### Sets my working Directory ###
setwd("E:/Methods")
### Calls the tidyverse Package ###
library(tidyverse)

### Calls the anesr Package ###
library(anesr)

### Calls the dplyr Package ###
library(dplyr)

### Calls the MASS Package ###
library(MASS)

### Calls the ggplot2 Package ###
library(ggplot2)

### Calls the ggeffects Package ###
library(ggeffects)

### Calls the gridExtra Package ###
library(gridExtra)

### Calls the sjPlot Package ###
library(sjPlot)

### Calls the stargazer Package ###
library(stargazer)

### Calls the icr Package
library(icr)

### Calls the fast Dummies package ###
library(fastDummies)
### Assigns data as time series 2016 ###
data("timeseries_2016")

### Assigns the time series 2016 data as anes16 ###
anes16 <- timeseries_2016 

### A function that eliminates nonsensical values from the anes16 data set (values that are coded as less than 0) used later to clean the data set anes16 ###
clean <- function(x){ifelse (x < 0, NA, x)}

### The Registration variable had 3 possible responses not registered, registered, registered at another address this function combines the last two options into one as I am not interested in where someone registered, but only that they are registered ### 
clean_R1 <- function(x){ifelse (x == 2, 1, x)}

### Makes it so when x=3 it becomes 0 for the variable Register ###
clean_R2 <- function(x){ifelse (x == 3, 0, x)}

### Makes the responses for dichotomous variables from 0 to 1 instead of 1 to 2 ###
clean_2 <- function(x){ifelse (x == 2, 0, x)}

### These functions reorder the ordinal variables of Attention_p, Interest_C, and Trust_W ###
clean_AP1 <- function(x){ifelse (x == 1, 20, x)}

clean_AP2 <- function(x){ifelse (x == 5, 1, x)}

clean_AP3 <- function(x){ifelse (x == 20, 5, x)}

clean_AP4 <- function(x){ifelse (x == 2, 25, x)}

clean_AP5 <- function(x){ifelse (x == 4, 2, x)}

clean_AP6 <- function(x){ifelse (x == 25, 4, x)}

clean_IC1 <- function(x){ifelse (x == 1, 20, x)}

clean_IC2 <- function(x){ifelse (x == 3, 1, x)}

clean_IC3 <- function(x){ifelse (x == 20, 3, x)}

Clean_TW1 <- function(x){ifelse (x == 1, 20, x)}

Clean_TW2 <- function(x){ifelse (x == 5, 1, x)}

Clean_TW3 <- function(x){ifelse (x == 20, 5, x)}

Clean_TW4 <- function(x){ifelse (x == 2, 25, x)}

Clean_TW5 <- function(x){ifelse (x == 4, 2, x)}

Clean_TW6 <- function(x){ifelse (x == 25, 4, x)}

### For the variables related to political knowledge the answer is either Republican or Democrat here I reorder the variables so that Democrat is 0 AKA the wrong ansewer to the question ###
Clean_HK1 <- function(x){ifelse (x == 1, 0, x)}

Clean_HK2 <- function(x){ifelse (x == 2, 1, x)}

Clean_SK1 <- function(x){ifelse (x == 1, 0, x)}

Clean_SK2 <- function(x){ifelse (x == 2, 1, x)}

### Changes the control variable for strength of party ID to partisanship ###
Clean_P1 <- function(x){ifelse (x == 7, 1, x)}

Clean_P2 <- function(x){ifelse (x == 6, 2, x)}
  
Clean_P3 <- function(x){ifelse (x == 5, 3, x)}

Clean_P4 <- function(x){ifelse (x == 1, 20, x)}

Clean_P5<- function(x){ifelse (x == 4, 1, x)}

Clean_P6<- function(x){ifelse (x == 20, 4, x)}

Clean_P7<- function(x){ifelse (x == 2, 25, x)}

Clean_P8<- function(x){ifelse (x == 3, 2, x)}

Clean_P9<- function(x){ifelse (x == 25, 3, x)}

### Eliminates the other category for the control variable of highest level of Education ###
Clean_E1 <- function(x){ifelse (x > 16, NA, x)}

### Reorders the variables Community_W and Volunteer_W ####
Clean_CW1 <- function(x){ifelse (x == 2, 0, x)}

Clean_VW1 <- function(x){ifelse (x == 2, 0, x)}

### Creates the data set anes_clean by using the clean function which eliminates values less than 0 (values that have no value and would make results unusable or nonsensical) ###
anes_clean <- anes16 %>% mutate(across (everything(), clean))

