ITAEE - Delincuencia, en logaritmos

Causalidades de Granger

Causalidad de Granger de la incidencia delictiva al ITAEE de uno a 4 rezagos. En ningún caso la incidencia delictiva ‘causa’ al ITAEE.

Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:1) + Lags(Dbase1$d_delitos, 1:1)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:1)
  Res.Df Df     F Pr(>F)
1     87                
2     88 -1 1.199 0.2765
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:2) + Lags(Dbase1$d_delitos, 1:2)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:2)
  Res.Df Df      F Pr(>F)
1     84                 
2     86 -2 1.1477 0.3223
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:3) + Lags(Dbase1$d_delitos, 1:3)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:3)
  Res.Df Df    F Pr(>F)
1     81               
2     84 -3 0.76 0.5198
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:4) + Lags(Dbase1$d_delitos, 1:4)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:4)
  Res.Df Df      F Pr(>F)
1     78                 
2     82 -4 0.8821 0.4787

Causalidad de Granger del ITAEE a la incidencia delictiva de uno a 4 rezagos. En ningún caso el ITAEE ‘causa’ a la incidencia delictiva.

Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:1) + Lags(Dbase1$d_itaee, 1:1)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:1)
  Res.Df Df      F Pr(>F)
1     87                 
2     88 -1 0.0139 0.9064
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:2) + Lags(Dbase1$d_itaee, 1:2)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:2)
  Res.Df Df      F Pr(>F)
1     84                 
2     86 -2 0.0901 0.9139
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:3) + Lags(Dbase1$d_itaee, 1:3)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:3)
  Res.Df Df      F Pr(>F)
1     81                 
2     84 -3 0.4029 0.7513
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:4) + Lags(Dbase1$d_itaee, 1:4)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:4)
  Res.Df Df      F Pr(>F)
1     78                 
2     82 -4 0.4203 0.7935

RAÍCES UNITARIAS

Raíces unitarias del logaritmo del ITAEE.


    Augmented Dickey-Fuller Test

data:  base1$l_itaee
Dickey-Fuller = -1.728, Lag order = 4, p-value = 0.6884
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  base1$l_itaee
Dickey-Fuller Z(alpha) = -14.174, Truncation lag parameter = 3, p-value
= 0.2877
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  base1$l_itaee
KPSS Level = 2.3282, Truncation lag parameter = 3, p-value = 0.01

Raíces unitarias de sus diferencias logarítmicas.


    Augmented Dickey-Fuller Test

data:  Dbase1$d_itaee
Dickey-Fuller = -4.3733, Lag order = 4, p-value = 0.01
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  Dbase1$d_itaee
Dickey-Fuller Z(alpha) = -71.495, Truncation lag parameter = 3, p-value
= 0.01
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  Dbase1$d_itaee
KPSS Level = 0.060353, Truncation lag parameter = 3, p-value = 0.1

Raíces unitarias del logaritmo de la incidencia delictiva.


    Augmented Dickey-Fuller Test

data:  base1$l_delitos
Dickey-Fuller = -2.9259, Lag order = 4, p-value = 0.1946
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  base1$l_delitos
Dickey-Fuller Z(alpha) = -4.7177, Truncation lag parameter = 3, p-value
= 0.8423
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  base1$l_delitos
KPSS Level = 0.39426, Truncation lag parameter = 3, p-value = 0.07963

Raíces unitarias de sus diferencias logarítmicas.


    Augmented Dickey-Fuller Test

data:  Dbase1$d_delitos
Dickey-Fuller = -3.0141, Lag order = 4, p-value = 0.1584
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  Dbase1$d_delitos
Dickey-Fuller Z(alpha) = -101.17, Truncation lag parameter = 3, p-value
= 0.01
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  Dbase1$d_delitos
KPSS Level = 0.38029, Truncation lag parameter = 3, p-value = 0.08565

Modelo VAR

Modelo VAR con los logaritmos de las series

$selection
AIC(n)  HQ(n)  SC(n) FPE(n) 
     5      1      1      5 

$criteria
                   1             2             3             4             5
AIC(n) -1.473538e+01 -1.466269e+01 -1.470099e+01 -1.468155e+01 -1.480928e+01
HQ(n)  -1.466558e+01 -1.454636e+01 -1.453813e+01 -1.447216e+01 -1.455335e+01
SC(n)  -1.456175e+01 -1.437330e+01 -1.429586e+01 -1.416066e+01 -1.417264e+01
FPE(n)  3.985944e-07  4.287439e-07  4.128353e-07  4.213097e-07  3.713005e-07
                   6             7             8
AIC(n) -1.479130e+01 -1.474351e+01 -1.466425e+01
HQ(n)  -1.448885e+01 -1.439452e+01 -1.426873e+01
SC(n)  -1.403891e+01 -1.387536e+01 -1.368035e+01
FPE(n)  3.787878e-07  3.984152e-07  4.328324e-07

