots, n\) (fijadas u observadas por el estadístico, según sean variables determiní}sticas o aleatorias).

  2. Entre las \(n\) kuplas \((x_{i1}, \cdots, x_{iK})\) de los valores de la variable explicativa \(X\) haya \(J\) kuplas diferentes, definiendo las \(J\) poblaciones. Por tanto, \(J \le n\).

Remark. Para cada población \(j=1, \cdots ,J\) se denota:

  • El número de observaciones \(Y_{ij}\) (o de observaciones \(U_{rij}\) en la categoría \(r\)) en cada población \(j\) por \(n_j\), siendo \(n_1+\cdots +n_J=n\);

  • Para cada \(r=0,1,2\) fijo, la suma de las \(n_j\) observaciones \(U_{rij}\) en \(j\) por

\[Z_{rj}:=\sum\limits_{i=1}^{n_j}U_{rij} \quad \mbox{con valor}\quad z_{rj}=\sum\limits_{i=1}^{n_j} u_{rij},\quad \mbox{siendo}\quad \sum\limits^J_{j=1}z_{rj}= \sum\limits^n_{i=1} u_{ri}\]

En la Tabla 6.1 se ilustra hipotéticamente un conjunto de datos con \(J=2\) poblaciones.

Table 6.1: Ilustración de un conjunto de datos agrupado en \(J=2\) poblaciones
1 2 3 4 5 6 7 8 9 10 11 12 13 14
\(Y\) \(X_1\) \(X_2\) \(X_3\) \(X_4\) \(X_5\) \(U_0\) \(U_1\) \(U_2\) \(j\) \(n_j\) \(Z_1j\) \(Z_2j\) \(Z_3j\)
Población: Bajo, 80, Si, 170, Estrato 1
1 Bajo 80 Si 170 Estrato 1 0 1 0 \(j=1\) \(n_1=7\) \(Z_1=2\) \(Z_2=2\) \(Z_1=3\)
0 Bajo 80 Si 170 Estrato 1 1 0 0
2 Bajo 80 Si 170 Estrato 1 0 0 1
0 Bajo 80 Si 170 Estrato 1 1 0 0
2 Bajo 80 Si 170 Estrato 1 0 0 1
1 Bajo 80 Si 170 Estrato 1 0 1 0
2 Bajo 80 Si 170 Estrato 1 0 0 1
Población: Alto, 100, No, 180, Estrato 2
1 Alto 100 No 180 Estrato 2 0 1 0 \(j=2\) \(n_2=5\) \(Z_2=1\) \(Z_2=3\) \(Z_2=1\)
2 Alto 100 No 180 Estrato 2 0 0 1
0 Alto 100 No 180 Estrato 2 1 0 0
1 Alto 100 No 180 Estrato 2 0 1 0
1 Alto 100 No 180 Estrato 2 0 1 0
General. \(Y\) es la variable de respuesta; \(X_1, \cdots, X_5\) son las variables explicativas; \(U_r\) son las variables de respuestas dicotomizadas; \(j\) es la población; \(n_j\) es el tamaño de la población \(j\); \(Z_{rj}\) es el número de éxitos en la población \(j\), ubicado en el nivel \(r\).

Hypothesis 6.2 (Supuesto 2 en el modelo saturado) Para mayor simplicidad en la escritura, se abreviará la j-ésima población \((x_{j1}, \cdots ,x_{jK})\) por el símbolo \(\star\). Para cada \(r=0,1,2\) fijo, cada población \(j=1, \cdots ,J\) y cada observación \(i=1,\cdots,n\) en \(j\), se supone que:

  1. \((U_{rij}|\star)\) es de Bernoulli. Es decir,

\[(U_{rij}|\star) \sim {\cal B}(1,p_{rj})\]

  1. Las variables \((U_{rij}|\star)\) son independientes entre sí.

  2. La esperanza y la varianza son, respectivamente,

\[p_{rj}=P(U_{rij}=1|\star)=E(U_{rij}|\star), \qquad V(U_{rij}|\star)=p_{rj}(1-p_{rj})\]

A continuación, se oprimirá el símbolo \(\star\).

Remark. El supuesto 2 implica:

  1. Para cada \(r=0,1,2\) y cada poblaci'on \(j=1, \cdots ,J\), todos los \(p_{rij}\), \(i=1, \cdots ,n\) dentro de cada población \(j\) son iguales. Es decir, se tiene como parámetro el vector \(2J\)-dimensional:

\[p=(p_{01}, p_{11}, \ldots ,p_{0J},p_{1J})^T\]

  1. Para cada \(r=0,1,2\) y cada población \(j=1, \cdots ,J\):

    • La variable \(Z_{rj}\) es binomial. Es decir,

    \[Z_{rj}\sim{\cal B}(n_j,p_{rj})\]

    • Las variables \(Z_{rj}\) son independientes entre las poblaciones.

