#Load package

require(dplyr)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
require(tidyr)
## Loading required package: tidyr
require(magrittr)
## Loading required package: magrittr
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:tidyr':
## 
##     extract

#Data Input

setwd("C:/Users/Dell/Downloads")
bw=read.csv("birthwt.csv")
head(bw)
##    X low age lwt race smoke ptl ht ui ftv  bwt
## 1 85   0  19 182    2     0   0  0  1   0 2523
## 2 86   0  33 155    3     0   0  0  0   3 2551
## 3 87   0  20 105    1     1   0  0  0   1 2557
## 4 88   0  21 108    1     1   0  0  1   2 2594
## 5 89   0  18 107    1     1   0  0  1   0 2600
## 6 91   0  21 124    3     0   0  0  0   0 2622

#Select= selecting rows from dataframe

temp= bw %>% select(low,bwt,lwt,age)
head(temp)
##   low  bwt lwt age
## 1   0 2523 182  19
## 2   0 2551 155  33
## 3   0 2557 105  20
## 4   0 2594 108  21
## 5   0 2600 107  18
## 6   0 2622 124  21

#Filter= filtering data based on condition

temp2=bw%>%filter(race==1,bwt<2500)
head(temp2)
##    X low age lwt race smoke ptl ht ui ftv  bwt
## 1 10   1  29 130    1     0   0  0  1   2 1021
## 2 20   1  21 165    1     1   0  1  0   1 1790
## 3 22   1  32 105    1     1   0  0  0   0 1818
## 4 23   1  19  91    1     1   2  0  1   0 1885
## 5 26   1  25  92    1     1   0  0  0   0 1928
## 6 27   1  20 150    1     1   0  0  0   2 1928
temp3=bw %>% filter(race %in% c(1,2))%>% select(,age,low,race,bwt)
head(temp3)
##   age low race  bwt
## 1  19   0    2 2523
## 2  20   0    1 2557
## 3  21   0    1 2594
## 4  18   0    1 2600
## 5  22   0    1 2637
## 6  29   0    1 2663

#Mutate= creates new variables

temp4=mutate(bw, mother.wt=lwt*0.453592, weight=bwt/1000)
head(temp4)
##    X low age lwt race smoke ptl ht ui ftv  bwt mother.wt weight
## 1 85   0  19 182    2     0   0  0  1   0 2523  82.55374  2.523
## 2 86   0  33 155    3     0   0  0  0   3 2551  70.30676  2.551
## 3 87   0  20 105    1     1   0  0  0   1 2557  47.62716  2.557
## 4 88   0  21 108    1     1   0  0  1   2 2594  48.98794  2.594
## 5 89   0  18 107    1     1   0  0  1   0 2600  48.53434  2.600
## 6 91   0  21 124    3     0   0  0  0   0 2622  56.24541  2.622

#Mutate= coding data

temp6=bw%>%mutate(group=recode(low,"0"="No","1"="Yes"),ethnic=recode(race,"1"="White", "2"="Black", "3"="Hispanics"))
head(temp6)
##    X low age lwt race smoke ptl ht ui ftv  bwt group    ethnic
## 1 85   0  19 182    2     0   0  0  1   0 2523    No     Black
## 2 86   0  33 155    3     0   0  0  0   3 2551    No Hispanics
## 3 87   0  20 105    1     1   0  0  0   1 2557    No     White
## 4 88   0  21 108    1     1   0  0  1   2 2594    No     White
## 5 89   0  18 107    1     1   0  0  1   0 2600    No     White
## 6 91   0  21 124    3     0   0  0  0   0 2622    No Hispanics