Modelo VEC


###################### 
# Johansen-Procedure # 
###################### 

Test type: trace statistic , without linear trend and constant in cointegration 

Eigenvalues (lambda):
[1]  1.747980e-01  5.927394e-02 -1.732962e-16

Values of teststatistic and critical values of test:

          test 10pct  5pct  1pct
r <= 1 |  5.44  7.52  9.24 12.97
r = 0  | 22.54 17.85 19.96 24.60

Eigenvectors, normalised to first column:
(These are the cointegration relations)

             l_itaee.l3 l_delitos.l3   constant
l_itaee.l3     1.000000    1.0000000   1.000000
l_delitos.l3   0.479358   -0.7473619   1.265335
constant      -6.478676    0.1246630 -12.416460

Weights W:
(This is the loading matrix)

             l_itaee.l3 l_delitos.l3      constant
l_itaee.d   0.006859010 -0.004092407  1.973407e-15
l_delitos.d 0.001229403  0.066690097 -1.503669e-15

Matriz Beta

             l_itaee.l3 l_delitos.l3 constant
l_itaee.l3       1.0000       1.0000   1.0000
l_delitos.l3     0.4794      -0.7474   1.2653
constant        -6.4787       0.1247 -12.4165

Pruebas de estacionariedad a los residuales

Los residuales son estacionarios


    Augmented Dickey-Fuller Test

data:  resids[, 1]
Dickey-Fuller = -4.0303, Lag order = 4, p-value = 0.01169
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  resids[, 1]
Dickey-Fuller Z(alpha) = -88.061, Truncation lag parameter = 3, p-value
= 0.01
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  resids[, 1]
KPSS Level = 0.050886, Truncation lag parameter = 3, p-value = 0.1

ITAEE-Desocupación-Delincuencia, en logaritmos

Causalidades de Granger

Excepto por la causalidad al 90% del ITAEE a la desocupación en el 1er y 2do rezago, ninguna variable ‘causa’ a cualquier otra.

Granger causality test

Model 1: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:1) + Lags(Dbase1$d_delitos, 1:1)
Model 2: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:1)
  Res.Df Df      F Pr(>F)
1     55                 
2     56 -1 0.0035 0.9529
Granger causality test

Model 1: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:2) + Lags(Dbase1$d_delitos, 1:2)
Model 2: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:2)
  Res.Df Df      F Pr(>F)
1     52                 
2     54 -2 0.6994 0.5015
Granger causality test

Model 1: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:3) + Lags(Dbase1$d_delitos, 1:3)
Model 2: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:3)
  Res.Df Df      F Pr(>F)
1     49                 
2     52 -3 1.0084  0.397
Granger causality test

Model 1: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:4) + Lags(Dbase1$d_delitos, 1:4)
Model 2: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:4)
  Res.Df Df      F Pr(>F)
1     46                 
2     50 -4 0.9215 0.4596
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:1) + Lags(Dbase1$d_desocupada, 1:1)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:1)
  Res.Df Df      F Pr(>F)
1     55                 
2     56 -1 0.4368 0.5114
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:2) + Lags(Dbase1$d_desocupada, 1:2)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:2)
  Res.Df Df      F Pr(>F)
1     52                 
2     54 -2 0.2694 0.7649
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:3) + Lags(Dbase1$d_desocupada, 1:3)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:3)
  Res.Df Df      F Pr(>F)
1     49                 
2     52 -3 1.0402 0.3831
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:4) + Lags(Dbase1$d_desocupada, 1:4)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:4)
  Res.Df Df      F Pr(>F)
1     46                 
2     50 -4 1.4311 0.2388
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:1) + Lags(Dbase1$d_delitos, 1:1)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:1)
  Res.Df Df      F Pr(>F)
1     55                 
2     56 -1 0.9178 0.3422
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:2) + Lags(Dbase1$d_delitos, 1:2)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:2)
  Res.Df Df      F Pr(>F)
1     52                 
2     54 -2 1.0132 0.3701
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:3) + Lags(Dbase1$d_delitos, 1:3)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:3)
  Res.Df Df      F Pr(>F)
1     49                 
2     52 -3 0.8089 0.4951
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:4) + Lags(Dbase1$d_delitos, 1:4)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:4)
  Res.Df Df      F Pr(>F)
1     46                 
2     50 -4 0.9953 0.4197
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:1) + Lags(Dbase1$d_desocupada, 1:1)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:1)
  Res.Df Df      F Pr(>F)
1     55                 
2     56 -1 0.9379 0.3371
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:2) + Lags(Dbase1$d_desocupada, 1:2)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:2)
  Res.Df Df      F Pr(>F)
1     52                 
2     54 -2 2.1831 0.1229
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:3) + Lags(Dbase1$d_desocupada, 1:3)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:3)
  Res.Df Df      F Pr(>F)
1     49                 
2     52 -3 1.9457 0.1345
Granger causality test

