library(knitr)
opts_chunk$set(echo = TRUE )
Package install
Packages <- c("tidyverse", "car", "dunn.test","onewaytests","FSA","ggpubr","rcompanion","ggplot2","emmeans","rstatix")
lapply(Packages, library, character.only = TRUE)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.1 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
## ## FSA v0.8.32. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
##
## Attaching package: 'FSA'
## The following object is masked from 'package:car':
##
## bootCase
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
## [[1]]
## [1] "forcats" "stringr" "dplyr" "purrr" "readr" "tidyr"
## [7] "tibble" "ggplot2" "tidyverse" "knitr" "stats" "graphics"
## [13] "grDevices" "utils" "datasets" "methods" "base"
##
## [[2]]
## [1] "car" "carData" "forcats" "stringr" "dplyr" "purrr"
## [7] "readr" "tidyr" "tibble" "ggplot2" "tidyverse" "knitr"
## [13] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
## [19] "base"
##
## [[3]]
## [1] "dunn.test" "car" "carData" "forcats" "stringr" "dplyr"
## [7] "purrr" "readr" "tidyr" "tibble" "ggplot2" "tidyverse"
## [13] "knitr" "stats" "graphics" "grDevices" "utils" "datasets"
## [19] "methods" "base"
##
## [[4]]
## [1] "onewaytests" "dunn.test" "car" "carData" "forcats"
## [6] "stringr" "dplyr" "purrr" "readr" "tidyr"
## [11] "tibble" "ggplot2" "tidyverse" "knitr" "stats"
## [16] "graphics" "grDevices" "utils" "datasets" "methods"
## [21] "base"
##
## [[5]]
## [1] "FSA" "onewaytests" "dunn.test" "car" "carData"
## [6] "forcats" "stringr" "dplyr" "purrr" "readr"
## [11] "tidyr" "tibble" "ggplot2" "tidyverse" "knitr"
## [16] "stats" "graphics" "grDevices" "utils" "datasets"
## [21] "methods" "base"
##
## [[6]]
## [1] "ggpubr" "FSA" "onewaytests" "dunn.test" "car"
## [6] "carData" "forcats" "stringr" "dplyr" "purrr"
## [11] "readr" "tidyr" "tibble" "ggplot2" "tidyverse"
## [16] "knitr" "stats" "graphics" "grDevices" "utils"
## [21] "datasets" "methods" "base"
##
## [[7]]
## [1] "rcompanion" "ggpubr" "FSA" "onewaytests" "dunn.test"
## [6] "car" "carData" "forcats" "stringr" "dplyr"
## [11] "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [16] "tidyverse" "knitr" "stats" "graphics" "grDevices"
## [21] "utils" "datasets" "methods" "base"
##
## [[8]]
## [1] "rcompanion" "ggpubr" "FSA" "onewaytests" "dunn.test"
## [6] "car" "carData" "forcats" "stringr" "dplyr"
## [11] "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [16] "tidyverse" "knitr" "stats" "graphics" "grDevices"
## [21] "utils" "datasets" "methods" "base"
##
## [[9]]
## [1] "emmeans" "rcompanion" "ggpubr" "FSA" "onewaytests"
## [6] "dunn.test" "car" "carData" "forcats" "stringr"
## [11] "dplyr" "purrr" "readr" "tidyr" "tibble"
## [16] "ggplot2" "tidyverse" "knitr" "stats" "graphics"
## [21] "grDevices" "utils" "datasets" "methods" "base"
##
## [[10]]
## [1] "rstatix" "emmeans" "rcompanion" "ggpubr" "FSA"
## [6] "onewaytests" "dunn.test" "car" "carData" "forcats"
## [11] "stringr" "dplyr" "purrr" "readr" "tidyr"
## [16] "tibble" "ggplot2" "tidyverse" "knitr" "stats"
## [21] "graphics" "grDevices" "utils" "datasets" "methods"
## [26] "base"
Data import
d1<- read.csv("Fig6_A.LOR_duration_Female.csv")
Data structure
str(d1)
## 'data.frame': 60 obs. of 3 variables:
## $ subject : int 1 2 3 4 5 6 7 8 9 10 ...
## $ inject : chr "1st_inject" "1st_inject" "1st_inject" "1st_inject" ...
## $ duration: int 273 389 120 200 259 305 136 316 192 227 ...
Explorative data analysis with graphics
d1 %>%
group_by(inject) %>%
get_summary_stats(duration, type = "common")
ggboxplot(d1, x = "inject", y = "duration", add = "jitter")

Model fit
res.fried <- d1 %>% friedman_test(duration ~ inject |subject)
res.fried
Effect size
d1 %>% friedman_effsize(duration ~ inject |subject)
Multiple pairwise-comparisons
pwc <- d1 %>%
wilcox_test(duration ~ inject, paired = TRUE, p.adjust.method = "bonferroni")
pwc
sum_test = unlist(res.fried)
names(sum_test)
## [1] ".y." "n"
## [3] "statistic.Friedman chi-squared" "df.df"
## [5] "p" "method"
paov1 = sum_test["p"]
paov1 = sprintf("%.3f",as.numeric(paov1))
Interpretation of result
if (paov1<0.05){
cat("1. The duration was statistically significantly different at the different time points", "\n",
"p =", paov1, "\n")
} else {
cat( "1. The duration was not statistically significantly different at the different time points","\n",
"p =", paov1, "\n" )}
## 1. The duration was statistically significantly different at the different time points
## p = 0.006