### Creates the Vote Variable and presents the variable in a table and makes it usable in logistic regression by converting it into a factor  ###
Vote <- anes_clean %>% dplyr::select(V162039) %>% mutate(across (everything(), clean_2)) %>% unlist() %>% as.factor()  
Tab_Vote <- table(Vote)
tab_df(Tab_Vote, file = "Tab_Vote_sj1")
X0 X1
356 2365
table(Vote)
## Vote
##    0    1 
##  356 2365
## Creates the Register variable and presents the variable in a table and makes it useable in logistic regression by converting it into a factor ###
Register <- anes_clean %>% dplyr::select(V161011) %>% mutate(across (everything(), clean_R1)) %>% mutate(across (everything(), clean_R2)) %>% unlist() %>% as.factor()  
Tab_Register <- table(Register)
tab_df(Tab_Register, file = "Tab_Register_sj1")
X0 X1
605 3657
table(Register)
## Register
##    0    1 
##  605 3657
### Creates the Attention_P Variable and presents the variable in a table and makes it usable in logistic regression by converting it into a factor ###
Attention_P <- anes_clean %>% dplyr::select(V161003) %>% mutate(across (everything(), clean_AP1)) %>% mutate(across (everything(), clean_AP2)) %>% mutate(across (everything(), clean_AP3)) %>% mutate(across (everything(), clean_AP4)) %>% mutate(across (everything(), clean_AP5 )) %>% mutate(across (everything(), clean_AP6))%>% unlist() %>% as.factor()  
Tab_Attention_P <- table(Attention_P)
tab_df(Tab_Attention_P, file = "Tab_Attention_P_sj1")
X1 X2 X3 X4 X5
84 942 885 1496 863
table(Attention_P)
## Attention_P
##    1    2    3    4    5 
##   84  942  885 1496  863
### Creates the Interest_C variable and presents the variable in a table and makes it usable in logistic regression by converting it into a factor ##
Interest_C <- anes_clean %>% dplyr::select(V161004) %>% mutate(across (everything(), clean_IC1)) %>% mutate(across (everything(), clean_IC2)) %>% mutate(across (everything(), clean_IC3)) %>% mutate(across (everything(), clean_IC3)) %>% unlist() %>% as.factor()  
Tab_Interest_C <- table(Interest_C)
tab_df(Tab_Interest_C, file = "Tab_Interest_C_sj1")
X1 X2 X3
521 1519 2230
table(Interest_C)
## Interest_C
##    1    2    3 
##  521 1519 2230
### Creates the House_K variable and presents the variable in a table and makes it usable in logistic regression by converting it into a factor ###
House_K <- anes_clean %>% dplyr::select(V161515) %>% mutate(across (everything(), Clean_HK1)) %>% mutate(across (everything(), Clean_HK2)) %>% unlist() %>% as.factor()  
Tab_House_K <- table(House_K)
tab_df(Tab_House_K, file = "Tab_House_K_sj1")
X0 X1
1092 2995
table(House_K)
## House_K
##    0    1 
## 1092 2995
### Creates the Senate_K variable and presents the variable in a table and makes it usable in logistic regression by converting it into a factor ###
Senate_K <- anes_clean %>% dplyr::select(V161516) %>% mutate(across (everything(), Clean_SK1)) %>% mutate(across (everything(), Clean_SK2)) %>% unlist() %>% as.factor()  
Tab_Senate_K <- table(Senate_K)
tab_df(Tab_Senate_K, file = "Tab_Senate_K_sj1")
X0 X1
1341 2740
table(Senate_K)
## Senate_K
##    0    1 
## 1341 2740
### Creates the Trust_W variable and presents the variable in a table and makes it usable in logistic regression by converting it into a factor ###
Trust_W  <- anes_clean %>% dplyr::select(V161215) %>% mutate(across (everything(), Clean_TW1)) %>% mutate(across (everything(), Clean_TW2)) %>% mutate(across (everything(), Clean_TW3)) %>% mutate(across (everything(), Clean_TW4)) %>% mutate(across (everything(), Clean_TW5)) %>% mutate(across (everything(), Clean_TW6)) %>% unlist() %>% as.factor()  
Tab_Trust_W <- table(Trust_W)
tab_df(Tab_Trust_W, file = "Tab_Trust_W_sj1")
X1 X2 X3 X4 X5
545 1826 1382 429 66
table(Trust_W)
## Trust_W
##    1    2    3    4    5 
##  545 1826 1382  429   66
### Creates the Government_C variable and presents the variable in a table and makes it usable in logistic regression by converting it into a factor ###
Government_C <- anes_clean %>% dplyr::select(V161218) %>% unlist() %>% as.factor()  
Tab_Government_C <- table(Government_C)
tab_df(Tab_Government_C, file = "Tab_Government_C_sj1")
X1 X2 X3 X4 X5
167 1319 1484 1218 34
table(Government_C)
## Government_C
##    1    2    3    4    5 
##  167 1319 1484 1218   34
### Creates the Community_W variable  and presents the variable in a table and makes it usable in logistic regression by converting it into a factor ###
Community_W <- anes_clean %>% dplyr::select(V162195) %>% mutate(across (everything(), Clean_CW1)) %>% unlist() %>% as.factor()  
Tab_Community_W <- table(Community_W)
tab_df(Tab_Community_W, file = "Tab_Community_W_sj1")
X0 X1
2424 1213
table(Community_W)
## Community_W
##    0    1 
## 2424 1213
### Creates the Volunteer_W variable and presents the variable in a table and makes it usable in logistic regression by converting it into a factor ###
Volunteer_W  <- anes_clean %>% dplyr::select(V162197) %>% mutate(across (everything(), Clean_VW1)) %>% unlist() %>% as.factor()  
Tab_Volunteer_W <- table(Volunteer_W)
tab_df(Tab_Volunteer_W, file = "Tab_Volunteer_W_sj1")
X0 X1
2021 1615
table(Volunteer_W)
## Volunteer_W
##    0    1 
## 2021 1615
### Selects each column/variable from the anes_clean data set which is made up of the variables/columns that ask whether the respondent has watched a given program then unlists the variable/column to make it usable then assigns the unlisted variable/column to the name of the program it pertains to ###
Twenty_Twenty <- anes_clean %>% dplyr::select (V161364) %>% unlist()  
table(Twenty_Twenty)
## Twenty_Twenty
##    0    1 
## 2877  852
All_In_with_Chris_Hayes <- anes_clean %>% dplyr::select (V161365) %>% unlist()  
table(All_In_with_Chris_Hayes)
## All_In_with_Chris_Hayes
##    0    1 
## 3569  160
The_Blacklist <- anes_clean %>% dplyr::select (V161366) %>% unlist()  
table(The_Blacklist)
## The_Blacklist
##    0    1 
## 3298  431
CBS_Evening_News_with_Scott_Pelley <- anes_clean %>% dplyr::select (V161367) %>% unlist()  
table(CBS_Evening_News_with_Scott_Pelley)
## CBS_Evening_News_with_Scott_Pelley
##    0    1 
## 3120  609
Criminal_Minds <- anes_clean %>% dplyr::select (V161368) %>% unlist()  
table(Criminal_Minds)
## Criminal_Minds
##    0    1 
## 2987  742
Empire <- anes_clean %>% dplyr::select (V161369) %>% unlist()  
table(Empire)
## Empire
##    0    1 
## 3434  295
Hannity <- anes_clean %>% dplyr::select (V161370) %>% unlist()  
table(Hannity)
## Hannity
##    0    1 
## 3337  392
Jimmy_Kimmel_Live <- anes_clean %>% dplyr::select (V161371) %>% unlist()  
table(Jimmy_Kimmel_Live)
## Jimmy_Kimmel_Live
##    0    1 
## 3315  414
The_Kelly_File <- anes_clean %>% dplyr::select (V161372) %>% unlist()  
table(The_Kelly_File)
## The_Kelly_File
##    0    1 
## 3364  365
Modern_Family <- anes_clean %>% dplyr::select (V161373) %>% unlist()  
table(Modern_Family)
## Modern_Family
##    0    1 
## 3084  645
NCIS <-  anes_clean %>% dplyr::select (V161374) %>% unlist()  
table(NCIS)
## NCIS
##    0    1 
## 2874  855
The_Nightly_Show_with_Larry_Wilmore <- anes_clean %>% dplyr::select (V161375) %>% unlist()  
table(The_Nightly_Show_with_Larry_Wilmore)
## The_Nightly_Show_with_Larry_Wilmore
##    0    1 
## 3651   78
Sunday_Night_Football <-  anes_clean %>% dplyr::select (V161376) %>% unlist()  
table(Sunday_Night_Football)
## Sunday_Night_Football
##    0    1 
## 2479 1250
Scorpion <- anes_clean %>% dplyr::select (V161377) %>% unlist()  
table(Scorpion)
## Scorpion
##    0    1 
## 3435  294
The_Simpsons <- anes_clean %>% dplyr::select (V161378) %>% unlist()  
table(The_Simpsons)
## The_Simpsons
##    0    1 
## 3479  250
Today <- anes_clean %>% dplyr::select (V161379) %>% unlist()  
table(Today)
## Today
##    0    1 
## 3019  710
Sixty_Minutes <- anes_clean %>% dplyr::select (V161380) %>% unlist()  
table(Sixty_Minutes)
## Sixty_Minutes
##    0    1 
## 2585 1144
Anderson_Cooper_Three_Hundred_and_Sixty <- anes_clean %>% dplyr::select (V161381) %>% unlist()  
table(Anderson_Cooper_Three_Hundred_and_Sixty)
## Anderson_Cooper_Three_Hundred_and_Sixty
##    0    1 
## 3168  561
CBS_This_Morning <- anes_clean %>% dplyr::select (V161382) %>% unlist()  
table(CBS_This_Morning)
## CBS_This_Morning
##    0    1 
## 3024  705
Dancing_with_the_Stars <-  anes_clean %>% dplyr::select (V161383) %>% unlist()  
table(Dancing_with_the_Stars)
## Dancing_with_the_Stars
##    0    1 
## 3182  547
Face_the_Nation <- anes_clean %>% dplyr::select (V161384) %>% unlist()  
table(Face_the_Nation)
## Face_the_Nation
##    0    1 
## 3350  379
House_of_Cards <- anes_clean %>% dplyr::select (V161385) %>% unlist()
table(House_of_Cards)
## House_of_Cards
##    0    1 
## 3389  340
Hardball_with_Chris_Matthews <- anes_clean %>% dplyr::select (V161386) %>% unlist()  
table(Hardball_with_Chris_Matthews)
## Hardball_with_Chris_Matthews
##    0    1 
## 3455  274
Judge_Judy <- anes_clean %>% dplyr::select (V161387) %>% unlist()  
table(Judge_Judy)
## Judge_Judy
##    0    1 
## 3266  463
Meet_the_Press <- anes_clean %>% dplyr::select (V161388) %>% unlist()  
table(Meet_the_Press)
## Meet_the_Press
##    0    1 
## 3265  464
Game_of_Thrones <- anes_clean %>% dplyr::select (V161389) %>% unlist()  
table(Game_of_Thrones)
## Game_of_Thrones
##    0    1 
## 3225  504
NBC_Nightly_News_with_Lester_Holt <- anes_clean %>% dplyr::select (V161390) %>% unlist()  
table(NBC_Nightly_News_with_Lester_Holt)
## NBC_Nightly_News_with_Lester_Holt
##    0    1 
## 2936  793
On_the_Record_with_Greta_Van_Susteren <- anes_clean %>% dplyr::select (V161391) %>% unlist()  
table(On_the_Record_with_Greta_Van_Susteren)
## On_the_Record_with_Greta_Van_Susteren
##    0    1 
## 3445  284
Daredevil <- anes_clean %>% dplyr::select (V161392) %>% unlist()  
table(Daredevil)
## Daredevil
##    0    1 
## 3588  141
The_Rachel_Maddow_Show <- anes_clean %>% dplyr::select (V161393) %>% unlist()  
table(The_Rachel_Maddow_Show)
## The_Rachel_Maddow_Show
##    0    1 
## 3450  279
Shark_Tank <- anes_clean %>% dplyr::select (V161394) %>% unlist()  
table(Shark_Tank)
## Shark_Tank
##    0    1 
## 3101  628
The_Voice <- anes_clean %>% dplyr::select(V161395) %>% unlist()  
table(The_Voice)
## The_Voice
##    0    1 
## 3000  729
ABC_World_News_with_David_Muir <- anes_clean %>% dplyr::select (V161396) %>% unlist()  
table(ABC_World_News_with_David_Muir)
## ABC_World_News_with_David_Muir
##    0    1 
## 3039  690
Blue_bloods <-  anes_clean %>% dplyr::select (V161397) %>% unlist()  
table(Blue_bloods)
## Blue_bloods
##    0    1 
## 3152  577
Conan <-  anes_clean %>% dplyr::select (V161398) %>% unlist()  
table(Conan)
## Conan
##    0    1 
## 3571  158
Dateline_NBC <- anes_clean %>% dplyr::select (V161399) %>% unlist()  
table(Dateline_NBC)
## Dateline_NBC
##    0    1 
## 2734  995
Good_Morning_America <- anes_clean %>% dplyr::select (V161400) %>% unlist()  
table(Good_Morning_America)
## Good_Morning_America
##    0    1 
## 2768  961
Hawaii_Five_O <- anes_clean %>% dplyr::select (V161401) %>% unlist()  
table(Hawaii_Five_O)
## Hawaii_Five_O
##    0    1 
## 3371  358
Madam_Secretary <- anes_clean %>% dplyr::select (V161402) %>% unlist()  
table(Madam_Secretary)
## Madam_Secretary
##    0    1 
## 3368  361
Nancy_Grace <- anes_clean %>% dplyr::select (V161403) %>% unlist()  
table(Nancy_Grace)
## Nancy_Grace
##    0    1 
## 3541  188
Erin_Burnett_Outfront <- anes_clean %>% dplyr::select (V161404) %>% unlist()  
table(Erin_Burnett_Outfront)
## Erin_Burnett_Outfront
##    0    1 
## 3603  126
PBS_News_Hour <-  anes_clean %>% dplyr::select (V161405) %>% unlist()  
table(PBS_News_Hour)
## PBS_News_Hour
##    0    1 
## 3293  436
Scandal <- anes_clean %>% dplyr::select (V161406) %>% unlist()  
table(Scandal)
## Scandal
##    0    1 
## 3397  332
The_Big_Bang_Theory <- anes_clean %>% dplyr::select (V161407) %>% unlist()  
table(The_Big_Bang_Theory)
## The_Big_Bang_Theory
##    0    1 
## 2731  998
The_Late_Show_with_Stephen_Colbert <- anes_clean %>% dplyr::select(V161408) %>% unlist()  
table(The_Late_Show_with_Stephen_Colbert)
## The_Late_Show_with_Stephen_Colbert
##    0    1 
## 3339  390
The_O_Reilly_Factor <- anes_clean %>% dplyr::select (V161409) %>% unlist()  
table(The_O_Reilly_Factor)
## The_O_Reilly_Factor
##    0    1 
## 3157  572
The_Tonight_Show_Starring_Jimmy_Fallon <- anes_clean %>% dplyr::select(V161410) %>% unlist()  
table(The_Tonight_Show_Starring_Jimmy_Fallon)
## The_Tonight_Show_Starring_Jimmy_Fallon
##    0    1 
## 3057  672
Alpha_House <- anes_clean %>% dplyr::select(V161411) %>% unlist()  
table(Alpha_House)
## Alpha_House
##    0    1 
## 3702   27
### Selects the control variables from anes_clean and makes them usable in logistic regression by unlisting them ###
Gender <- anes_clean %>% dplyr::select (V161342) %>% unlist ()  %>% as.factor()
Gender1 <- anes_clean %>% dplyr::select (V161342) %>% unlist ()  
Tab_Gender1 <- table(Gender1)
tab_df(Tab_Gender1, file = "Tab_Gender_sj1")
X1 X2 X3
1987 2231 11
table(Gender1)
## Gender1
##    1    2    3 
## 1987 2231   11
Race <- anes_clean %>% dplyr::select (V161310x) %>% unlist ()  %>% as.factor()
Race1 <- anes_clean %>% dplyr::select (V161310x) %>% unlist ()  
Tab_Race1 <- table(Race1)
tab_df(Tab_Race1, file = "Tab_Race_sj1")
X1 X2 X3 X4 X5 X6
3038 397 148 27 450 177
table(Race1)
## Race1
##    1    2    3    4    5    6 
## 3038  397  148   27  450  177
table(Race)
## Race
##    1    2    3    4    5    6 
## 3038  397  148   27  450  177
Age <- anes_clean %>% dplyr::select (V161267x) %>% unlist ()  
Tab_Age <- table(Age)
tab_df(Tab_Age, file = "Tab_Age_sj1")
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
121 207 323 387 374 281 339 349 432 385 384 239 328
table(Age)
## Age
##   1   2   3   4   5   6   7   8   9  10  11  12  13 
## 121 207 323 387 374 281 339 349 432 385 384 239 328
Income <- anes_clean %>% dplyr::select(V161361x) %>% unlist ()  
Tab_Income <- table(Income)
tab_df(Tab_Income, file = "Tab_Income_sj1")
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28
275 96 133 37 110 52 153 64 143 34 213 166 178 154 204 85 205 107 138 126 231 176 191 182 166 154 154 141
table(Income)
## Income
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
## 275  96 133  37 110  52 153  64 143  34 213 166 178 154 204  85 205 107 138 126 
##  21  22  23  24  25  26  27  28 
## 231 176 191 182 166 154 154 141
Partisanship<- anes_clean %>% dplyr::select(V161158x) %>% mutate(across (everything(), Clean_P1)) %>% mutate(across (everything(), Clean_P2)) %>% mutate(across (everything(), Clean_P3)) %>% mutate(across (everything(), Clean_P4)) %>% mutate(across (everything(), Clean_P5)) %>% mutate(across (everything(), Clean_P6)) %>% mutate(across (everything(), Clean_P7)) %>% mutate(across (everything(), Clean_P8)) %>% mutate(across (everything(), Clean_P9)) %>% unlist ()  
Tab_Partisanship <- table(Partisanship)
tab_df(Tab_Partisanship, file = "Tab_Partisanship_sj1")
X1 X2 X3 X4
579 990 1067 1611
table(Partisanship)
## Partisanship
##    1    2    3    4 
##  579  990 1067 1611
Education <- anes_clean %>% dplyr::select(V161270) %>% mutate(across (everything(), Clean_E1)) %>% unlist ()  
Tab_Education <- table(Education)
tab_df(Tab_Education, file = "Tab_Education_sj1")
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16
1 3 15 22 32 40 62 107 810 898 313 288 955 499 88 93
table(Education)
## Education
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 
##   1   3  15  22  32  40  62 107 810 898 313 288 955 499  88  93
### Creates the group of shows that will be used in the logistic regression models ###
Traditional_Political_News_Programs_GLM <- as.data.frame(Twenty_Twenty + CBS_Evening_News_with_Scott_Pelley + Sixty_Minutes + Face_the_Nation + Meet_the_Press + NBC_Nightly_News_with_Lester_Holt + ABC_World_News_with_David_Muir + Dateline_NBC + PBS_News_Hour) %>% unlist ()  

