Length:The longer the host stays on Airbnb, the more likely they will remain on Airbnb.

Guests:The less number of guests the listing accommodates, the more likely they will remain on Airbnb.

Rating: The higher the rating is, the more likely they will remain on Airbnb.

Rev_AbB: The more revenue generated in one year for Airbnb via its property fee, the more likely they will remain on Airbnb.

Type_Hm,zestimatek,listprice,location is not significantly relevent to the liklihood of remaining on Airbnb

Advice:To entice owners to list accommodations on Airbnb, new hosts who have not stayed long on Airbnb need more support to remain on Airbnb; hosts attach most importance to rating so Airbnb should ensure hosts can get satifying ratings; Airbnb should allow hosts to increase property fees within a reasonable limit; Airbnb can tell hosts to divide house into multiple rooms to accomodate less guests in one room and ensure guests have enough independent space.

Read the data
host<-read.csv("~/Desktop/R/host.csv",header=T,sep=',')
Logistic regression
myresult<-glm(choice~Length+Type_Hm+Guests+Zestimatek+ListPrice+Rating+Rev_AbB+Loc_1+Loc_2+Loc_3+Loc_4+Loc_5,data=host,family="binomial") # is for a group of generalized linear models and 'binomial' specifies logistic regression

summary(myresult)
## 
## Call:
## glm(formula = choice ~ Length + Type_Hm + Guests + Zestimatek + 
##     ListPrice + Rating + Rev_AbB + Loc_1 + Loc_2 + Loc_3 + Loc_4 + 
##     Loc_5, family = "binomial", data = host)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4179  -0.8402   0.5268   0.7375   1.8472  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.997e+00  1.067e+00  -2.809 0.004972 ** 
## Length       2.565e-03  1.112e-03   2.306 0.021100 *  
## Type_Hm      5.730e-01  4.467e-01   1.283 0.199646    
## Guests      -2.506e-01  1.134e-01  -2.210 0.027078 *  
## Zestimatek  -9.171e-04  2.709e-03  -0.339 0.734950    
## ListPrice   -8.241e-05  3.621e-03  -0.023 0.981844    
## Rating       6.160e-01  1.629e-01   3.782 0.000156 ***
## Rev_AbB      2.102e-03  8.402e-04   2.502 0.012341 *  
## Loc_1       -5.853e-02  4.919e-01  -0.119 0.905282    
## Loc_2        9.109e-01  5.220e-01   1.745 0.080989 .  
## Loc_3        9.114e-01  5.742e-01   1.587 0.112462    
## Loc_4        1.005e+00  5.190e-01   1.937 0.052764 .  
## Loc_5        8.897e-01  5.317e-01   1.673 0.094262 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 470.54  on 399  degrees of freedom
## Residual deviance: 399.44  on 387  degrees of freedom
## AIC: 425.44
## 
## Number of Fisher Scoring iterations: 4
# odds ratios only
exp(coef(myresult))
## (Intercept)      Length     Type_Hm      Guests  Zestimatek   ListPrice 
##  0.04994121  1.00256786  1.77354464  0.77834137  0.99908330  0.99991759 
##      Rating     Rev_AbB       Loc_1       Loc_2       Loc_3       Loc_4 
##  1.85155282  1.00210452  0.94314780  2.48648155  2.48782433  2.73233475 
##       Loc_5 
##  2.43442559
plot(myresult$fitted.values)