#Arrange= sorting data

arrange(temp4,mother.wt,weight)
##       X low age lwt race smoke ptl ht ui ftv  bwt mother.wt weight
## 1    44   1  20  80    3     1   0  0  1   0 2211  36.28736  2.211
## 2    15   1  25  85    3     0   0  0  1   0 1474  38.55532  1.474
## 3   137   0  22  85    3     1   0  0  0   0 3090  38.55532  3.090
## 4    32   1  25  89    3     0   2  0  0   1 2055  40.36969  2.055
## 5   118   0  24  90    1     1   1  0  0   1 2948  40.82328  2.948
## 6   132   0  18  90    1     1   0  0  1   0 3062  40.82328  3.062
## 7   133   0  18  90    1     1   0  0  1   0 3062  40.82328  3.062
## 8    23   1  19  91    1     1   2  0  1   0 1885  41.27687  1.885
## 9    26   1  25  92    1     1   0  0  0   0 1928  41.73046  1.928
## 10   82   1  23  94    3     1   0  0  0   0 2495  42.63765  2.495
## 11   79   1  28  95    1     1   0  0  0   2 2466  43.09124  2.466
## 12   96   0  19  95    3     0   0  0  0   0 2722  43.09124  2.722
## 13   98   0  22  95    3     0   0  1  0   0 2751  43.09124  2.751
## 14  141   0  30  95    1     1   0  0  0   2 3147  43.09124  3.147
## 15  188   0  25  95    1     1   3  0  1   0 3637  43.09124  3.637
## 16  216   0  16  95    3     0   0  0  0   1 3997  43.09124  3.997
## 17   54   1  26  96    3     0   0  0  0   0 2325  43.54483  2.325
## 18   17   1  23  97    3     0   0  0  1   1 1588  43.99842  1.588
## 19  102   0  15  98    2     0   0  0  0   0 2778  44.45202  2.778
## 20   52   1  21 100    3     0   1  0  0   4 2301  45.35920  2.301
## 21   81   1  14 100    3     0   0  0  0   2 2495  45.35920  2.495
## 22  100   0  18 100    1     1   0  0  0   0 2769  45.35920  2.769
## 23  101   0  18 100    1     1   0  0  0   0 2769  45.35920  2.769
## 24  107   0  31 100    1     0   0  0  1   3 2835  45.35920  2.835
## 25   78   1  14 101    3     1   1  0  0   0 2466  45.81279  2.466
## 26   33   1  19 102    1     0   0  0  0   2 2082  46.26638  2.082
## 27   56   1  31 102    1     1   1  0  0   1 2353  46.26638  2.353
## 28   30   1  21 103    3     0   0  0  0   0 1970  46.71998  1.970
## 29   93   0  17 103    3     0   0  0  0   1 2637  46.71998  2.637
## 30  146   0  20 103    3     0   0  0  0   0 3203  46.71998  3.203
## 31   13   1  25 105    3     0   1  1  0   0 1330  47.62716  1.330
## 32   22   1  32 105    1     1   0  0  0   0 1818  47.62716  1.818
## 33   46   1  25 105    3     0   1  0  0   1 2240  47.62716  2.240
## 34   61   1  24 105    2     1   0  0  0   0 2381  47.62716  2.381
## 35   76   1  20 105    3     0   0  0  0   3 2450  47.62716  2.450
## 36   87   0  20 105    1     1   0  0  0   1 2557  47.62716  2.557
## 37  181   0  19 105    3     0   0  0  0   0 3572  47.62716  3.572
## 38   89   0  18 107    1     1   0  0  1   0 2600  48.53434  2.600
## 39   99   0  30 107    3     0   1  0  1   2 2750  48.53434  2.750
## 40   88   0  21 108    1     1   0  0  1   2 2594  48.98794  2.594
## 41   47   1  20 109    3     0   0  0  0   0 2240  49.44153  2.240
## 42  127   0  33 109    1     1   0  0  0   1 3033  49.44153  3.033
## 43   45   1  17 110    1     1   0  0  0   0 2225  49.89512  2.225
## 44   50   1  18 110    2     1   1  0  0   0 2296  49.89512  2.296
## 45   57   1  15 110    1     0   0  0  0   0 2353  49.89512  2.353
## 46   69   1  23 110    1     1   1  0  0   0 2424  49.89512  2.424
## 47  143   0  16 110    3     0   0  0  0   0 3175  49.89512  3.175
## 48  144   0  21 110    3     1   0  0  