Entertainment_or_Opinion_Political_News_Programs_GLM <- as.data.frame(All_In_with_Chris_Hayes + Hannity + Jimmy_Kimmel_Live + The_Kelly_File + The_Nightly_Show_with_Larry_Wilmore + Today + Anderson_Cooper_Three_Hundred_and_Sixty + CBS_This_Morning + Hardball_with_Chris_Matthews + On_the_Record_with_Greta_Van_Susteren + The_Rachel_Maddow_Show + Good_Morning_America + Nancy_Grace + Erin_Burnett_Outfront + The_O_Reilly_Factor) %>% unlist ()  

Expressly_Political_Entertainment_Programs_GLM <- as.data.frame(House_of_Cards + Game_of_Thrones + Madam_Secretary + Scandal + Alpha_House) %>% unlist ()  

Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM <- as.data.frame(The_Blacklist + Criminal_Minds + NCIS + Scorpion + Judge_Judy + Daredevil + Blue_bloods + Hawaii_Five_O) %>% unlist ()  

Apolitical_Entertainment_Programs_GLM <- as.data.frame(Empire + Modern_Family + Sunday_Night_Football + The_Simpsons + Dancing_with_the_Stars + Shark_Tank + The_Voice + Conan + The_Big_Bang_Theory + The_Tonight_Show_Starring_Jimmy_Fallon) %>% unlist ()  

All_Programs_GLM <- as.data.frame(Twenty_Twenty + CBS_Evening_News_with_Scott_Pelley + Sixty_Minutes + Face_the_Nation + Meet_the_Press + NBC_Nightly_News_with_Lester_Holt + ABC_World_News_with_David_Muir + Dateline_NBC + PBS_News_Hour + All_In_with_Chris_Hayes + Hannity + Jimmy_Kimmel_Live + The_Kelly_File + The_Nightly_Show_with_Larry_Wilmore + Today + Anderson_Cooper_Three_Hundred_and_Sixty + CBS_This_Morning + Hardball_with_Chris_Matthews + On_the_Record_with_Greta_Van_Susteren + The_Rachel_Maddow_Show + Good_Morning_America + Nancy_Grace + Erin_Burnett_Outfront + The_O_Reilly_Factor + House_of_Cards + Game_of_Thrones + Madam_Secretary + Scandal + Alpha_House + The_Blacklist + Criminal_Minds + NCIS + Scorpion + Judge_Judy + Daredevil + Blue_bloods + Hawaii_Five_O + Empire + Modern_Family + Sunday_Night_Football +  The_Simpsons + Dancing_with_the_Stars + Shark_Tank + The_Voice + Conan + The_Big_Bang_Theory + The_Tonight_Show_Starring_Jimmy_Fallon) %>% unlist ()  
### Creates a logistic regression model for all 5 groups of shows against all 10 dependent variables with control variables compared to the control group then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_V_GLM_C <- glm(Vote ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(All_V_GLM_C)
## 
## Call:
## glm(formula = Vote ~ All_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6758   0.3597   0.4516   0.5457   1.1411  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -0.265178   0.451183  -0.588 0.556707    
## All_Programs_GLM   0.025061   0.014326   1.749 0.080228 .  
## Race2             -0.228627   0.206405  -1.108 0.268006    
## Race3             -0.512857   0.370039  -1.386 0.165761    
## Race4              0.342920   1.088970   0.315 0.752835    
## Race5             -0.023987   0.234470  -0.102 0.918515    
## Race6              0.728181   0.436239   1.669 0.095073 .  
## Partisanship       0.080140   0.066142   1.212 0.225652    
## Income             0.034723   0.009106   3.813 0.000137 ***
## Age                0.093861   0.020074   4.676 2.93e-06 ***
## Gender2           -0.300517   0.136092  -2.208 0.027231 *  
## Gender3           12.996236 438.536630   0.030 0.976358    
## Education          0.069449   0.032336   2.148 0.031739 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1680.6  on 2271  degrees of freedom
## Residual deviance: 1606.6  on 2259  degrees of freedom
##   (1998 observations deleted due to missingness)
## AIC: 1632.6
## 
## Number of Fisher Scoring iterations: 13
stargazer(All_V_GLM_C, type = "html",  out = "All_V_star2")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Vote</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.025<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.014)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.229</td></tr>
## <tr><td style="text-align:left"></td><td>(0.206)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.513</td></tr>
## <tr><td style="text-align:left"></td><td>(0.370)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.343</td></tr>
## <tr><td style="text-align:left"></td><td>(1.089)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.024</td></tr>
## <tr><td style="text-align:left"></td><td>(0.234)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.728<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.436)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.080</td></tr>
## <tr><td style="text-align:left"></td><td>(0.066)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.035<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.009)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.094<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.020)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.301<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.136)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>12.996</td></tr>
## <tr><td style="text-align:left"></td><td>(438.537)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.069<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.032)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-0.265</td></tr>
## <tr><td style="text-align:left"></td><td>(0.451)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>2,272</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-803.317</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>1,632.634</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_V_GLM_C_EXP <- exp(coef(All_V_GLM_C))
All_V_GLM_C_Prob1 <- All_V_GLM_C_EXP - 1 
All_V_GLM_C_Prob2 <- All_V_GLM_C_Prob1 * 100
All_V_GLM_C_Prob2
##      (Intercept) All_Programs_GLM            Race2            Race3 
##    -2.329309e+01     2.537757e+00    -2.043750e+01    -4.012177e+01 
##            Race4            Race5            Race6     Partisanship 
##     4.090564e+01    -2.370208e+00     1.071309e+02     8.343921e+00 
##           Income              Age          Gender2          Gender3 
##     3.533315e+00     9.840687e+00    -2.595650e+01     4.407503e+07 
##        Education 
##     7.191693e+00
tab_df(All_V_GLM_C_Prob2, file = "All_V_sj1")
X.Intercept. All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-23.29 2.54 -20.44 -40.12 40.91 -2.37 107.13 8.34 3.53 9.84 -25.96 44075027.04 7.19
Shows_V_GLM <- glm(Vote ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(Shows_V_GLM)
## 
## Call:
## glm(formula = Vote ~ Traditional_Political_News_Programs_GLM + 
##     Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Apolitical_Entertainment_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.7075   0.3571   0.4491   0.5492   1.2354  
## 
## Coefficients:
##                                                                      Estimate
## (Intercept)                                                         -0.293296
## Traditional_Political_News_Programs_GLM                              0.022822
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.011719
## Expressly_Political_Entertainment_Programs_GLM                       0.023087
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.119337
## Apolitical_Entertainment_Programs_GLM                               -0.017134
## Race2                                                               -0.216202
## Race3                                                               -0.485737
## Race4                                                                0.295309
## Race5                                                               -0.014268
## Race6                                                                0.735446
## Partisanship                                                         0.090707
## Income                                                               0.036678
## Age                                                                  0.087921
## Gender2                                                             -0.309651
## Gender3                                                             12.929370
## Education                                                            0.071230
##                                                                    Std. Error
## (Intercept)                                                          0.464432
## Traditional_Political_News_Programs_GLM                              0.041397
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.042914
## Expressly_Political_Entertainment_Programs_GLM                       0.096622
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.054577
## Apolitical_Entertainment_Programs_GLM                                0.046692
## Race2                                                                0.207114
## Race3                                                                0.372099
## Race4                                                                1.089300
## Race5                                                                0.235435
## Race6                                                                0.437371
## Partisanship                                                         0.066538
## Income                                                               0.009182
## Age                                                                  0.021897
## Gender2                                                              0.136636
## Gender3                                                            438.467810
## Education                                                            0.032808
##                                                                    z value
## (Intercept)                                                         -0.632
## Traditional_Political_News_Programs_GLM                              0.551
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.273
## Expressly_Political_Entertainment_Programs_GLM                       0.239
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   2.187
## Apolitical_Entertainment_Programs_GLM                               -0.367
## Race2                                                               -1.044
## Race3                                                               -1.305
## Race4                                                                0.271
## Race5                                                               -0.061
## Race6                                                                1.682
## Partisanship                                                         1.363
## Income                                                               3.994
## Age                                                                  4.015
## Gender2                                                             -2.266
## Gender3                                                              0.029
## Education                                                            2.171
##                                                                    Pr(>|z|)    
## (Intercept)                                                          0.5277    
## Traditional_Political_News_Programs_GLM                              0.5814    
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.7848    
## Expressly_Political_Entertainment_Programs_GLM                       0.8112    
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.0288 *  
## Apolitical_Entertainment_Programs_GLM                                0.7136    
## Race2                                                                0.2965    
## Race3                                                                0.1918    
## Race4                                                                0.7863    
## Race5                                                                0.9517    
## Race6                                                                0.0927 .  
## Partisanship                                                         0.1728    
## Income                                                             6.49e-05 ***
## Age                                                                5.94e-05 ***
## Gender2                                                              0.0234 *  
## Gender3                                                              0.9765    
## Education                                                            0.0299 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1680.6  on 2271  degrees of freedom
## Residual deviance: 1602.9  on 2255  degrees of freedom
##   (1998 observations deleted due to missingness)
## AIC: 1636.9
## 
## Number of Fisher Scoring iterations: 13
stargazer(Shows_V_GLM, type = "html", out = "Shows_V_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Vote</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>0.023</td></tr>
## <tr><td style="text-align:left"></td><td>(0.041)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>0.012</td></tr>
## <tr><td style="text-align:left"></td><td>(0.043)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.023</td></tr>
## <tr><td style="text-align:left"></td><td>(0.097)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>0.119<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.055)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>-0.017</td></tr>
## <tr><td style="text-align:left"></td><td>(0.047)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.216</td></tr>
## <tr><td style="text-align:left"></td><td>(0.207)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.486</td></tr>
## <tr><td style="text-align:left"></td><td>(0.372)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.295</td></tr>
## <tr><td style="text-align:left"></td><td>(1.089)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.014</td></tr>
## <tr><td style="text-align:left"></td><td>(0.235)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.735<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.437)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.091</td></tr>
## <tr><td style="text-align:left"></td><td>(0.067)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.037<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.009)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.088<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.022)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.310<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.137)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>12.929</td></tr>
## <tr><td style="text-align:left"></td><td>(438.468)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.071<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.033)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-0.293</td></tr>
## <tr><td style="text-align:left"></td><td>(0.464)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>2,272</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-801.473</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>1,636.947</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_V_GLM_EXP <- exp(coef(Shows_V_GLM))
Shows_V_GLM_Prob1 <- Shows_V_GLM_EXP - 1 
Shows_V_GLM_Prob2 <- Shows_V_GLM_Prob1 * 100
Shows_V_GLM_Prob2
##                                                        (Intercept) 
##                                                      -2.541989e+01 
##                            Traditional_Political_News_Programs_GLM 
##                                                       2.308477e+00 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                       1.178765e+00 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                       2.335567e+00 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                       1.267500e+01 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                      -1.698850e+00 
##                                                              Race2 
##                                                      -1.944276e+01 
##                                                              Race3 
##                                                      -3.847564e+01 
##                                                              Race4 
##                                                       3.435411e+01 
##                                                              Race5 
##                                                      -1.416685e+00 
##                                                              Race6 
##                                                       1.086413e+02 
##                                                       Partisanship 
##                                                       9.494763e+00 
##                                                             Income 
##                                                       3.735911e+00 
##                                                                Age 
##                                                       9.190134e+00 
##                                                            Gender2 
##                                                      -2.662968e+01 
##                                                            Gender3 
##                                                       4.122429e+07 
##                                                          Education 
##                                                       7.382863e+00
tab_df(Shows_V_GLM_Prob2, file = "Shows_V_GLM_sj1")
X.Intercept. Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-25.42 2.31 1.18 2.34 12.67 -1.70 -19.44 -38.48 34.35 -1.42 108.64 9.49 3.74 9.19 -26.63 41224288.04 7.38
### Creates Probability Prediction Plots for the Statistically Significant Results ###
Issue_V_GLM_GG <- ggpredict(Shows_V_GLM, terms = "Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM") 
Issue_V_GLM_P <- plot(Issue_V_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity of Voting") + xlab ("Number of Issue Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