Theorem 6.1 (Log-verosimilitud en el modelo saturado) En el modelo saturado, el logaritmo de la función de máxima verosimilitud será

\[\begin{eqnarray} {\cal L}(p) &= & \sum^J_{j=1}\left[z_{0j}\ln p_{0j} \;+\; z_{1j}\ln p_{1j} \;+\; (n_j- z_{0j}-z_{1j})\ln (1-p_{0j}-p_{1j})\right] \tag{6.1} \end{eqnarray}\]

Theorem 6.2 (Estimaciones en el modelo saturado) En el modelo saturado, las ML-estimaciones de \(p_{rj}\) son \(\tilde{p}_{rj}=\frac{Z_{rj}}{n_j}\), con valores \(\tilde{p}_{rj}=\frac{z_{rj}}{n_j}\),\(j=1,\cdots ,J\). Además,

\[\begin{eqnarray} {\cal L}(\widetilde{p}) &=& \sum^J_{j=1} n_j[\tilde{p}_{0j}\ln \tilde{p}_{0j} \;+\; \tilde{p}_{1j}\ln \tilde{p}_{1j} \; + \;(1-\tilde{p}_{0j}-\tilde{p}_{1j})\ln(1-\tilde{p}_{0j}-\tilde{p}_{1j})] \end{eqnarray}\]

También se cumple que

\[{\cal L}(\widetilde{p})<0\quad \mbox{para}\quad 0< \tilde{p}_j <1\]

Example 6.1 Para los datos del archivo chdage, en el modelo saturado,hay \(J=43\) poblaciones y se cumple que \({\cal L}(\tilde{p})=-41.7991\), como se indica en la última fila de la Tabla 6.2:

Datos %>%
  group_by(gender,ses) %>%
  summarise(nj = n(),
            z0j = sum(prog0),
            z1j = sum(prog1),
            z2j = sum(prog2)) %>%
  mutate(p0j = round(z0j/nj,4),
         p1j = round(z1j/nj,4),
         p2j = round(z2j/nj,4),
         Lp_ref2 = ifelse(z0j==0 | z0j== nj| z1j==0 | z1j==nj |z0j+z1j==0 | z0j+z1j==nj, 0,
                     z0j*log(p0j)+z1j*log(p1j)+(nj-z0j-z1j)*log(1-p0j-p1j)),
        Lp_ref2 = round(Lp_ref2, 4)) -> saturado
        
L_saturado <- sum(saturado$Lp_ref2)
Table 6.2: Estimación en el modelo saturado: \({\cal L}(\tilde{p})= \sum\limits_{j=1}^J {\cal L}_j(\tilde{p}) =-41.7991\)
gender ses \(n_j\) \(z_{0j}\) \(z_{1j}\) \(z_{2j}\) \(p_{0j}\) \(p_{1j}\) \(p_{2j}\) \({\cal L}_j(\tilde{p})\)
female high 29 5 3 21 0.1724 0.1034 0.7241 -22.3736
female low 32 9 8 15 0.2812 0.2500 0.4688 -33.8722
female middle 48 10 16 22 0.2083 0.3333 0.4583 -50.4274
male high 29 4 4 21 0.1379 0.1379 0.7241 -22.6263
: : :
female middle 48 10 16 22 0.2083 0.3333 0.4583 -50.4274
male high 29 4 4 21 0.1379 0.1379 0.7241 -22.6263
male low 15 7 4 4 0.4667 0.2667 0.2667 -15.9090
male middle 47 10 15 22 0.2128 0.3191 0.4681 -49.3074

7 Modelo logístico

Hypothesis 7.1 (Supuesto 3: matriz de diseño) Se hacen los supuestos 1 y 2 del modelo saturado (véase las hipótesis 6.1 y 6.2), donde adicionalmente se supone que la matriz de diseño

\[C=\left(\begin{array}{cccc} 1 & x_{11} &\cdots &x_{1K}\\ 1 & x_{21} &\cdots &x_{2K}\\ \vdots &\vdots & &\vdots\\ 1 &x_{J1} &\cdots &x_{JK}\\ \end{array}\right)\]

tiene rango completo \(Rg(C)=1+K\leq J\).

Hypothesis 7.2 (Supuesto 4: modelo logístico) Para llegar a un modelo logístico se toma como referencia una de las categorías de la variable dependiente \(Y\), digamos 2, y se hace el supuesto adicional:

\[\begin{eqnarray} \mbox{Logit}(p_{0j}) &:=& \ln\left(\frac{p_{0j}}{p_{2j}}\right)= \delta_0 + \beta_{01} x_{j1} + \cdots + \beta_{0K} x_{jK} \\ \mbox{Logit}(p_{1j}) &:=& \ln\left(\frac{p_{1j}}{p_{2j}}\right)= \delta_1 + \beta_{11} x_{j1} + \cdots + \beta_{1K} x_{jK} \tag{7.1} \end{eqnarray}\]

Remark. Tenemos:

  1. El vector de los \(2(1+K)\) parámetros en el modelo es:

\[\alpha = (\beta_0,\beta_1)^T= (\delta_0,\beta_{01},\cdots,\beta_{0K}, \delta_1,\beta_{11},\cdots,\beta_{1K})^T\]

  1. Nótese que el supuesto sobre \(Rg(C)=1+K\), hace identificable al parámetro \(\alpha\).

8 Riesgo

Definition 8.1 (Riesgo) En la práctica, la probabilidad \(p_{rj}\) es conocida como riesgo.