Model 1: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:4) + Lags(Dbase1$d_desocupada, 1:4)
Model 2: Dbase1$d_itaee ~ Lags(Dbase1$d_itaee, 1:4)
  Res.Df Df     F Pr(>F)
1     46                
2     50 -4 1.741 0.1572
Granger causality test

Model 1: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:1) + Lags(Dbase1$d_itaee, 1:1)
Model 2: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:1)
  Res.Df Df      F  Pr(>F)  
1     55                    
2     56 -1 3.8805 0.05389 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Granger causality test

Model 1: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:2) + Lags(Dbase1$d_itaee, 1:2)
Model 2: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:2)
  Res.Df Df      F  Pr(>F)  
1     52                    
2     54 -2 2.4372 0.09733 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Granger causality test

Model 1: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:3) + Lags(Dbase1$d_itaee, 1:3)
Model 2: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:3)
  Res.Df Df      F Pr(>F)
1     49                 
2     52 -3 1.8068 0.1582
Granger causality test

Model 1: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:4) + Lags(Dbase1$d_itaee, 1:4)
Model 2: Dbase1$d_desocupada ~ Lags(Dbase1$d_desocupada, 1:4)
  Res.Df Df      F Pr(>F)
1     46                 
2     50 -4 1.4924   0.22
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:1) + Lags(Dbase1$d_itaee, 1:1)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:1)
  Res.Df Df      F Pr(>F)
1     55                 
2     56 -1 0.6967 0.4075
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:2) + Lags(Dbase1$d_itaee, 1:2)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:2)
  Res.Df Df      F Pr(>F)
1     52                 
2     54 -2 0.3189 0.7284
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:3) + Lags(Dbase1$d_itaee, 1:3)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:3)
  Res.Df Df      F Pr(>F)
1     49                 
2     52 -3 0.3224 0.8091
Granger causality test

Model 1: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:4) + Lags(Dbase1$d_itaee, 1:4)
Model 2: Dbase1$d_delitos ~ Lags(Dbase1$d_delitos, 1:4)
  Res.Df Df      F Pr(>F)
1     46                 
2     50 -4 0.4548 0.7684

RAÍCES UNITARIAS

Raíces unitarias del logaritmo y la diferencia logarítmica de la tasa de desocupación, respectivamente


    Augmented Dickey-Fuller Test

data:  base1$l_desocupada
Dickey-Fuller = -2.1514, Lag order = 3, p-value = 0.5136
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  base1$l_desocupada
Dickey-Fuller Z(alpha) = -14.771, Truncation lag parameter = 3, p-value
= 0.2305
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  base1$l_desocupada
KPSS Level = 0.6688, Truncation lag parameter = 3, p-value = 0.01638

    Augmented Dickey-Fuller Test

data:  Dbase1$d_desocupada
Dickey-Fuller = -5.1796, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  Dbase1$d_desocupada
Dickey-Fuller Z(alpha) = -66.012, Truncation lag parameter = 3, p-value
= 0.01
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  Dbase1$d_desocupada
KPSS Level = 0.071187, Truncation lag parameter = 3, p-value = 0.1

Raíces unitarias del logaritmo y la diferencia logarítmica de la incidencia delictiva, respectivamente


    Augmented Dickey-Fuller Test

data:  base1$l_incidencia
Dickey-Fuller = -1.2579, Lag order = 3, p-value = 0.8747
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  base1$l_incidencia
Dickey-Fuller Z(alpha) = -5.8621, Truncation lag parameter = 3, p-value
= 0.77
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  base1$l_incidencia
KPSS Level = 0.93733, Truncation lag parameter = 3, p-value = 0.01

    Augmented Dickey-Fuller Test

data:  Dbase1$d_delitos
Dickey-Fuller = -2.15, Lag order = 3, p-value = 0.5142
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  Dbase1$d_delitos
Dickey-Fuller Z(alpha) = -63.916, Truncation lag parameter = 3, p-value
= 0.01
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  Dbase1$d_delitos
KPSS Level = 0.11284, Truncation lag parameter = 3, p-value = 0.1