All_V_GLM_GG <- ggpredict(All_V_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_V_GLM_P <- plot(All_V_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity of Voting") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

grid.arrange(Issue_V_GLM_P, All_V_GLM_P) + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

## NULL
### Creates a logistic regression model for all 5 groups of shows against all 10 dependent variables with control variables compared to the control group then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_R_GLM_C <- glm(Register ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(All_R_GLM_C)
## 
## Call:
## glm(formula = Register ~ All_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1350   0.2139   0.3414   0.5206   1.7478  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -3.963605   0.341324 -11.612  < 2e-16 ***
## All_Programs_GLM  0.029608   0.012434   2.381 0.017255 *  
## Race2             0.435539   0.204005   2.135 0.032766 *  
## Race3            -0.998710   0.258128  -3.869 0.000109 ***
## Race4            -0.959346   0.563795  -1.702 0.088833 .  
## Race5            -0.079401   0.164413  -0.483 0.629141    
## Race6             0.195428   0.280615   0.696 0.486162    
## Partisanship      0.561206   0.051102  10.982  < 2e-16 ***
## Income            0.051013   0.007617   6.698 2.12e-11 ***
## Age               0.154084   0.016660   9.249  < 2e-16 ***
## Gender2           0.239518   0.111268   2.153 0.031348 *  
## Gender3           0.861485   1.097516   0.785 0.432488    
## Education         0.214315   0.026788   8.000 1.24e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2733.3  on 3480  degrees of freedom
## Residual deviance: 2232.0  on 3468  degrees of freedom
##   (789 observations deleted due to missingness)
## AIC: 2258
## 
## Number of Fisher Scoring iterations: 5
stargazer(All_R_GLM_C, type = "html",  out = "All_R_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Register</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.030<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.012)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.436<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.204)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.999<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.258)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>-0.959<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.564)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.079</td></tr>
## <tr><td style="text-align:left"></td><td>(0.164)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.195</td></tr>
## <tr><td style="text-align:left"></td><td>(0.281)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.561<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.051)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.051<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.008)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.154<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.017)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>0.240<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.111)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>0.861</td></tr>
## <tr><td style="text-align:left"></td><td>(1.098)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.214<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.027)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-3.964<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.341)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,481</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-1,115.977</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>2,257.954</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_R_GLM_C_EXP <- exp(coef(All_R_GLM_C))
All_R_GLM_C_Prob1 <- All_R_GLM_C_EXP - 1 
All_R_GLM_C_Prob2 <- All_R_GLM_C_Prob1 * 100
All_R_GLM_C_Prob2
##      (Intercept) All_Programs_GLM            Race2            Race3 
##       -98.100549         3.005083        54.579577       -63.164564 
##            Race4            Race5            Race6     Partisanship 
##       -61.685674        -7.633068        21.583067        75.278503 
##           Income              Age          Gender2          Gender3 
##         5.233710        16.658864        27.063696       136.667251 
##        Education 
##        23.901304
tab_df(All_R_GLM_C_Prob2, file = "All_R_sj1")
X.Intercept. All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-98.10 3.01 54.58 -63.16 -61.69 -7.63 21.58 75.28 5.23 16.66 27.06 136.67 23.90
Shows_R_GLM <- glm(Register ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(Shows_R_GLM)
## 
## Call:
## glm(formula = Register ~ Traditional_Political_News_Programs_GLM + 
##     Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Apolitical_Entertainment_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1238   0.2130   0.3412   0.5229   1.7404  
## 
## Coefficients:
##                                                                     Estimate
## (Intercept)                                                        -3.957324
## Traditional_Political_News_Programs_GLM                             0.007655
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.029599
## Expressly_Political_Entertainment_Programs_GLM                      0.127133
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.033530
## Apolitical_Entertainment_Programs_GLM                               0.030283
## Race2                                                               0.439827
## Race3                                                              -0.989807
## Race4                                                              -0.937722
## Race5                                                              -0.068791
## Race6                                                               0.184623
## Partisanship                                                        0.559869
## Income                                                              0.050640
## Age                                                                 0.159015
## Gender2                                                             0.245061
## Gender3                                                             0.862959
## Education                                                           0.210124
##                                                                    Std. Error
## (Intercept)                                                          0.350853
## Traditional_Political_News_Programs_GLM                              0.036610
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.038875
## Expressly_Political_Entertainment_Programs_GLM                       0.089606
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.044150
## Apolitical_Entertainment_Programs_GLM                                0.039882
## Race2                                                                0.204580
## Race3                                                                0.258636
## Race4                                                                0.565369
## Race5                                                                0.165615
## Race6                                                                0.281733
## Partisanship                                                         0.051326
## Income                                                               0.007666
## Age                                                                  0.017962
## Gender2                                                              0.111813
## Gender3                                                              1.100276
## Education                                                            0.027283
##                                                                    z value
## (Intercept)                                                        -11.279
## Traditional_Political_News_Programs_GLM                              0.209
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.761
## Expressly_Political_Entertainment_Programs_GLM                       1.419
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.759
## Apolitical_Entertainment_Programs_GLM                                0.759
## Race2                                                                2.150
## Race3                                                               -3.827
## Race4                                                               -1.659
## Race5                                                               -0.415
## Race6                                                                0.655
## Partisanship                                                        10.908
## Income                                                               6.606
## Age                                                                  8.853
## Gender2                                                              2.192
## Gender3                                                              0.784
## Education                                                            7.702
##                                                                    Pr(>|z|)    
## (Intercept)                                                         < 2e-16 ***
## Traditional_Political_News_Programs_GLM                             0.83437    
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.44643    
## Expressly_Political_Entertainment_Programs_GLM                      0.15596    
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.44757    
## Apolitical_Entertainment_Programs_GLM                               0.44767    
## Race2                                                               0.03156 *  
## Race3                                                               0.00013 ***
## Race4                                                               0.09720 .  
## Race5                                                               0.67787    
## Race6                                                               0.51227    
## Partisanship                                                        < 2e-16 ***
## Income                                                             3.95e-11 ***
## Age                                                                 < 2e-16 ***
## Gender2                                                             0.02840 *  
## Gender3                                                             0.43286    
## Education                                                          1.34e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2733.3  on 3480  degrees of freedom
## Residual deviance: 2230.3  on 3464  degrees of freedom
##   (789 observations deleted due to missingness)
## AIC: 2264.3
## 
## Number of Fisher Scoring iterations: 5
stargazer(Shows_R_GLM, type = "html", out = "Shows_R_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Register</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>0.008</td></tr>
## <tr><td style="text-align:left"></td><td>(0.037)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>0.030</td></tr>
## <tr><td style="text-align:left"></td><td>(0.039)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.127</td></tr>
## <tr><td style="text-align:left"></td><td>(0.090)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>0.034</td></tr>
## <tr><td style="text-align:left"></td><td>(0.044)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>0.030</td></tr>
## <tr><td style="text-align:left"></td><td>(0.040)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.440<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.205)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.990<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.259)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>-0.938<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.565)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.069</td></tr>
## <tr><td style="text-align:left"></td><td>(0.166)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.185</td></tr>
## <tr><td style="text-align:left"></td><td>(0.282)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.560<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.051)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.051<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.008)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.159<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.018)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>0.245<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.112)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>0.863</td></tr>
## <tr><td style="text-align:left"></td><td>(1.100)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.210<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.027)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-3.957<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.351)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,481</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-1,115.138</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>2,264.277</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_R_GLM_EXP <- exp(coef(Shows_R_GLM))
Shows_R_GLM_Prob1 <- Shows_R_GLM_EXP - 1 
Shows_R_GLM_Prob2 <- Shows_R_GLM_Prob1 * 100
Shows_R_GLM_Prob2
##                                                        (Intercept) 
##                                                        -98.0885796 
##                            Traditional_Political_News_Programs_GLM 
##                                                          0.7684659 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                          3.0041032 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                         13.5567534 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                          3.4098861 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                          3.0746077 
##                                                              Race2 
##                                                         55.2438661 
##                                                              Race3 
##                                                        -62.8351459 
##                                                              Race4 
##                                                        -60.8481244 
##                                                              Race5 
##                                                         -6.6478659 
##                                                              Race6 
##                                                         20.2765346 
##                                                       Partisanship 
##                                                         75.0442599 
##                                                             Income 
##                                                          5.1944586 
##                                                                Age 
##                                                         17.2355314 
##                                                            Gender2 
##                                                         27.7699040 
##                                                            Gender3 
##                                                        137.0163960 
##                                                          Education 
##                                                         23.3830764
tab_df(Shows_R_GLM_Prob2, file = "Shows_R_GLM_sj1")
X.Intercept. Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-98.09 0.77 3.00 13.56 3.41 3.07 55.24 -62.84 -60.85 -6.65 20.28 75.04 5.19 17.24 27.77 137.02 23.38
### Creates Probability Prediction Plots for the Statistically Significant Results ###
All_R_GLM_GG <- ggpredict(All_R_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_R_GLM_P<- plot(All_R_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity of Registering") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