Theorem 8.1 (Fórmula para el riesgo) Sea \(g_{rj}:=\delta_r \;+\; \beta_{r1}\,x_{j1} \;+\;\cdots \;+\; \beta_{rK} \,x_{jK}\). Entonces, la probabilidad

\[p_{rj}=P(Y_j=r|x_{j1}, \cdots, x_{jK})\]

de obtener el valor \(r\) en la población \(j=1, \ldots, J\), dado los valores \(x_{j1}, \cdots, x_{jK}\), viene dada por:

\[\begin{equation} p_{rj} \;= \; \frac{e^{g_{rj}}}{1 + e^{g_{0j}} + e^{g_{1j}}} \tag{8.1} \end{equation}\]

Theorem 8.2 (Log de la función de verosimilitud en el modelo logístico) Sea \(g_{rj}:=\delta_r \;+\; \beta_{r1}\,x_{j1} \;+\;\cdots \;+\; \beta_{rK} \,x_{jK}\). Entonces, el logaritmo de la función de verosimilitud se puede escribir, en función de \(\alpha\), como:

\[\begin{eqnarray} {\cal L}({\alpha}) &=& \sum\limits_{j=1}^J\left[z_{0j}g_{0j} + (n_j-z_{0j}-z_{1j})g_{1j} - n_j\ln\left(1 + e^{g_{0j}} + e^{g_{1j}} \right)\right] \tag{8.2} \end{eqnarray}\]

9 Método de estimación

El método que se propone para calcular las ML-estimaciones en un modelo logístico es el método iterativo de Newton-Raphson. Generalmente, el método requiere:

  1. Una estimación inicial para el valor que maximiza la función.

  2. La función es aproximada en una vecindad de aquella estimación por un polinomio de segundo grado.

  3. Entonces,la siguiente estimación se calcula como el máximo de dicho polinomio.

  4. Luego, se repite el proceso, usando esta estimación como la estimación inicial.

  5. De esta manera, el método genera una sucesión de estimaciones. Estas estimaciones convergen a la localización del máximo cuando la función es adecuada y/o la estimación inicial es buena.

Para más detalles, ver el teorema 5.1 en LLinás, Arteta y Tilano (2016).

10 Ejemplo 1: Enunciado

Considere los datos del archivo hsbdemo. Suponga que se quiere analizar un modelo de regresión logística, considerando a prog como variable dependiente y ses y write como independientes. Tome como referencia al valor prog=academic.

  1. Escriba, matemáticamente, el vector de parámetros logísticos y el de sus estimadores.

  2. Escriba, matemáticamente, La probabilidad estimada de que un individuo tenga enfermedades coronarias (chd\(=1\)), cuando tiene una edad determinada (digamos, age\(=x_j\)).

  3. Escriba, matemáticamente, el modelo logístico estimado.

  4. Obtenga las estimaciones \(\hat{\delta}\) y \(\hat{\beta}\) de los parámetros logísticos \(\delta\) y \(\beta\) utilizando la función summary :: multinom :: nnet.

  5. Obtenga las estimaciones \(\hat{\delta}\) y \(\hat{\beta}\) de los parámetros logísticos \(\delta\) y \(\beta\) utilizando la función summary :: vglm :: VGAM.

  6. Utilizando las estimaciones halladas en los incisos (d) o (e), escriba en el modelo correspondiente .

  7. Haga la gráfica del riesgo versus write, cuando ses=low. ¿Es directa o indirecta esta relación?

  8. Halle las razones odds correspondientes.

  9. Calcular las probabilidades predichas para cada uno de los niveles de la variable de respuesta.

  10. Mantener fija la variable write en su media y examinar las probabilidades predichas para cada nivel de ses.

  11. Examinar los cambios en la probabilidad predicha asociados con cada nivel de ses, manteniendo write fija en su media.

  12. Examinar las probabilidades predichas promediadas para diferentes valores de la variable predictora continua write dentro de cada nivel de ses.

  13. Usar las predicciones que se generó en el inciso anterior y grafique las probabilidades predichas contra la puntuación de write, para cada nivel de ses y para diferentes niveles de la variable de respuesta.

  14. Halle los errores estándares estimados de los estimadores de los parámetros logísticos, utilizando la función multinom :: nnet.

  15. Halle los errores estándares estimados de los estimadores de los parámetros logísticos, utilizando la función vglm :: VGAM.

  16. Calcule \({\cal L}(\hat{\alpha})\), la estimación del logaritmo de la función de máxima verosimilitud en el modelo logístico.

11 Ejemplo 1: Solución

11.0.1 Solución parte (a)

Los vector de parámetros y de sus estimadores son, respectivamente,

\[\alpha =(\delta_0,\beta_{01}, \beta_{02}, \delta_1,\beta_{11}, \beta_{12})^T, \qquad \hat{\alpha} =\left(\hat{\delta}_0, \hat{\beta}_{01}, \hat{\beta}_{02}, \hat{\delta}_1, \hat{\beta}_{11}, \hat{\beta}_{12}\right)^T\]

Aquí, \(T\) indica la transpuesta del vector.

