library(knitr)
opts_chunk$set(echo = TRUE )

Package install

Packages <- c("tidyverse", "car", "dunn.test","onewaytests","FSA","ggpubr","rcompanion","ggplot2","emmeans","rstatix")
lapply(Packages, library, character.only = TRUE)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.1.1     v dplyr   1.0.5
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following object is masked from 'package:purrr':
## 
##     some
## ## FSA v0.8.32. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
## 
## Attaching package: 'FSA'
## The following object is masked from 'package:car':
## 
##     bootCase
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter
## [[1]]
##  [1] "forcats"   "stringr"   "dplyr"     "purrr"     "readr"     "tidyr"    
##  [7] "tibble"    "ggplot2"   "tidyverse" "knitr"     "stats"     "graphics" 
## [13] "grDevices" "utils"     "datasets"  "methods"   "base"     
## 
## [[2]]
##  [1] "car"       "carData"   "forcats"   "stringr"   "dplyr"     "purrr"    
##  [7] "readr"     "tidyr"     "tibble"    "ggplot2"   "tidyverse" "knitr"    
## [13] "stats"     "graphics"  "grDevices" "utils"     "datasets"  "methods"  
## [19] "base"     
## 
## [[3]]
##  [1] "dunn.test" "car"       "carData"   "forcats"   "stringr"   "dplyr"    
##  [7] "purrr"     "readr"     "tidyr"     "tibble"    "ggplot2"   "tidyverse"
## [13] "knitr"     "stats"     "graphics"  "grDevices" "utils"     "datasets" 
## [19] "methods"   "base"     
## 
## [[4]]
##  [1] "onewaytests" "dunn.test"   "car"         "carData"     "forcats"    
##  [6] "stringr"     "dplyr"       "purrr"       "readr"       "tidyr"      
## [11] "tibble"      "ggplot2"     "tidyverse"   "knitr"       "stats"      
## [16] "graphics"    "grDevices"   "utils"       "datasets"    "methods"    
## [21] "base"       
## 
## [[5]]
##  [1] "FSA"         "onewaytests" "dunn.test"   "car"         "carData"    
##  [6] "forcats"     "stringr"     "dplyr"       "purrr"       "readr"      
## [11] "tidyr"       "tibble"      "ggplot2"     "tidyverse"   "knitr"      
## [16] "stats"       "graphics"    "grDevices"   "utils"       "datasets"   
## [21] "methods"     "base"       
## 
## [[6]]
##  [1] "ggpubr"      "FSA"         "onewaytests" "dunn.test"   "car"        
##  [6] "carData"     "forcats"     "stringr"     "dplyr"       "purrr"      
## [11] "readr"       "tidyr"       "tibble"      "ggplot2"     "tidyverse"  
## [16] "knitr"       "stats"       "graphics"    "grDevices"   "utils"      
## [21] "datasets"    "methods"     "base"       
## 
## [[7]]
##  [1] "rcompanion"  "ggpubr"      "FSA"         "onewaytests" "dunn.test"  
##  [6] "car"         "carData"     "forcats"     "stringr"     "dplyr"      
## [11] "purrr"       "readr"       "tidyr"       "tibble"      "ggplot2"    
## [16] "tidyverse"   "knitr"       "stats"       "graphics"    "grDevices"  
## [21] "utils"       "datasets"    "methods"     "base"       
## 
## [[8]]
##  [1] "rcompanion"  "ggpubr"      "FSA"         "onewaytests" "dunn.test"  
##  [6] "car"         "carData"     "forcats"     "stringr"     "dplyr"      
## [11] "purrr"       "readr"       "tidyr"       "tibble"      "ggplot2"    
## [16] "tidyverse"   "knitr"       "stats"       "graphics"    "grDevices"  
## [21] "utils"       "datasets"    "methods"     "base"       
## 
## [[9]]
##  [1] "emmeans"     "rcompanion"  "ggpubr"      "FSA"         "onewaytests"
##  [6] "dunn.test"   "car"         "carData"     "forcats"     "stringr"    
## [11] "dplyr"       "purrr"       "readr"       "tidyr"       "tibble"     
## [16] "ggplot2"     "tidyverse"   "knitr"       "stats"       "graphics"   
## [21] "grDevices"   "utils"       "datasets"    "methods"     "base"       
## 
## [[10]]
##  [1] "rstatix"     "emmeans"     "rcompanion"  "ggpubr"      "FSA"        
##  [6] "onewaytests" "dunn.test"   "car"         "carData"     "forcats"    
## [11] "stringr"     "dplyr"       "purrr"       "readr"       "tidyr"      
## [16] "tibble"      "ggplot2"     "tidyverse"   "knitr"       "stats"      
## [21] "graphics"    "grDevices"   "utils"       "datasets"    "methods"    
## [26] "base"

Data import

d1<- read.csv("Fig6_A.LOR_duration_Female.csv")

Data structure

str(d1)
## 'data.frame':    60 obs. of  3 variables:
##  $ subject : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ inject  : chr  "1st_inject" "1st_inject" "1st_inject" "1st_inject" ...
##  $ duration: int  273 389 120 200 259 305 136 316 192 227 ...

Explorative data analysis with graphics

d1 %>%
  group_by(inject) %>%
  get_summary_stats(duration, type = "common")
ggboxplot(d1, x = "inject", y = "duration", add = "jitter")

Model fit

res.fried <- d1 %>% friedman_test(duration ~ inject |subject)
res.fried

Effect size

d1 %>% friedman_effsize(duration ~ inject |subject)

Multiple pairwise-comparisons

pwc <- d1 %>%
  wilcox_test(duration ~ inject, paired = TRUE, p.adjust.method = "bonferroni")
pwc
sum_test = unlist(res.fried)
names(sum_test)
## [1] ".y."                            "n"                             
## [3] "statistic.Friedman chi-squared" "df.df"                         
## [5] "p"                              "method"
paov1 = sum_test["p"]

paov1 = sprintf("%.3f",as.numeric(paov1))

Interpretation of result

 if (paov1<0.05){      
    cat("1. The duration was statistically significantly different at the different time points", "\n",
        "p =", paov1, "\n")
            } else {                                        
      cat( "1. The duration was not statistically significantly different at the different time points","\n",
           "p =", paov1, "\n" )}
## 1. The duration was statistically significantly different at the different time points 
##  p = 0.006