grid.arrange(All_R_GLM_P) + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

## NULL
### Creates a logistic regression model for all 6 groups of shows against all 10 dependent variables with control variables then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 

All_AP_GLM_C <- polr(Attention_P ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, Hess = TRUE)
(ctable <- coef(summary(All_AP_GLM_C)))
##                          Value  Std. Error      t value
## All_Programs_GLM  0.0587149448 0.006792667  8.643871880
## Race2            -0.1539951865 0.110941097 -1.388080619
## Race3            -1.0438005663 0.181412506 -5.753740967
## Race4             0.0021047208 0.546982955  0.003847873
## Race5             0.0142350501 0.106723671  0.133382313
## Race6             0.2553976184 0.166697466  1.532102582
## Partisanship      0.3052428328 0.030439571 10.027829794
## Income           -0.0005883141 0.004394325 -0.133880405
## Age               0.1266365317 0.009700680 13.054397662
## Gender2          -0.5863789352 0.063916720 -9.174108620
## Gender3          -0.2352698037 0.627106016 -0.375167512
## Education         0.1972302199 0.015473683 12.746171484
## 1|2              -0.4726898638 0.234185888 -2.018438718
## 2|3               2.6326496218 0.201338786 13.075720159
## 3|4               3.7802806728 0.205961885 18.354273028
## 4|5               5.6516865578 0.217969297 25.928819473
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
(ctable <- cbind(ctable, "p value" = p))
##                          Value  Std. Error      t value       p value
## All_Programs_GLM  0.0587149448 0.006792667  8.643871880  5.433948e-18
## Race2            -0.1539951865 0.110941097 -1.388080619  1.651125e-01
## Race3            -1.0438005663 0.181412506 -5.753740967  8.728988e-09
## Race4             0.0021047208 0.546982955  0.003847873  9.969298e-01
## Race5             0.0142350501 0.106723671  0.133382313  8.938910e-01
## Race6             0.2553976184 0.166697466  1.532102582  1.254971e-01
## Partisanship      0.3052428328 0.030439571 10.027829794  1.150168e-23
## Income           -0.0005883141 0.004394325 -0.133880405  8.934971e-01
## Age               0.1266365317 0.009700680 13.054397662  5.998256e-39
## Gender2          -0.5863789352 0.063916720 -9.174108620  4.553258e-20
## Gender3          -0.2352698037 0.627106016 -0.375167512  7.075359e-01
## Education         0.1972302199 0.015473683 12.746171484  3.274349e-37
## 1|2              -0.4726898638 0.234185888 -2.018438718  4.354559e-02
## 2|3               2.6326496218 0.201338786 13.075720159  4.532509e-39
## 3|4               3.7802806728 0.205961885 18.354273028  3.051436e-75
## 4|5               5.6516865578 0.217969297 25.928819473 3.152279e-148
stargazer(All_AP_GLM_C, type = "html",  out = "All_AP_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Attention_P</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.059<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.007)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.154</td></tr>
## <tr><td style="text-align:left"></td><td>(0.111)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-1.044<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.181)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.002</td></tr>
## <tr><td style="text-align:left"></td><td>(0.547)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.014</td></tr>
## <tr><td style="text-align:left"></td><td>(0.107)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.255</td></tr>
## <tr><td style="text-align:left"></td><td>(0.167)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.305<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.030)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>-0.001</td></tr>
## <tr><td style="text-align:left"></td><td>(0.004)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.127<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.010)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.586<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.064)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>-0.235</td></tr>
## <tr><td style="text-align:left"></td><td>(0.627)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.197<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.015)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,485</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_AP_GLM_C_EXP <- exp(coef(All_AP_GLM_C))
All_AP_GLM_C_Prob1 <- All_AP_GLM_C_EXP - 1 
All_AP_GLM_C_Prob2 <- All_AP_GLM_C_Prob1 * 100
All_AP_GLM_C_Prob2
## All_Programs_GLM            Race2            Race3            Race4 
##       6.04729043     -14.27238525     -64.78860965       0.21069373 
##            Race5            Race6     Partisanship           Income 
##       1.43368509      29.09748342      35.69544760      -0.05881411 
##              Age          Gender2          Gender3        Education 
##      13.50044047     -44.36618217     -20.96424205      21.80244218
tab_df(All_AP_GLM_C_Prob2, file = "All_AP_sj1")
All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
6.05 -14.27 -64.79 0.21 1.43 29.10 35.70 -0.06 13.50 -44.37 -20.96 21.80
Shows_AP_GLM <- polr(Attention_P ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, Hess =  TRUE)
(ctable <- coef(summary(Shows_AP_GLM)))
##                                                                           Value
## Traditional_Political_News_Programs_GLM                             0.057269732
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.211860445
## Expressly_Political_Entertainment_Programs_GLM                      0.161582567
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -0.077966635
## Apolitical_Entertainment_Programs_GLM                              -0.044351714
## Race2                                                              -0.243256369
## Race3                                                              -1.111221153
## Race4                                                              -0.061098981
## Race5                                                              -0.076779921
## Race6                                                               0.211499104
## Partisanship                                                        0.292763700
## Income                                                             -0.002960909
## Age                                                                 0.112496883
## Gender2                                                            -0.557002676
## Gender3                                                            -0.286976501
## Education                                                           0.182531620
## 1|2                                                                -0.895464031
## 2|3                                                                 2.222129542
## 3|4                                                                 3.389663433
## 4|5                                                                 5.315005345
##                                                                     Std. Error
## Traditional_Political_News_Programs_GLM                            0.019247382
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.020676243
## Expressly_Political_Entertainment_Programs_GLM                     0.045517645
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.024110220
## Apolitical_Entertainment_Programs_GLM                              0.021800675
## Race2                                                              0.111987981
## Race3                                                              0.182932327
## Race4                                                              0.549978949
## Race5                                                              0.107678868
## Race6                                                              0.166280846
## Partisanship                                                       0.030614984
## Income                                                             0.004432498
## Age                                                                0.010523195
## Gender2                                                            0.064205778
## Gender3                                                            0.627339909
## Education                                                          0.015669878
## 1|2                                                                0.239022569
## 2|3                                                                0.206564128
## 3|4                                                                0.210677500
## 4|5                                                                0.221892299
##                                                                       t value
## Traditional_Political_News_Programs_GLM                             2.9754557
## Entertainment_or_Opinion_Political_News_Programs_GLM               10.2465637
## Expressly_Political_Entertainment_Programs_GLM                      3.5498885
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -3.2337588
## Apolitical_Entertainment_Programs_GLM                              -2.0344193
## Race2                                                              -2.1721650
## Race3                                                              -6.0744931
## Race4                                                              -0.1110933
## Race5                                                              -0.7130454
## Race6                                                               1.2719391
## Partisanship                                                        9.5627587
## Income                                                             -0.6680001
## Age                                                                10.6903733
## Gender2                                                            -8.6752734
## Gender3                                                            -0.4574498
## Education                                                          11.6485665
## 1|2                                                                -3.7463577
## 2|3                                                                10.7575771
## 3|4                                                                16.0893471
## 4|5                                                                23.9530861
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
(ctable <- cbind(ctable, "p value" = p))
##                                                                           Value
## Traditional_Political_News_Programs_GLM                             0.057269732
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.211860445
## Expressly_Political_Entertainment_Programs_GLM                      0.161582567
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -0.077966635
## Apolitical_Entertainment_Programs_GLM                              -0.044351714
## Race2                                                              -0.243256369
## Race3                                                              -1.111221153
## Race4                                                              -0.061098981
## Race5                                                              -0.076779921
## Race6                                                               0.211499104
## Partisanship                                                        0.292763700
## Income                                                             -0.002960909
## Age                                                                 0.112496883
## Gender2                                                            -0.557002676
## Gender3                                                            -0.286976501
## Education                                                           0.182531620
## 1|2                                                                -0.895464031
## 2|3                                                                 2.222129542
## 3|4                                                                 3.389663433
## 4|5                                                                 5.315005345
##                                                                     Std. Error
## Traditional_Political_News_Programs_GLM                            0.019247382
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.020676243
## Expressly_Political_Entertainment_Programs_GLM                     0.045517645
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.024110220
## Apolitical_Entertainment_Programs_GLM                              0.021800675
## Race2                                                              0.111987981
## Race3                                                              0.182932327
## Race4                                                              0.549978949
## Race5                                                              0.107678868
## Race6                                                              0.166280846
## Partisanship                                                       0.030614984
## Income                                                             0.004432498
## Age                                                                0.010523195
## Gender2                                                            0.064205778
## Gender3                                                            0.627339909
## Education                                                          0.015669878
## 1|2                                                                0.239022569
## 2|3                                                                0.206564128
## 3|4                                                                0.210677500
## 4|5                                                                0.221892299
##                                                                       t value
## Traditional_Political_News_Programs_GLM                             2.9754557
## Entertainment_or_Opinion_Political_News_Programs_GLM               10.2465637
## Expressly_Political_Entertainment_Programs_GLM                      3.5498885
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -3.2337588
## Apolitical_Entertainment_Programs_GLM                              -2.0344193
## Race2                                                              -2.1721650
## Race3                                                              -6.0744931
## Race4                                                              -0.1110933
## Race5                                                              -0.7130454
## Race6                                                               1.2719391
## Partisanship                                                        9.5627587
## Income                                                             -0.6680001
## Age                                                                10.6903733
## Gender2                                                            -8.6752734
## Gender3                                                            -0.4574498
## Education                                                          11.6485665
## 1|2                                                                -3.7463577
## 2|3                                                                10.7575771
## 3|4                                                                16.0893471
## 4|5                                                                23.9530861
##                                                                          p value
## Traditional_Political_News_Programs_GLM                             2.925536e-03
## Entertainment_or_Opinion_Political_News_Programs_GLM                1.226258e-24
## Expressly_Political_Entertainment_Programs_GLM                      3.853943e-04
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  1.221726e-03
## Apolitical_Entertainment_Programs_GLM                               4.190933e-02
## Race2                                                               2.984322e-02
## Race3                                                               1.243800e-09
## Race4                                                               9.115424e-01
## Race5                                                               4.758177e-01
## Race6                                                               2.033948e-01
## Partisanship                                                        1.146588e-21
## Income                                                              5.041335e-01
## Age                                                                 1.129156e-26
## Gender2                                                             4.125581e-18
## Gender3                                                             6.473478e-01
## Education                                                           2.333510e-31
## 1|2                                                                 1.794207e-04
## 2|3                                                                 5.458647e-27
## 3|4                                                                 3.030159e-58
## 4|5                                                                8.580706e-127
stargazer(Shows_AP_GLM, type = "html", out = "Shows_AP_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Attention_P</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>0.057<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.019)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>0.212<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.021)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.162<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.046)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>-0.078<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.024)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>-0.044<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.022)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.243<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.112)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-1.111<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.183)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>-0.061</td></tr>
## <tr><td style="text-align:left"></td><td>(0.550)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.077</td></tr>
## <tr><td style="text-align:left"></td><td>(0.108)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.211</td></tr>
## <tr><td style="text-align:left"></td><td>(0.166)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.293<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.031)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>-0.003</td></tr>
## <tr><td style="text-align:left"></td><td>(0.004)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.112<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.011)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.557<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.064)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>-0.287</td></tr>
## <tr><td style="text-align:left"></td><td>(0.627)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.183<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.016)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,485</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_AP_GLM_EXP <- exp(coef(Shows_AP_GLM))
Shows_AP_GLM_Prob1 <- Shows_AP_GLM_EXP - 1 
Shows_AP_GLM_Prob2 <- Shows_AP_GLM_Prob1 * 100
Shows_AP_GLM_Prob2
##                            Traditional_Political_News_Programs_GLM 
##                                                           5.894140 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                          23.597539 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                          17.536950 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                          -7.500471 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                          -4.338256 
##                                                              Race2 
##                                                         -21.592952 
##                                                              Race3 
##                                                         -67.084324 
##                                                              Race4 
##                                                          -5.926988 
##                                                              Race5 
##                                                          -7.390636 
##                                                              Race6 
##                                                          23.552886 
##                                                       Partisanship 
##                                                          34.012608 
##                                                             Income 
##                                                          -0.295653 
##                                                                Age 
##                                                          11.906877 
##                                                            Gender2 
##                                                         -42.707627 
##                                                            Gender3 
##                                                         -24.947064 
##                                                          Education 
##                                                          20.025210
tab_df(Shows_AP_GLM_Prob2, file = "Shows_AP_GLM_sj1")
Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
5.89 23.60 17.54 -7.50 -4.34 -21.59 -67.08 -5.93 -7.39 23.55 34.01 -0.30 11.91 -42.71 -24.95 20.03
### Creates Probability Prediction Plots for the Statistically Significant Results ###
News_AP_GLM_GG <- ggpredict(Shows_AP_GLM, terms = "Traditional_Political_News_Programs_GLM")
News_AP_GLM_P <- plot(News_AP_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity that the Respondent Pays Attention to Politics more often") + xlab ("Number of News Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1)) 
News_AP_GLM_P