11.0.2 Solución parte (b)

La probabilidad estimada de que un estudiante elija el programa \(r=0,1,2\), cuando tiene un estrato socioeconómico determinado (digamos, age\(=x_j\)), se puede escribir así:

\[\hat{p}_{rj} = \hat{P}(\mbox{prog}=r \,|\, \mbox{ses}=s_j, \, \mbox{write}=w_j )\]

11.0.3 Solución parte (c)

Sea

\[\hat{g}_{rj}:=\hat{\delta}_r + \hat{\beta}_{r1} s_j+ \hat{\beta}_{r2} w_j\]

donde \(s_j\) es un posible valor de la variable ses y \(w_j\) es un posible valor de la variable write. Sabiendo que \(\hat{p}_{rj}\) es como en el inciso anterior, el modelo estimado se puede escribir teniendo en cuenta la ecuación (7.1) o la (8.1):

\[\mbox{Logit}(\hat{p}_{rj}):= \ln\left(\frac{\hat{p}_{rj}}{\hat{p}_{2j}}\right) = \hat{g}_{rj}, \qquad \qquad \hat{p}_{rj} \;= \; \frac{e^{\hat{g}_{rj}}} {1 + e^{\hat{g}_{0j}}+ e^{\hat{g}_{1j}}} \]

11.0.4 Solución parte (d)

En R, las estimaciones de los parámetros logísticos \(\delta_r\) y \(\beta_r\) se pueden obtener con la función multinom() del paquete nnet. En la salida de summary(), que se muestra en la figura 11.1, solo debe tenerse en cuenta los resultados que se indican en el recuadro rojo. Primero, debemos elegir el nivel de referencia de nuestra variable de respuesta especificándolo con la función relevel. Es importante recalcar que se ha tomado como referencia a prog=academic:

library(nnet)
prog <- relevel(as.factor(prog), ref = "academic")

modelo <- multinom(prog ~ ses + write, data=Datos)
summary(modelo)
Estimaciones de los parámetros logísticos con nnet. Fuente: Elaboración propia.

Figure 11.1: Estimaciones de los parámetros logísticos con nnet. Fuente: Elaboración propia.

11.0.5 Solución parte (e)

En R, las estimaciones de los parámetros logísticos \(\delta_r\) y \(\beta_r\), también, se pueden obtener con la función vglm() del paquete VGAM. En la salida de summary(), que se muestra en la figura 11.2, solo debe tenerse en cuenta los resultados que se indican en el recuadro rojo. Como ya se mencionó anteriormenbte, primero, debemos elegir el nivel de referencia de nuestra variable de respuesta especificándolo con la función relevel. Es importante recalcar que se ha tomado como referencia a prog=academic (que es el nivel 1 en el datasets, por eso, refLevel=1 dentro de la familia multinomial()):

library(VGAM)

modelo <- vglm(prog ~ ses + write, multinomial(refLevel = 1), data=Datos)
summary(modelo)
Estimaciones de los parámetrdos logísticos con nnet. Fuente: Elaboración propia.

Figure 11.2: Estimaciones de los parámetrdos logísticos con nnet. Fuente: Elaboración propia.

11.0.6 Solución parte (f)

Sabemos que:

\[\hat{p}_{rj} = \hat{P}(\mbox{prog}=r \,|\, \mbox{ses}=s_j, \, \mbox{write}=w_j )\]

y

\[\hat{g}_{rj}\;:=\; \hat{\delta}_r + \hat{\beta}_{r1} s_j+ \hat{\beta}_{r2} w_j \]

donde \(s_j\) es un posible valor de la variable ses y \(w_j\) es un posible valor de la variable write. Además, el modelo estimado se puede escribir teniendo en cuenta la ecuación (7.1) o la (8.1):

\[\mbox{Logit}(\hat{p}_{rj}):= \ln\left(\frac{\hat{p}_{rj}}{\hat{p}_{2j}}\right) = \hat{g}_{rj}, \qquad \qquad \hat{p}_{rj} \;= \; \frac{e^{\hat{g}_{rj}}} {1 + e^{\hat{g}_{0j}} + e^{\hat{g}_{1j}}} \]

El modelo estimado se puede escribir utilizando una de las dos expresiones anteriores. Por ejemplo, para ses=low:

\[\begin{eqnarray*} \mbox{general} &:& \hat{g}_{0j} \;=\; \hat{\delta}_0 + \hat{\beta}_{01} s_j+ \hat{\beta}_{02} w_j \;=\; 1.6895 + 1.1628 - 0.0579 \,w_j \;=\; 2.8523 - 0.0579 \,w_j\\ \mbox{vocation} &:& \hat{g}_{1j}\;:=\; \hat{\delta}_1 + \hat{\beta}_{11} s_j+ \hat{\beta}_{12} \,w_j \;=\; 4.2356 + 0.9827 - 0.1136 \,w_j \;=\; 5.2183 - 0.1136 \,w_j \end{eqnarray*}\]

Por lo tanto, las ecuaciones correspondientes son:

\[\begin{eqnarray*} \mbox{general} &:& \hat{p}_{0j} \;= \; \frac{e^{\hat{g}_{0j}}} {1 + e^{\hat{g}_{0j}}+ e^{\hat{g}_{1j}}}\\ \mbox{vocation} &:& \hat{p}_{1j} \;= \; \frac{e^{\hat{g}_{1j}}} {1 + e^{\hat{g}_{0j}} + e^{\hat{g}_{1j}}} \end{eqnarray*}\]