1   0 3203  49.89512  3.203
## 49  150   0  24 110    3     0   0  0  0   0 3232  49.89512  3.232
## 50  176   0  30 110    3     0   0  0  0   0 3544  49.89512  3.544
## 51  196   0  24 110    1     0   0  0  0   1 3728  49.89512  3.728
## 52  199   0  24 110    3     0   1  0  0   0 3770  49.89512  3.770
## 53  200   0  23 110    1     0   0  0  0   1 3770  49.89512  3.770
## 54   34   1  19 112    1     1   0  0  1   0 2084  50.80230  2.084
## 55  162   0  22 112    1     1   2  0  0   0 3317  50.80230  3.317
## 56  166   0  16 112    2     0   0  0  0   0 3374  50.80230  3.374
## 57  203   0  30 112    1     0   0  0  0   1 3799  50.80230  3.799
## 58   95   0  26 113    1     1   0  0  0   0 2665  51.25590  2.665
## 59  116   0  17 113    2     0   0  0  0   1 2920  51.25590  2.920
## 60  117   0  17 113    2     0   0  0  0   1 2920  51.25590  2.920
## 61   24   1  25 115    3     0   0  0  0   0 1893  52.16308  1.893
## 62   62   1  15 115    3     0   0  0  1   0 2381  52.16308  2.381
## 63  136   0  24 115    1     0   0  0  0   2 3090  52.16308  3.090
## 64  142   0  19 115    3     0   0  0  0   0 3175  52.16308  3.175
## 65  156   0  24 115    3     0   0  0  0   2 3274  52.16308  3.274
## 66  164   0  23 115    3     1   0  0  0   1 3331  52.16308  3.331
## 67  219   0  21 115    1     0   0  0  0   1 4054  52.16308  4.054
## 68  225   0  24 116    1     0   0  0  0   1 4593  52.61667  4.593
## 69   35   1  26 117    1     1   1  0  0   0 2084  53.07026  2.084
## 70  210   0  33 117    1     0   0  0  1   1 3912  53.07026  3.912
## 71   92   0  22 118    1     0   0  0  0   1 2637  53.52386  2.637
## 72  103   0  25 118    1     1   0  0  0   3 2782  53.52386  2.782
## 73  147   0  17 119    3     0   0  0  0   0 3225  53.97745  3.225
## 74  148   0  17 119    3     0   0  0  0   0 3225  53.97745  3.225
## 75  149   0  23 119    3     0   0  0  0   2 3232  53.97745  3.232
## 76    4   1  28 120    3     1   1  0  1   0  709  54.43104  0.709
## 77   40   1  20 120    2     1   0  0  0   3 2126  54.43104  2.126
## 78   63   1  23 120    3     0   0  0  0   0 2410  54.43104  2.410
## 79   68   1  17 120    1     1   0  0  0   3 2414  54.43104  2.414
## 80   71   1  17 120    2     0   0  0  0   2 2438  54.43104  2.438
## 81  104   0  20 120    3     0   0  0  1   0 2807  54.43104  2.807
## 82  105   0  28 120    1     1   0  0  0   1 2821  54.43104  2.821
## 83  109   0  28 120    3     0   0  0  0   0 2863  54.43104  2.863
## 84  111   0  25 120    3     0   0  0  1   2 2877  54.43104  2.877
## 85  138   0  22 120    1     0   0  1  0   1 3100  54.43104  3.100
## 86  180   0  17 120    3     1   0  0  0   0 3572  54.43104  3.572
## 87  201   0  20 120    3     0   0  0  0   0 3770  54.43104  3.770
## 88  205   0  18 120    1     1   0  0  0   2 3856  54.43104  3.856
## 89  208   0  18 120    3     0   0  0  0   1 3884  54.43104  3.884
## 90  215   0  25 120    1     0   0  0  0   2 3983  54.43104  3.983
## 91  222   0  31 120    1     0   0  0  0   2 4167  54.43104  4.167
## 92  224   0  19 120    1     1   0  0  0   0 4238  54.43104  4.238
## 93   51   1  20 121    1     1   1  0  1   0 2296  54.88463  2.296
## 94  106   0  32 121    3     0   0  0  0   2 2835  54.88463  2.835
## 95  119   0  35 121    2     1   1  0  0   1 2948  54.88463  2.948
## 96  172   0  20 121    2     1   0  0  0   0 3444  54.88463  3.444
## 97   60   1  20 122    2     1   0  0  0   0 2381  55.33822  2.381
## 