Opinion_AP_GLM_GG <- ggpredict(Shows_AP_GLM, terms = "Entertainment_or_Opinion_Political_News_Programs_GLM") 
Opinion_AP_GLM_P <- plot(Opinion_AP_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity that the Respondent Pays Attention to Politics more often") + xlab ("Number of Opinion Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
Opinion_AP_GLM_P

Entertainment_AP_GLM_GG <- ggpredict(Shows_AP_GLM, terms = "Expressly_Political_Entertainment_Programs_GLM") 
Entertainment_AP_GLM_P <- plot(Entertainment_AP_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity that the Respondent Pays Attention to Politics more often") + xlab ("Number of Political Entertainment Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
Entertainment_AP_GLM_P

Issue_AP_GLM_GG <- ggpredict(Shows_AP_GLM, terms = "Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM") 
Issue_AP_GLM_P <- plot(Issue_AP_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity that the Respondent Pays Attention to Politics more often") + xlab ("Number of Issue Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
Issue_AP_GLM_P

Apolitical_AP_GLM_GG <- ggpredict(Shows_AP_GLM, terms = "Apolitical_Entertainment_Programs_GLM") 
Apolitical_AP_GLM_P <- plot(Apolitical_AP_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity that the Respondent Pays Attention to Politics more often") + xlab ("Number of Apolitical Entertainment Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
Apolitical_AP_GLM_P

All_AP_GLM_GG <- ggpredict(All_AP_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_AP_GLM_P<- plot(All_AP_GLM_GG) + ggtitle(" ") + ylab ("Predicted Probablity that the Respondent Pays Attention to Politics more often") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
All_AP_GLM_P