11.0.7 Solución parte (g)

La gráfica correspondiente se muestra en la figura 11.3. Cuando ses=low, se observa que hay una relación indirecta entre write y prog, el riesgo de que un estudiante seleccione un programa:

library(nnet)
prog <- relevel(as.factor(prog), ref = "academic")

modelo <- multinom(prog ~ ses + write, data=Datos)
s<- summary(modelo)

W <- seq(0, 100, 0.05)

g_0 <- s$coefficients[1,1] + s$coefficients[1,2] + s$coefficients[1,4]*W
g_1 <- s$coefficients[2,1] + s$coefficients[2,2] + s$coefficients[2,4]*W

p_0 <- exp(g_0)/(1 + exp(g_0) + exp(g_1))
p_1 <- exp(g_1)/(1 + exp(g_0) + exp(g_1))
p_2 <- 1- (p_0 + p_1)

ggplot() +
geom_point(mapping=aes(y=p_0, x = W, color="p_0"),size=1.5 ) +
geom_point(mapping=aes(y=p_1, x = W, color="p_1"),size=1.5) +  
geom_point(mapping=aes(y=p_2, x = W, color="p_2"),size=1.5) +

labs(x="Write", y="Probabilidad de éxito", fill= "") + 

facet_wrap(. ~ "Gráfica dentro del grupo de ses=low") +    
theme_bw(base_size = 12) +
scale_color_discrete(name = "Tipo de programa", labels = c("(a) General", "(b) Vocation", "(c) Academic")) 
Probabilidades de éxito cuando se mantiene constante a la variable ses

Figure 11.3: Probabilidades de éxito cuando se mantiene constante a la variable ses

11.0.8 Solución parte (h)

En R, las estimaciones de los odds se pueden obtener con las funciones multinom :: nnet o vglm :: VGAM. Simplemente debe utilizar la función exp() a los coeficientes del modelo, como se resalta en el recuadro rojo de la figura 11.4. Recuerde que, primero, debemos elegir el nivel de referencia de nuestra variable de respuesta (en nuestro caso, prog=academic y es el nivel 1 en el datasets). En nnet se especifica con la función relevel; y en VGAM, se coloca refLevel=1 dentro de la familia multinomial():

library(nnet)
prog <- relevel(as.factor(prog), ref = "academic")
modelo <- multinom(prog ~ ses + write, data=Datos)

library(VGAM)
modelo <- vglm(prog ~ ses + write, multinomial(refLevel = 1), data=Datos)

exp(coef(modelo))
Estimaciones de los odds. Fuente: Elaboración propia.

Figure 11.4: Estimaciones de los odds. Fuente: Elaboración propia.

Algunas interpretaciones (en el modelo del programa general relativo a académico):

  1. ses=low. Esta es la razón del riesgo relativo comparando ses low con ses high para la preferencia del programa general al académico, Para low relativo a high, el riesgo relativo de preferencia de general, en vez de académico, se esperaría que aumentara en un factor de 3.199, dado que las otras variables del modelo se mantienen fijas. En otras palabras, los estudiantes con ses=low son más probables que los hombres en seleccionar programa general sobre el académico.

  2. write. Esta es la razón del riesgo relativo para una unidad de incremento en los puntajes de write para la preferencia del programa general al académico, dado que las otras variables del modelo se mantienen fijas. Si un estudiante fuera a incrementar su puntaje en escritura en una unidad, el riesgo relativo para preferir el programa general (en vez del académico), se esperaría que decreciera en un factor de 0.9437, dado que las otras variables del modelo se mantienen fijas..

11.0.9 Solución parte (i)

Se pueden calcular las probabilidades predichas para cada uno de los niveles de la variable de respuesta, utilizando la función fitted():

head(fitted(modelo))
Table 11.1: Probabilidades predichas
1 2 3 4 5 6
Student ses write \(P_2\) (academic) \(P_0\) (general) \(P_1\) (vocation)
1 low 35 0.1483 0.3383 0.5135
2 middle 33 0.1202 0.1806 0.6992
3 high 39 0.4187 0.2368 0.3445
4 low 37 0.1727 0.3508 0.4765
5 middle 31 0.1001 0.1689 0.7309
6 high 36 0.3534 0.2378 0.4088

Observe que, por ejemplo, los valores de la primera fila se obtienen reemplazando ses=low y write=35, en las las fórmulas para las calcular las probabilidades estimadas, como se indica en la parte (c):

W <- 35
g_0 <- s$coefficients[1,1] + s$coefficients[1,2] + s$coefficients[1,4]*W
g_1 <- s$coefficients[2,1] + s$coefficients[2,2] + s$coefficients[2,4]*W
p_0 <- exp(g_0)/(1 + exp(g_0) + exp(g_1))
p_1 <- exp(g_1)/(1 + exp(g_0) + exp(g_1))
p_2 <- 1- (p_0 + p_1)
predichos <- c(p_0,p_1,p_2)
predichos

11.0.10 Solución parte (j)

Para examinar los cambios en la probabilidad predicha asociados con una de nuestras dos variables (en este caso, ses), se pueden crear pequeños conjuntos de datos que varíen la variable mientras se mantiene la otra constante (en este caso, sería write). Primero haremos esto manteniendo la variable write en su media y examinar las probabilidades predichas para cada nivel de ses.