98  113   0  17 122    1     1   0  0  0   0 2906  55.33822  2.906
## 99   94   0  29 123    1     1   0  0  0   1 2663  55.79182  2.663
## 100 179   0  23 123    3     0   0  0  0   0 3544  55.79182  3.544
## 101 226   0  45 123    1     0   0  0  0   1 4990  55.79182  4.990
## 102  91   0  21 124    3     0   0  0  0   0 2622  56.24541  2.622
## 103 125   0  27 124    1     1   0  0  0   0 2922  56.24541  2.922
## 104  31   1  20 125    3     0   0  0  1   0 2055  56.69900  2.055
## 105 121   0  25 125    2     0   0  0  0   0 2977  56.69900  2.977
## 106 184   0  22 125    1     0   0  0  0   1 3614  56.69900  3.614
## 107 177   0  20 127    3     0   0  0  0   0 3487  57.60618  3.487
## 108  18   1  24 128    2     0   1  0  0   1 1701  58.05978  1.701
## 109 139   0  23 128    3     0   0  0  0   0 3104  58.05978  3.104
## 110 220   0  22 129    1     0   0  0  0   0 4111  58.51337  4.111
## 111  10   1  29 130    1     0   0  0  1   2 1021  58.96696  1.021
## 112  25   1  16 130    3     0   0  0  0   1 1899  58.96696  1.899
## 113  37   1  17 130    3     1   1  0  1   0 2125  58.96696  2.125
## 114  42   1  22 130    1     1   1  0  1   1 2187  58.96696  2.187
## 115  43   1  27 130    2     0   0  0  1   0 2187  58.96696  2.187
## 116  67   1  22 130    1     1   0  0  0   1 2410  58.96696  2.410
## 117  84   1  21 130    1     1   0  1  0   3 2495  58.96696  2.495
## 118 130   0  23 130    2     0   0  0  0   1 3062  58.96696  3.062
## 119 140   0  22 130    1     1   0  0  0   0 3132  58.96696  3.132
## 120 182   0  23 130    1     0   0  0  0   0 3586  58.96696  3.586
## 121 209   0  29 130    1     1   0  0  0   2 3884  58.96696  3.884
## 122 214   0  28 130    3     0   0  0  0   0 3969  58.96696  3.969
## 123 221   0  25 130    1     0   0  0  0   2 4153  58.96696  4.153
## 124 174   0  22 131    1     0   0  0  0   1 3460  59.42055  3.460
## 125  19   1  24 132    3     0   0  1  0   0 1729  59.87414  1.729
## 126 134   0  32 132    1     0   0  0  0   4 3080  59.87414  3.080
## 127 135   0  19 132    3     0   0  0  0   0 3090  59.87414  3.090
## 128 154   0  26 133    3     1   2  0  0   0 3260  60.32774  3.260
## 129 185   0  24 133    1     0   0  0  0   0 3614  60.32774  3.614
## 130 170   0  32 134    1     1   1  0  0   4 3430  60.78133  3.430
## 131 186   0  21 134    3     0   0  0  0   2 3629  60.78133  3.629
## 132 212   0  28 134    3     0   0  0  0   1 3941  60.78133  3.941
## 133 167   0  16 135    1     1   0  0  0   0 3374  61.23492  3.374
## 134 189   0  16 135    1     1   0  0  0   0 3643  61.23492  3.643
## 135 190   0  29 135    1     0   0  0  0   1 3651  61.23492  3.651
## 136 213   0  14 135    1     0   0  0  0   0 3941  61.23492  3.941
## 137 195   0  30 137    1     0   0  0  0   1 3699  62.14210  3.699
## 138  36   1  24 138    1     0   0  0  0   0 2100  62.59570  2.100
## 139 124   0  19 138    1     1   0  0  0   2 2977  62.59570  2.977
## 140 123   0  29 140    1     1   0  0  0   2 2977  63.50288  2.977
## 141 151   0  28 140    1     0   0  0  0   0 3234  63.50288  3.234
## 142 169   0  25 140    1     0   0  0  0   1 3416  63.50288  3.416
## 143 160   0  20 141    1     0   2  0  1   1 3317  63.95647  3.317
## 144  65   1  30 142    1     1   1  0  0   0 2410  64.41006  2.410
## 145  83   1  17 142    2     0   0  1  0   0 2495  64.41006  2.495
## 146 192   0  19 147    1     1   0  0  0   0 3651  66.67802  3.651
## 147 193   0  19 147    1     