### Creates a logistic regression model for all 6 groups of shows against all 10 dependent variables with control variables then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_IC_GLM_C <- polr(Interest_C ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, Hess = TRUE)
(ctable <- coef(summary(All_IC_GLM_C)))
##                         Value  Std. Error    t value
## All_Programs_GLM  0.073456364 0.007906472  9.2906622
## Race2            -0.115089836 0.121466708 -0.9475011
## Race3            -0.905196166 0.190984938 -4.7396207
## Race4             0.142944124 0.545514478  0.2620354
## Race5             0.146572899 0.117313095  1.2494164
## Race6             0.234919629 0.181671461  1.2931014
## Partisanship      0.333214478 0.033397608  9.9771960
## Income            0.004200045 0.004874017  0.8617214
## Age               0.145425948 0.010773799 13.4981120
## Gender2          -0.362456550 0.070965134 -5.1075300
## Gender3           0.286749953 0.688490677  0.4164907
## Education         0.163244645 0.016953921  9.6287250
## 1|2               1.776818892 0.218499346  8.1319186
## 2|3               4.039650263 0.227039776 17.7926984
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
(ctable <- cbind(ctable, "p value" = p))
##                         Value  Std. Error    t value      p value
## All_Programs_GLM  0.073456364 0.007906472  9.2906622 1.533313e-20
## Race2            -0.115089836 0.121466708 -0.9475011 3.433835e-01
## Race3            -0.905196166 0.190984938 -4.7396207 2.141187e-06
## Race4             0.142944124 0.545514478  0.2620354 7.932941e-01
## Race5             0.146572899 0.117313095  1.2494164 2.115128e-01
## Race6             0.234919629 0.181671461  1.2931014 1.959760e-01
## Partisanship      0.333214478 0.033397608  9.9771960 1.918106e-23
## Income            0.004200045 0.004874017  0.8617214 3.888408e-01
## Age               0.145425948 0.010773799 13.4981120 1.604350e-41
## Gender2          -0.362456550 0.070965134 -5.1075300 3.263972e-07
## Gender3           0.286749953 0.688490677  0.4164907 6.770510e-01
## Education         0.163244645 0.016953921  9.6287250 6.047520e-22
## 1|2               1.776818892 0.218499346  8.1319186 4.225486e-16
## 2|3               4.039650263 0.227039776 17.7926984 8.050787e-71
stargazer(All_IC_GLM_C, type = "html",  out = "All_IC_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Interest_C</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.073<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.008)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.115</td></tr>
## <tr><td style="text-align:left"></td><td>(0.121)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.905<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.191)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.143</td></tr>
## <tr><td style="text-align:left"></td><td>(0.546)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.147</td></tr>
## <tr><td style="text-align:left"></td><td>(0.117)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.235</td></tr>
## <tr><td style="text-align:left"></td><td>(0.182)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.333<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.033)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.004</td></tr>
## <tr><td style="text-align:left"></td><td>(0.005)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.145<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.011)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.362<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.071)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>0.287</td></tr>
## <tr><td style="text-align:left"></td><td>(0.688)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.163<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.017)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,485</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_IC_GLM_C_EXP <- exp(coef(All_IC_GLM_C))
All_IC_GLM_C_Prob1 <-All_IC_GLM_C_EXP - 1 
All_IC_GLM_C_Prob2 <- All_IC_GLM_C_Prob1 * 100
All_IC_GLM_C_Prob2
## All_Programs_GLM            Race2            Race3            Race4 
##        7.6221573      -10.8713929      -59.5537464       15.3665338 
##            Race5            Race6     Partisanship           Income 
##       15.7859334       26.4807111       39.5446559        0.4208877 
##              Age          Gender2          Gender3        Education 
##       15.6532088      -30.4035448       33.2091087       17.7324681
tab_df(All_IC_GLM_C_Prob2, file = "All_IC_sj1")
All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
7.62 -10.87 -59.55 15.37 15.79 26.48 39.54 0.42 15.65 -30.40 33.21 17.73
Shows_IC_GLM <- polr(Interest_C ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, Hess =  TRUE)
(ctable <- coef(summary(Shows_IC_GLM)))
##                                                                           Value
## Traditional_Political_News_Programs_GLM                             0.074753569
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.253683381
## Expressly_Political_Entertainment_Programs_GLM                      0.206013675
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -0.079954553
## Apolitical_Entertainment_Programs_GLM                              -0.037156186
## Race2                                                              -0.215386363
## Race3                                                              -0.990015356
## Race4                                                               0.077496713
## Race5                                                               0.048686600
## Race6                                                               0.183153031
## Partisanship                                                        0.318621422
## Income                                                              0.001888737
## Age                                                                 0.131250230
## Gender2                                                            -0.328156858
## Gender3                                                             0.217298385
## Education                                                           0.146376048
## 1|2                                                                 1.343310053
## 2|3                                                                 3.644165288
##                                                                     Std. Error
## Traditional_Political_News_Programs_GLM                            0.022618375
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.025746278
## Expressly_Political_Entertainment_Programs_GLM                     0.052740497
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.027440152
## Apolitical_Entertainment_Programs_GLM                              0.024948561
## Race2                                                              0.123266819
## Race3                                                              0.192463598
## Race4                                                              0.557477324
## Race5                                                              0.118987891
## Race6                                                              0.182823954
## Partisanship                                                       0.033842158
## Income                                                             0.004962176
## Age                                                                0.011715009
## Gender2                                                            0.071738773
## Gender3                                                            0.687208415
## Education                                                          0.017363150
## 1|2                                                                0.225924202
## 2|3                                                                0.233457555
##                                                                       t value
## Traditional_Political_News_Programs_GLM                             3.3049929
## Entertainment_or_Opinion_Political_News_Programs_GLM                9.8532061
## Expressly_Political_Entertainment_Programs_GLM                      3.9061762
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -2.9137796
## Apolitical_Entertainment_Programs_GLM                              -1.4893118
## Race2                                                              -1.7473182
## Race3                                                              -5.1439096
## Race4                                                               0.1390132
## Race5                                                               0.4091727
## Race6                                                               1.0018000
## Partisanship                                                        9.4149262
## Income                                                              0.3806267
## Age                                                                11.2035961
## Gender2                                                            -4.5743305
## Gender3                                                             0.3162045
## Education                                                           8.4302706
## 1|2                                                                 5.9458440
## 2|3                                                                15.6095411
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
(ctable <- cbind(ctable, "p value" = p))
##                                                                           Value
## Traditional_Political_News_Programs_GLM                             0.074753569
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.253683381
## Expressly_Political_Entertainment_Programs_GLM                      0.206013675
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -0.079954553
## Apolitical_Entertainment_Programs_GLM                              -0.037156186
## Race2                                                              -0.215386363
## Race3                                                              -0.990015356
## Race4                                                               0.077496713
## Race5                                                               0.048686600
## Race6                                                               0.183153031
## Partisanship                                                        0.318621422
## Income                                                              0.001888737
## Age                                                                 0.131250230
## Gender2                                                            -0.328156858
## Gender3                                                             0.217298385
## Education                                                           0.146376048
## 1|2                                                                 1.343310053
## 2|3                                                                 3.644165288
##                                                                     Std. Error
## Traditional_Political_News_Programs_GLM                            0.022618375
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.025746278
## Expressly_Political_Entertainment_Programs_GLM                     0.052740497
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.027440152
## Apolitical_Entertainment_Programs_GLM                              0.024948561
## Race2                                                              0.123266819
## Race3                                                              0.192463598
## Race4                                                              0.557477324
## Race5                                                              0.118987891
## Race6                                                              0.182823954
## Partisanship                                                       0.033842158
## Income                                                             0.004962176
## Age                                                                0.011715009
## Gender2                                                            0.071738773
## Gender3                                                            0.687208415
## Education                                                          0.017363150
## 1|2                                                                0.225924202
## 2|3                                                                0.233457555
##                                                                       t value
## Traditional_Political_News_Programs_GLM                             3.3049929
## Entertainment_or_Opinion_Political_News_Programs_GLM                9.8532061
## Expressly_Political_Entertainment_Programs_GLM                      3.9061762
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -2.9137796
## Apolitical_Entertainment_Programs_GLM                              -1.4893118
## Race2                                                              -1.7473182
## Race3                                                              -5.1439096
## Race4                                                               0.1390132
## Race5                                                               0.4091727
## Race6                                                               1.0018000
## Partisanship                                                        9.4149262
## Income                                                              0.3806267
## Age                                                                11.2035961
## Gender2                                                            -4.5743305
## Gender3                                                             0.3162045
## Education                                                           8.4302706
## 1|2                                                                 5.9458440
## 2|3                                                                15.6095411
##                                                                         p value
## Traditional_Political_News_Programs_GLM                            9.497881e-04
## Entertainment_or_Opinion_Political_News_Programs_GLM               6.639164e-23
## Expressly_Political_Entertainment_Programs_GLM                     9.376814e-05
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 3.570820e-03
## Apolitical_Entertainment_Programs_GLM                              1.364053e-01
## Race2                                                              8.058215e-02
## Race3                                                              2.690790e-07
## Race4                                                              8.894397e-01
## Race5                                                              6.824129e-01
## Race6                                                              3.164402e-01
## Partisanship                                                       4.734150e-21
## Income                                                             7.034803e-01
## Age                                                                3.915113e-29
## Gender2                                                            4.777452e-06
## Gender3                                                            7.518473e-01
## Education                                                          3.448669e-17
## 1|2                                                                2.750360e-09
## 2|3                                                                6.268628e-55
stargazer(Shows_IC_GLM, type = "html", out = "Shows_IC_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Interest_C</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>0.075<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.023)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>0.254<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.026)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.206<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.053)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>-0.080<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.027)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>-0.037</td></tr>
## <tr><td style="text-align:left"></td><td>(0.025)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.215<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.123)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.990<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.192)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.077</td></tr>
## <tr><td style="text-align:left"></td><td>(0.557)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.049</td></tr>
## <tr><td style="text-align:left"></td><td>(0.119)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.183</td></tr>
## <tr><td style="text-align:left"></td><td>(0.183)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.319<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.034)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.002</td></tr>
## <tr><td style="text-align:left"></td><td>(0.005)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.131<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.012)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.328<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.072)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>0.217</td></tr>
## <tr><td style="text-align:left"></td><td>(0.687)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.146<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.017)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,485</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_IC_GLM_EXP <- exp(coef(Shows_IC_GLM))
Shows_IC_GLM_Prob1 <- Shows_IC_GLM_EXP - 1 
Shows_IC_GLM_Prob2 <- Shows_IC_GLM_Prob1 * 100
Shows_IC_GLM_Prob2
##                            Traditional_Political_News_Programs_GLM 
##                                                          7.7618559 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                         28.8763693 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                         22.8770008 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                         -7.6841700 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                         -3.6474366 
##                                                              Race2 
##                                                        -19.3770117 
##                                                              Race3 
##                                                        -62.8429015 
##                                                              Race4 
##                                                          8.0578681 
##                                                              Race5 
##                                                          4.9891263 
##                                                              Race6 
##                                                         20.0998184 
##                                                       Partisanship 
##                                                         37.5230594 
##                                                             Income 
##                                                          0.1890521 
##                                                                Age 
##                                                         14.0253071 
##                                                            Gender2 
##                                                        -27.9749966 
##                                                            Gender3 
##                                                         24.2714854 
##                                                          Education 
##                                                         15.7631432
tab_df(Shows_IC_GLM_Prob2, file = "Shows_IC_GLM_sj1")
Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
7.76 28.88 22.88 -7.68 -3.65 -19.38 -62.84 8.06 4.99 20.10 37.52 0.19 14.03 -27.97 24.27 15.76
### Creates Probability Prediction Plots for the Statistically Signifigant Results ###
News_IC_GLM_GG <-ggpredict(Shows_IC_GLM, terms = "Traditional_Political_News_Programs_GLM")
News_IC_GLM_P <- plot(News_IC_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent is More Interested in Campaigns") + xlab ("Number of News Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
News_IC_GLM_P

Opinion_IC_GLM_GG <- ggpredict(Shows_IC_GLM, terms = "Entertainment_or_Opinion_Political_News_Programs_GLM") 
Opinion_IC_GLM_P <- plot(Opinion_IC_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent is More Interested in Campaigns") + xlab ("Number of Opinion Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
Opinion_IC_GLM_P

Entertainment_IC_GLM_GG <- ggpredict(Shows_IC_GLM, terms = "Expressly_Political_Entertainment_Programs_GLM") 
Entertainment_IC_GLM_P <- plot(Entertainment_IC_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent is More Interested in Campaigns") + xlab ("Number of Political Entertainment Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
Entertainment_IC_GLM_P

Issue_IC_GLM_GG <- ggpredict(Shows_IC_GLM, terms = "Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM") 
Issue_IC_GLM_P <- plot(Issue_IC_GLM_GG) + ggtitle(" ") + ylab ("Probablity of Intent to Vote") + xlab ("Number of Issue Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
Issue_IC_GLM_P

All_IC_GLM_GG <- ggpredict(All_IC_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_IC_GLM_P<- plot(All_IC_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent is More Interested in Campaigns") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
All_IC_GLM_P