Nuevo <- data.frame(ses = c("low", "middle", "high"), write = mean(write))
Tabla <- predict(modelo, newdata = Nuevo, "probs")
Tabla
##    academic   general  vocation
## 1 0.4396813 0.3581915 0.2021272
## 2 0.4777451 0.2283359 0.2939190
## 3 0.7009046 0.1784928 0.1206026

11.0.11 Solución parte (k)

Ahora sí se examinarán los cambios en la probabilidad predicha asociados con una de nuestras dos variables (en este caso, ses), manteniendo write fija en su media.

W <- mean(write)
g_0 <- s$coefficients[1,1] + s$coefficients[1,2] + s$coefficients[1,4]*W
g_1 <- s$coefficients[2,1] + s$coefficients[2,2] + s$coefficients[2,4]*W
p_0 <- exp(g_0)/(1 + exp(g_0) + exp(g_1))
p_1 <- exp(g_1)/(1 + exp(g_0) + exp(g_1))
p_2 <- 1- (p_0 + p_1)
predichos <- c(p_0,p_1,p_2)
predichos

11.0.12 Solución parte (l)

las probabilidades predichas promediadas para diferentes valores de la variable predictora continua write dentro de cada nivel de ses se pueden hallar siguiendo los pasos siguientes (que se ilustran en el código de abajo):

Paso 1: Se crea un data frame con diferentes valores de ses y write.

Paso 2: Se calculan y se almacenan las probabilidades predichas para cada nivel de ses.

Paso 3: Se calculan las probabilidades promedios dentro de cada nivel de ses.

# Paso 1:
  Nuevo <- data.frame(ses = rep(c("low", "middle", "high"), each = 51), write = rep(c(20:70),3))
  head(Nuevo)

# Paso 2: 
  Predichos <- cbind(Nuevo, predict(modelo, newdata = Nuevo, type = "probs", se = TRUE))
  Predichos

# Paso 3: 
  Predichos %>% 
  dplyr::group_by(ses) %>% 
  dplyr::summarise(P0_general=mean(general),
                   P1_vocation=mean(vocation),
                   P2_academic=mean(academic))
Table 11.2: Probabilidades predichas
1 2 3 4
ses \(P_0\) (general) \(P_1\) (vocation) \(P_2\) (academic)
high 0.1842 0.2898 0.526
low 0.313 0.3554 0.3316
middle 0.1875 0.4595 0.353

11.0.13 Solución parte (m)

Usando las predicciones que se generó en el inciso anterior a través del objeto Predichos, graficaremos las probabilidades predichas contra la puntuación de write, para cada nivel de ses y para diferentes niveles de la variable de respuesta. Utilizaremos la función reshape2::melt() con el fin de convertir la tabla de Predichos en una de tipo long y, así, utilizarla para ggplot2:

library(reshape2)
Tabla <- melt(Predichos, id.vars = c("ses", "write"), value.name = "probability")

ggplot(Tabla, aes(x = write, y = probability, colour = ses)) + 
  geom_line() + 
  facet_wrap(variable ~ ., scales = "free")

11.0.14 Solución parte (n)

En R, las estimaciones de los errores estándares se pueden obtener con la función multinom() del paquete nnet. En la salida de summary(), que se muestra en la figura 11.5, solo debe tenerse en cuenta los resultados que se indican en el recuadro rojo. Primero, debemos elegir el nivel de referencia de nuestra variable de respuesta especificándolo con la función relevel. Es importante recalcar que se ha tomado como referencia a prog=academic:

library(nnet)
prog <- relevel(as.factor(prog), ref = "academic")
modelo <- multinom(prog ~ ses + write, data=Datos)

summary(modelo)
Estimaciones de los errores estándares con nnet. Fuente: Elaboración propia.

Figure 11.5: Estimaciones de los errores estándares con nnet. Fuente: Elaboración propia.

11.0.15 Solución parte (o)

En R, las estimaciones de los errores estándares se pueden obtener con la función multinom() del paquete nnet. En la salida de summary(), que se muestra en la figura 11.6, solo debe tenerse en cuenta los resultados que se indican en el recuadro rojo. Primero, debemos elegir el nivel de referencia de nuestra variable de respuesta especificándolo con la función relevel. Es importante recalcar que se ha tomado como referencia a prog=academic:

library(VGAM)
modelo <- vglm(prog ~ ses + write, multinomial(refLevel = 1), data=Datos)

summary(modelo)
Estimaciones de los errores estándares con VGAM. Fuente: Elaboración propia.

Figure 11.6: Estimaciones de los errores estándares con VGAM. Fuente: Elaboración propia.

