library(reticulate)
#py_install("matplotlib")
#LOAD NECESSARY LIBRARIES
from sklearn.model_selection import train_test_split
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn import datasets
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
#LOAD AND VIEW IRIS DATASET
iris = datasets.load_iris()
df = pd.DataFrame(data = np.c_[iris['data'], iris['target']],
columns = iris['feature_names'] + ['target'])
df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names)
df.columns = ['s_length', 's_width', 'p_length', 'p_width', 'target', 'species']
print(df.head())
## s_length s_width p_length p_width target species
## 0 5.1 3.5 1.4 0.2 0.0 setosa
## 1 4.9 3.0 1.4 0.2 0.0 setosa
## 2 4.7 3.2 1.3 0.2 0.0 setosa
## 3 4.6 3.1 1.5 0.2 0.0 setosa
## 4 5.0 3.6 1.4 0.2 0.0 setosa
len(df.index)
## 150
#DEFINE PREDICTOR AND RESPONSE VARIABLES
X = df[['s_length', 's_width', 'p_length', 'p_width']]
y = df['species']
#FIT LDA MODEL
model = LinearDiscriminantAnalysis()
model.fit(X, y)
## LinearDiscriminantAnalysis()
#DEFINE METHOD TO EVALUATE MODEL
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
cv
## RepeatedStratifiedKFold(n_repeats=3, n_splits=10, random_state=1)
#EVALUATE MODEL
#scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
#print(np.mean(scores))
#USE MODEL TO MAKE PREDICTION ON NEW OBSERVATION
new = [5.0, 3.0, 1.0, 0.4]
model.predict([new])
## array(['setosa'], dtype='<U10')
#CREATE LDA PLOT
X = iris.data
y = iris.target
model = LinearDiscriminantAnalysis()
X_r2 = model.fit(X, y).transform(X)
target_names = iris.target_names
plt.figure()
colors = ['red', 'green', 'blue']
lw = 2
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], alpha=0.8, color=color,
label=target_name)
## <matplotlib.collections.PathCollection object at 0x0000000030C80FA0>
## <matplotlib.collections.PathCollection object at 0x0000000030C98430>
## <matplotlib.collections.PathCollection object at 0x0000000030C98880>
plt.legend(loc='best', shadow=False, scatterpoints=1)
## <matplotlib.legend.Legend object at 0x0000000030C98BE0>
plt.show()