Raíces unitarias del logaritmo y la diferencia logarítmica del ITAEE, respectivamente


    Augmented Dickey-Fuller Test

data:  base1$l_itaee
Dickey-Fuller = -1.6411, Lag order = 3, p-value = 0.7198
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  base1$l_itaee
Dickey-Fuller Z(alpha) = -11.844, Truncation lag parameter = 3, p-value
= 0.4078
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  base1$l_itaee
KPSS Level = 1.5674, Truncation lag parameter = 3, p-value = 0.01

    Augmented Dickey-Fuller Test

data:  Dbase1$d_itaee
Dickey-Fuller = -5.5768, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  Dbase1$d_itaee
Dickey-Fuller Z(alpha) = -44.188, Truncation lag parameter = 3, p-value
= 0.01
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  Dbase1$d_itaee
KPSS Level = 0.10974, Truncation lag parameter = 3, p-value = 0.1

VAR

$selection
AIC(n)  HQ(n)  SC(n) FPE(n) 
     8      1      1      1 

$criteria
                   1            2             3             4             5
AIC(n) -1.931726e+01 -1.91956e+01 -1.926033e+01 -1.915025e+01 -1.926149e+01
HQ(n)  -1.914463e+01 -1.88935e+01 -1.882875e+01 -1.858921e+01 -1.857097e+01
SC(n)  -1.886697e+01 -1.84076e+01 -1.813461e+01 -1.768682e+01 -1.746034e+01
FPE(n)  4.083349e-09  4.63018e-09  4.381920e-09  4.980290e-09  4.588650e-09
                   6             7             8
AIC(n) -1.932363e+01 -1.914878e+01 -1.933833e+01
HQ(n)  -1.850364e+01 -1.819932e+01 -1.825940e+01
SC(n)  -1.718477e+01 -1.667220e+01 -1.652404e+01
FPE(n)  4.507950e-09  5.723753e-09  5.176998e-09

VEC


###################### 
# Johansen-Procedure # 
###################### 

Test type: trace statistic , without linear trend and constant in cointegration 

Eigenvalues (lambda):
[1]  4.953326e-01  2.657178e-01  1.490660e-01 -8.244273e-16

Values of teststatistic and critical values of test:

          test 10pct  5pct  1pct
r <= 2 |  8.39  7.52  9.24 12.97
r <= 1 | 24.45 17.85 19.96 24.60
r = 0  | 60.02 32.00 34.91 41.07

Eigenvectors, normalised to first column:
(These are the cointegration relations)

                l_desocupada.l8  l_itaee.l8 l_incidencia.l8   constant
l_desocupada.l8       1.0000000   1.0000000        1.000000  1.0000000
l_itaee.l8            0.8487840  -0.8581494        2.155272 -3.0533791
l_incidencia.l8      -0.4039901   3.0464468       -1.140982  0.4425072
constant             -3.2917005 -16.6137774       -4.232242  9.3553829

Weights W:
(This is the loading matrix)

               l_desocupada.l8  l_itaee.l8 l_incidencia.l8      constant
l_desocupada.d    -0.918348457  0.08785921     -0.02609780 -5.881163e-14
l_itaee.d         -0.004827088  0.00563764      0.02998199  2.123563e-14
l_incidencia.d    -0.291016127 -0.06434670      0.01321903 -2.458187e-13

Matriz Beta

                l_desocupada.l8 l_itaee.l8 l_incidencia.l8 constant
l_desocupada.l8          1.0000     1.0000          1.0000   1.0000
l_itaee.l8               0.8488    -0.8581          2.1553  -3.0534
l_incidencia.l8         -0.4040     3.0464         -1.1410   0.4425
constant                -3.2917   -16.6138         -4.2322   9.3554

Pruebas de estacionariedad a los residuales

Los residuales son estacionarios


    Augmented Dickey-Fuller Test

data:  resids[, 1]
Dickey-Fuller = -3.4898, Lag order = 3, p-value = 0.05143
alternative hypothesis: stationary

    Phillips-Perron Unit Root Test

data:  resids[, 1]
Dickey-Fuller Z(alpha) = -44.77, Truncation lag parameter = 3, p-value
= 0.01
alternative hypothesis: stationary

    KPSS Test for Level Stationarity

data:  resids[, 1]
KPSS Level = 0.091864, Truncation lag parameter = 3, p-value = 0.1