11.0.16 Solución parte (p)

La estimación del logaritmo de la función de máxima verosimilitud en el modelo logístico se puede obtener de varias maneras. Una es reemplazando los valores correspondientes en la ecuación (8.2):

\[ {\cal L}(\hat{\alpha}) \;=\; \sum\limits_{j=1}^J\left[z_{0j}\hat{g}_{0j} + (n_j-z_{0j}-z_{1j})\hat{g}_{1j} - n_j\ln\left(1 + e^{\hat{g}_{0j}} + e^{\hat{g}_{1j}} \right)\right]\;=\; -179.9817\]

donde \[\hat{g}_{rj}:=\hat{\delta}_r \;+\; \hat{\beta}_{r1}\,x_{j1} \;+\;\cdots \;+\; \hat{\beta}_{rK} \,x_{jK}\]

Las otras maneras para calcular \({\cal L}(\hat{\alpha})\) son con las funciones multinom::nnet o vglm::VGAM. Con cualquier camino encontramos que \({\cal L}(\hat{\alpha})=-179.9817\).

Con la primera función se obtiene una salida (o al ejecutar summary) donde se obtiene, de alguna forma, ese valor. Ver recuadros rojos en la figura 11.7. Por ejemplo, en final value es el inverso aditivo y, en Residual Deviance se obtiene al dividir el valor de la salida por -2.

library(nnet)
prog <- relevel(as.factor(prog), ref = "academic")
modelo <- multinom(prog ~ ses + write, data=Datos)

summary(modelo)
Estimaciones del Log-Likelihood con nnet. Fuente: Elaboración propia.

Figure 11.7: Estimaciones del Log-Likelihood con nnet. Fuente: Elaboración propia.

Con la segunda función se obtiene una salida (o al ejecutar summary) donde se obtiene, de alguna forma, ese valor. Ver recuadros rojos en la figura 11.8. Por ejemplo, en Log-Likelihood es exactamente ese valor y, en Residual Deviance se obtiene al dividir el valor de la salida por -2.

library(VGAM)
modelo <- vglm(prog ~ ses + write, multinomial(refLevel = 1), data=Datos)

summary(modelo)
Estimaciones del Log-Likelihood con VGAM. Fuente: Elaboración propia.

Figure 11.8: Estimaciones del Log-Likelihood con VGAM. Fuente: Elaboración propia.

12 Relación (logit vs saturado)

Analizaremos algunas relaciones entre los modelos logístico y saturado. Para ello, observe que, para cada \(r=0, 1,2\), las ecuaciones del supuesto 7.2 de la sección 7 se pueden escribir así:

\[\left(\begin{array}{c} \mbox{Logit}(p_{r1}) \\ \mbox{Logit}(p_{r2})\\ \vdots \\ \mbox{Logit}(p_{rJ}) \\ \end{array}\right)= \left(\begin{array}{cccc} 1 & x_{11} &\cdots &x_{1K}\\ 1 & x_{21} &\cdots &x_{2K}\\ \vdots &\vdots & &\vdots\\ 1 &x_{J1} &\cdots &x_{JK}\\ \end{array}\right)\cdot \left(\begin{array}{c} \delta_r \\ \beta_{r1} \\ \vdots \\ \beta_{rK} \\ \end{array}\right)=C\alpha_r,\]

Con base en lo anterior, se pueden distinguir los dos siguientes casos:

  1. \(J=1+K\).

  2. \(J>1+K\).

12.0.1 Primer caso: \(J=1+K\)

En este caso, \(C\) es una matriz invertible. Por lo tanto,

\[\alpha_r=C^{-1}\cdot\left(\begin{array}{c} \mbox{Logit}(p_{r1}) \\ \mbox{Logit}(p_{r2})\\ \vdots \\ \mbox{Logit}(p_{rJ}) \\ \end{array}\right)\]

Es decir, hay una relación uno a uno entre los parámetros del modelo saturado y los del logístico. O sea, los dos modelos expresan lo mismo. Particularmente, las ML-estimaciones de las probabilidades \(p_{rj}\) son iguales en ambos modelos: \(\hat{p}_{rj}=\tilde{p}_{rj}\) para cada \(j=1,2, \ldots, K\) y cada \(r=0,1,2\).

12.0.2 Segundo caso: \(J>1+K\)

En este caso, primero hay que calcular \(\hat{\alpha}\) y a partir de éstas, se pueden calcular las \(\hat{p}_{rj}\) mediante:

\[\hat{p}_{rj}=\mbox{Logit}^{-1}(\hat{g_{rj}}), \quad j=1, \cdots, J,\]

donde \(\hat{g_{rj}}:=\hat{\delta}_r + \hat{\beta}_{r1}x_{j1}+\cdots + \hat{\beta}_{rK}x_{jK}\). En general, resultan que \(\hat{p}_{rj}\not=\tilde{p}_{rj}\).

13 Casos agrupado y no agrupado

  1. Cuando se trabaja con el modelo saturado, se tiene el caso de utilizar datos agrupados.

  2. Cuando se tiene el caso especial \(n_j=1\), para todo \(j\) (lo que implica que \(J=n\)) se habla de datos no agrupados.

  3. La distinción entre datos agrupados y no agrupados es importante por dos razones:

    1. Algunos métodos de análisis apropiados a datos agrupados no son aplicables a datos no agrupados.

    2. Las aproximaciones asintóticas pueden estar basados en uno de estos dos casos distintos: (i) \(n\to\infty\) o (ii) \(J\to\infty\), caso que es únicamente es apropiado para datos no agrupados.