1   0  0  0   0 3651  66.67802  3.651
## 148  49   1  18 148    3     0   0  0  0   0 2282  67.13162  2.282
## 149  16   1  27 150    3     0   0  0  0   0 1588  68.03880  1.588
## 150  27   1  20 150    1     1   0  0  0   2 1928  68.03880  1.928
## 151  97   0  19 150    3     0   0  0  0   1 2733  68.03880  2.733
## 152 114   0  29 150    1     0   0  0  0   2 2920  68.03880  2.920
## 153 163   0  31 150    3     1   0  0  0   2 3321  68.03880  3.321
## 154 145   0  30 153    3     0   0  0  0   0 3203  69.39958  3.203
## 155  75   1  26 154    3     0   1  1  0   1 2442  69.85317  2.442
## 156 191   0  29 154    1     0   0  0  0   1 3651  69.85317  3.651
## 157  29   1  24 155    1     1   1  0  0   0 1936  70.30676  1.936
## 158  86   0  33 155    3     0   0  0  0   3 2551  70.30676  2.551
## 159 120   0  25 155    1     0   0  0  0   1 2977  70.30676  2.977
## 160 161   0  22 158    2     0   1  0  0   2 3317  71.66754  3.317
## 161 217   0  20 158    1     0   0  0  0   1 3997  71.66754  3.997
## 162 131   0  21 160    1     0   0  0  0   0 3062  72.57472  3.062
## 163 218   0  26 160    3     0   0  0  0   0 4054  72.57472  4.054
## 164  20   1  21 165    1     1   0  1  0   1 1790  74.84268  1.790
## 165 112   0  28 167    1     0   0  0  0   0 2877  75.74986  2.877
## 166 115   0  26 168    2     1   0  0  0   0 2920  76.20346  2.920
## 167 155   0  20 169    3     0   1  0  1   1 3274  76.65705  3.274
## 168 204   0  22 169    1     0   0  0  0   0 3827  76.65705  3.827
## 169 175   0  32 170    1     0   0  0  0   0 3473  77.11064  3.473
## 170 206   0  16 170    2     0   0  0  0   4 3860  77.11064  3.860
## 171 211   0  20 170    1     1   0  0  0   0 3940  77.11064  3.940
## 172 223   0  35 170    1     0   1  0  0   1 4174  77.11064  4.174
## 173 183   0  36 175    1     0   0  0  0   0 3600  79.37860  3.600
## 174  85   0  19 182    2     0   0  0  1   0 2523  82.55374  2.523
## 175 197   0  19 184    1     1   0  1  0   0 3756  83.46093  3.756
## 176 128   0  21 185    2     1   0  0  0   2 3042  83.91452  3.042
## 177 207   0  32 186    1     0   0  0  0   2 3860  84.36811  3.860
## 178  11   1  34 187    2     1   0  1  0   0 1135  84.82170  1.135
## 179  59   1  23 187    2     1   0  0  0   1 2367  84.82170  2.367
## 180 129   0  19 189    1     0   0  0  0   2 3062  85.72889  3.062
## 181  77   1  26 190    1     1   0  0  0   0 2466  86.18248  2.466
## 182 173   0  23 190    1     0   0  0  0   0 3459  86.18248  3.459
## 183  28   1  21 200    2     0   0  0  1   2 1928  90.71840  1.928
## 184 108   0  36 202    1     0   0  0  0   1 2836  91.62558  2.836
## 185 126   0  31 215    1     1   0  0  0   2 3005  97.52228  3.005
## 186 168   0  18 229    2     0   0  0  0   0 3402 103.87257  3.402
## 187 187   0  19 235    1     1   0  1  0   0 3629 106.59412  3.629
## 188 202   0  25 241    2     0   0  1  0   0 3790 109.31567  3.790
## 189 159   0  28 250    3     1   0  0  0   6 3303 113.39800  3.303
head(temp4)
##    X low age lwt race smoke ptl ht ui ftv  bwt mother.wt weight
## 1 85   0  19 182    2     0   0  0  1   0 2523  82.55374  2.523
## 2 86   0  33 155    3     0   0  0  0   3 2551  70.30676  2.551
## 3 87   0  20 105    1     1   0  0  0   1 2557  47.62716  2.557
## 4 88   0  21 108    1     1   0  0  1   2 2594  48.98794  2.594
## 5 89   0  18 107    1     1   0  0  1   0 2600  48.53434  2.600
## 6 91   0  21 124    3     0   0  0  0   0 2622  56.24541  2.622