  4. En la práctica:

    1. Cuando se tienen datos agrupados es importante tener en cuenta que \(J\) debe ser fijo. Por esta razón, debe tomarse como base el modelo saturado. Es decir, se empieza el análisis usando los vectores \(Z_{rj}\), \(j=1,\cdots,J\), \(r=0, 1,\ldots, R-1\).

    2. Si \(J\to\infty\) (por ejemplo, si \(J=n\)), entonces, en el modelo saturado no se puede considerar a \(J\) como fijo. Obsérvese que esta situación se presenta cuando se tienen datos no agrupados. En este caso, no se puede tomar como base el modelo saturado. Ahora se empezaría el análisis utilizando, de una vez, las observaciones \(Y_i\), \(i=1,\cdots, n\).

14 Ejercicios

Para la solución de los siguientes ejercicios, téngase en cuenta los siguientes comentarios:

  • Todos los datos mencionados aparecen en los links mencionados en este documento.

  • Siempre debe detallar el análisis del conjunto de datos (con las variables especificadas) basado en lo explicado en este documento.

14.0.1 Ejercicios 1 a 3

  1. Demuestre estos teoremas relacionados con el modelo saturado: (a) 6.1; (b) 6.2.

  2. Demuestre este teorema relacionado con el modelo logístico: 8.1

  3. Haga un listado de los paquetes de R que, en el caso multinomial, estimen el logaritmo de la función de máxima verosimilitud en los modelos saturado y logístico.

14.0.2 Ejercicio 4 a 7

  1. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender como variable independiente. Repita todos los análisis realizados en este documento.

  2. Considere los datos hbsdemo, tomando a prog como variable dependiente y schtyp como variable independiente. Repita todos los análisis realizados en este documento.

  3. Considere los datos hbsdemo, tomando a prog como variable dependiente y honors como variable independiente. Repita todos los análisis realizados en este documento.

  4. Considere los datos hbsdemo, tomando a prog como variable dependiente y awards como variable independiente. Repita todos los análisis realizados en este documento.

14.0.3 Ejercicios 8 a 10

  1. Considere los datos hbsdemo, tomando a prog como variable dependiente y ses y schtyp como variables independientes. Repita todos los análisis realizados en este documento.

  2. Considere los datos hbsdemo, tomando a prog como variable dependiente y ses y honors como variables independientes. Repita todos los análisis realizados en este documento.

  3. Considere los datos hbsdemo, tomando a prog como variable dependiente y ses y awards como variables independientes. Repita todos los análisis realizados en este documento.

14.0.4 Ejercicio 11 a 13

  1. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender y schtyp como variables independientes. Repita todos los análisis realizados en este documento.

  2. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender y honors como variables independientes. Repita todos los análisis realizados en este documento.

  3. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender y awards como variables independientes. Repita todos los análisis realizados en este documento.

14.0.5 Ejercicio 14 a 16

  1. Considere los datos hbsdemo, tomando a prog como variable dependiente y schtyp y honors como variables independientes. Repita todos los análisis realizados en este documento.

  2. Considere los datos hbsdemo, tomando a prog como variable dependiente y schtyp y awards como variables independientes. Repita todos los análisis realizados en este documento.

  3. Considere los datos hbsdemo, tomando a prog como variable dependiente y honors y awards como variables independientes. Repita todos los análisis realizados en este documento.

14.0.6 Ejercicios 17 a 19

  1. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender, ses y schtyp como variables independientes. Repita todos los análisis realizados en este documento.

  2. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender, ses y honors como variables independientes. Repita todos los análisis realizados en este documento.

  3. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender, ses y awards como variables independientes. Repita todos los análisis realizados en este documento.

14.0.7 Ejercicios 20 a 21

  1. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender, schtyp y honors como variables independientes. Repita todos los análisis realizados en este documento.

  2. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender, schtyp y awards como variables independientes. Repita todos los análisis realizados en este documento.

14.0.8 Ejercicios 22 a 24

  1. Considere los datos hbsdemo, tomando a prog como variable dependiente y ses, schtyp y honors como variables independientes. Repita todos los análisis realizados en este documento.

  2. Considere los datos hbsdemo, tomando a prog como variable dependiente y ses, schtyp y awards como variables independientes. Repita todos los análisis realizados en este documento.

  3. Considere los datos hbsdemo, tomando a prog como variable dependiente y schtyp, honors y awards como variables independientes. Repita todos los análisis realizados en este documento.

14.0.9 Ejercicios 25 a 27

  1. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender, ses, schtyp y honors como variables independientes. Repita todos los análisis realizados en este documento.

  2. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender, ses, schtyp y awards como variables independientes. Repita todos los análisis realizados en este documento.

  3. Considere los datos hbsdemo, tomando a prog como variable dependiente y gender, ses, schtyp, honors y awards como variables independientes. Repita todos los análisis realizados en este documento.

Bibliografía

Consultar el documento RPubs :: Regresión logística (bibliografía).

 

 
If you found any ERRORS or have SUGGESTIONS, please report them to my email. Thanks.