#summerize, group_by()- summarizizng data by group

bygroup=group_by(bw,race,smoke)
temp5=summarize(bygroup,count=n(),mean.age=mean(age,na.rm=T),mean.lwt=mean(lwt,na.rm=T), mean.bw=mean(bwt,na.rm=T))
## `summarise()` has grouped output by 'race'. You can override using the `.groups` argument.
head(temp5)
## # A tibble: 6 x 6
## # Groups:   race [3]
##    race smoke count mean.age mean.lwt mean.bw
##   <int> <int> <int>    <dbl>    <dbl>   <dbl>
## 1     1     0    44     26.0     139.   3429.
## 2     1     1    52     22.8     126.   2827.
## 3     2     0    16     19.9     149.   2854.
## 4     2     1    10     24.1     143.   2504 
## 5     3     0    55     22.4     119.   2816.
## 6     3     1    12     22.5     124    2757.

#Sample

d5=sample_n(bw,10)
d5
##      X low age lwt race smoke ptl ht ui ftv  bwt
## 1  218   0  26 160    3     0   0  0  0   0 4054
## 2  121   0  25 125    2     0   0  0  0   0 2977
## 3   81   1  14 100    3     0   0  0  0   2 2495
## 4  162   0  22 112    1     1   2  0  0   0 3317
## 5   87   0  20 105    1     1   0  0  0   1 2557
## 6   96   0  19  95    3     0   0  0  0   0 2722
## 7  103   0  25 118    1     1   0  0  0   3 2782
## 8   88   0  21 108    1     1   0  0  1   2 2594
## 9   47   1  20 109    3     0   0  0  0   0 2240
## 10  97   0  19 150    3     0   0  0  0   1 2733