### Creates a logistic regression model for all 5 groups of shows against all 10 dependent variables with control variables compared to the control group then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_HK_GLM_C <- glm(House_K ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(All_HK_GLM_C)
## 
## Call:
## glm(formula = House_K ~ All_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3800  -1.0319   0.6216   0.7858   1.5877  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -1.831963   0.252771  -7.248 4.24e-13 ***
## All_Programs_GLM  0.019915   0.008935   2.229 0.025829 *  
## Race2             0.027871   0.139055   0.200 0.841144    
## Race3            -0.521710   0.221680  -2.353 0.018601 *  
## Race4             0.620771   0.668789   0.928 0.353303    
## Race5            -0.225122   0.130441  -1.726 0.084373 .  
## Race6             0.165405   0.216904   0.763 0.445718    
## Partisanship      0.113547   0.038660   2.937 0.003314 ** 
## Income            0.026971   0.005667   4.760 1.94e-06 ***
## Age               0.089785   0.012365   7.261 3.83e-13 ***
## Gender2          -0.297558   0.083457  -3.565 0.000363 ***
## Gender3           1.180713   1.080143   1.093 0.274346    
## Education         0.143845   0.019813   7.260 3.87e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3884.1  on 3406  degrees of freedom
## Residual deviance: 3636.5  on 3394  degrees of freedom
##   (863 observations deleted due to missingness)
## AIC: 3662.5
## 
## Number of Fisher Scoring iterations: 4
stargazer(All_HK_GLM_C, type = "html",  out = "All_HK_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>House_K</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.020<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.009)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.028</td></tr>
## <tr><td style="text-align:left"></td><td>(0.139)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.522<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.222)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.621</td></tr>
## <tr><td style="text-align:left"></td><td>(0.669)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.225<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.130)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.165</td></tr>
## <tr><td style="text-align:left"></td><td>(0.217)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.114<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.039)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.027<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.006)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.090<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.012)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.298<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.083)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>1.181</td></tr>
## <tr><td style="text-align:left"></td><td>(1.080)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.144<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.020)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-1.832<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.253)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,407</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-1,818.226</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>3,662.451</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_HK_GLM_C_EXP <- exp(coef(All_HK_GLM_C))
All_HK_GLM_C_Prob1 <- All_HK_GLM_C_EXP - 1 
All_HK_GLM_C_Prob2 <- All_HK_GLM_C_Prob1 * 100
All_HK_GLM_C_Prob2
##      (Intercept) All_Programs_GLM            Race2            Race3 
##       -83.990100         2.011456         2.826297       -40.649510 
##            Race4            Race5            Race6     Partisanship 
##        86.036235       -20.158157        17.987112        12.024458 
##           Income              Age          Gender2          Gender3 
##         2.733752         9.393920       -25.737013       225.669511 
##        Education 
##        15.470461
tab_df(All_HK_GLM_C_Prob2, file = "All_HK_sj1")
X.Intercept. All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-83.99 2.01 2.83 -40.65 86.04 -20.16 17.99 12.02 2.73 9.39 -25.74 225.67 15.47
Shows_HK_GLM <- glm(House_K ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(Shows_HK_GLM)
## 
## Call:
## glm(formula = House_K ~ Traditional_Political_News_Programs_GLM + 
##     Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Apolitical_Entertainment_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5347  -1.0343   0.6089   0.7906   1.6514  
## 
## Coefficients:
##                                                                     Estimate
## (Intercept)                                                        -1.648737
## Traditional_Political_News_Programs_GLM                            -0.034154
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.105801
## Expressly_Political_Entertainment_Programs_GLM                      0.244959
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -0.001677
## Apolitical_Entertainment_Programs_GLM                              -0.045810
## Race2                                                              -0.002791
## Race3                                                              -0.525667
## Race4                                                               0.632226
## Race5                                                              -0.243702
## Race6                                                               0.124422
## Partisanship                                                        0.106230
## Income                                                              0.025890
## Age                                                                 0.089630
## Gender2                                                            -0.277430
## Gender3                                                             1.133632
## Education                                                           0.130610
##                                                                    Std. Error
## (Intercept)                                                          0.261126
## Traditional_Political_News_Programs_GLM                              0.025625
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.028659
## Expressly_Political_Entertainment_Programs_GLM                       0.065468
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.032248
## Apolitical_Entertainment_Programs_GLM                                0.028907
## Race2                                                                0.139913
## Race3                                                                0.222392
## Race4                                                                0.672507
## Race5                                                                0.131627
## Race6                                                                0.217848
## Partisanship                                                         0.038977
## Income                                                               0.005739
## Age                                                                  0.013425
## Gender2                                                              0.083887
## Gender3                                                              1.082799
## Education                                                            0.020188
##                                                                    z value
## (Intercept)                                                         -6.314
## Traditional_Political_News_Programs_GLM                             -1.333
## Entertainment_or_Opinion_Political_News_Programs_GLM                 3.692
## Expressly_Political_Entertainment_Programs_GLM                       3.742
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  -0.052
## Apolitical_Entertainment_Programs_GLM                               -1.585
## Race2                                                               -0.020
## Race3                                                               -2.364
## Race4                                                                0.940
## Race5                                                               -1.851
## Race6                                                                0.571
## Partisanship                                                         2.725
## Income                                                               4.511
## Age                                                                  6.676
## Gender2                                                             -3.307
## Gender3                                                              1.047
## Education                                                            6.470
##                                                                    Pr(>|z|)    
## (Intercept)                                                        2.72e-10 ***
## Traditional_Political_News_Programs_GLM                            0.182584    
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.000223 ***
## Expressly_Political_Entertainment_Programs_GLM                     0.000183 ***
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.958518    
## Apolitical_Entertainment_Programs_GLM                              0.113018    
## Race2                                                              0.984085    
## Race3                                                              0.018094 *  
## Race4                                                              0.347164    
## Race5                                                              0.064104 .  
## Race6                                                              0.567904    
## Partisanship                                                       0.006421 ** 
## Income                                                             6.44e-06 ***
## Age                                                                2.45e-11 ***
## Gender2                                                            0.000942 ***
## Gender3                                                            0.295124    
## Education                                                          9.82e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3884.1  on 3406  degrees of freedom
## Residual deviance: 3611.2  on 3390  degrees of freedom
##   (863 observations deleted due to missingness)
## AIC: 3645.2
## 
## Number of Fisher Scoring iterations: 4
stargazer(Shows_HK_GLM, type = "html", out = "Shows_HK_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>House_K</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>-0.034</td></tr>
## <tr><td style="text-align:left"></td><td>(0.026)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>0.106<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.029)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.245<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.065)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>-0.002</td></tr>
## <tr><td style="text-align:left"></td><td>(0.032)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>-0.046</td></tr>
## <tr><td style="text-align:left"></td><td>(0.029)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.003</td></tr>
## <tr><td style="text-align:left"></td><td>(0.140)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.526<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.222)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.632</td></tr>
## <tr><td style="text-align:left"></td><td>(0.673)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.244<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.132)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.124</td></tr>
## <tr><td style="text-align:left"></td><td>(0.218)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.106<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.039)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.026<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.006)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.090<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.013)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.277<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.084)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>1.134</td></tr>
## <tr><td style="text-align:left"></td><td>(1.083)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.131<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.020)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-1.649<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.261)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,407</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-1,805.602</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>3,645.204</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_HK_GLM_EXP <- exp(coef(Shows_HK_GLM))
Shows_HK_GLM_Prob1 <- Shows_HK_GLM_EXP - 1 
Shows_HK_GLM_Prob2 <- Shows_HK_GLM_Prob1 * 100
Shows_HK_GLM_Prob2
##                                                        (Intercept) 
##                                                        -80.7707464 
##                            Traditional_Political_News_Programs_GLM 
##                                                         -3.3577664 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                         11.1600506 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                         27.7569245 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                         -0.1675915 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                         -4.4777000 
##                                                              Race2 
##                                                         -0.2787001 
##                                                              Race3 
##                                                        -40.8839046 
##                                                              Race4 
##                                                         88.1795115 
##                                                              Race5 
##                                                        -21.6278663 
##                                                              Race6 
##                                                         13.2493477 
##                                                       Partisanship 
##                                                         11.2078167 
##                                                             Income 
##                                                          2.6228314 
##                                                                Age 
##                                                          9.3769630 
##                                                            Gender2 
##                                                        -24.2271647 
##                                                            Gender3 
##                                                        210.6921672 
##                                                          Education 
##                                                         13.9522747
tab_df(Shows_HK_GLM_Prob2, file = "Shows_HK_GLM_sj1")
X.Intercept. Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-80.77 -3.36 11.16 27.76 -0.17 -4.48 -0.28 -40.88 88.18 -21.63 13.25 11.21 2.62 9.38 -24.23 210.69 13.95
### Creates Probability Prediction Plots for the Statistically Significant Results ###
Opinion_HK_GLM_GG <- ggpredict(Shows_HK_GLM, terms = "Entertainment_or_Opinion_Political_News_Programs_GLM") 
Opinion_HK_GLM_P <- plot(Opinion_HK_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent knew Which\n Party had the most seats in the House") + xlab ("Number of Opinion Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

Entertainment_HK_GLM_GG <- ggpredict(Shows_HK_GLM, terms = "Expressly_Political_Entertainment_Programs_GLM") 
Entertainment_HK_GLM_P <- plot(Entertainment_HK_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent knew Which\n Party had the most seats in the House") + xlab ("Number of Political Entertainment Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

All_HK_GLM_GG <- ggpredict(All_HK_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_HK_GLM_P<- plot(All_HK_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent knew Which\n Party had the most seats in the House") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

grid.arrange(Opinion_HK_GLM_P, Entertainment_HK_GLM_P, All_HK_GLM_P) + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

## NULL
### Creates a logistic regression model for all 5 groups of shows against all 10 dependent variables with control variables compared to the control group then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_SK_GLM_C <- glm(Senate_K ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(All_SK_GLM_C)
## 
## Call:
## glm(formula = Senate_K ~ All_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0880  -1.2980   0.7467   0.8982   1.5089  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -1.404417   0.234533  -5.988 2.12e-09 ***
## All_Programs_GLM   0.005346   0.008114   0.659 0.509953    
## Race2              0.162614   0.131186   1.240 0.215134    
## Race3             -0.260210   0.209743  -1.241 0.214748    
## Race4              0.114036   0.579134   0.197 0.843899    
## Race5              0.221799   0.129145   1.717 0.085898 .  
## Race6              0.377861   0.205784   1.836 0.066329 .  
## Partisanship       0.120561   0.035829   3.365 0.000766 ***
## Income             0.016613   0.005250   3.164 0.001554 ** 
## Age                0.082880   0.011468   7.227 4.93e-13 ***
## Gender2           -0.292448   0.076487  -3.824 0.000132 ***
## Gender3           13.004059 185.469343   0.070 0.944103    
## Education          0.090409   0.018268   4.949 7.46e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4288.9  on 3404  degrees of freedom
## Residual deviance: 4130.4  on 3392  degrees of freedom
##   (865 observations deleted due to missingness)
## AIC: 4156.4
## 
## Number of Fisher Scoring iterations: 12
stargazer(All_SK_GLM_C, type = "html",  out = "All_SK_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Senate_K</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.005</td></tr>
## <tr><td style="text-align:left"></td><td>(0.008)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.163</td></tr>
## <tr><td style="text-align:left"></td><td>(0.131)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.260</td></tr>
## <tr><td style="text-align:left"></td><td>(0.210)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.114</td></tr>
## <tr><td style="text-align:left"></td><td>(0.579)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.222<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.129)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.378<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.206)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.121<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.036)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.017<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.005)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.083<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.011)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.292<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.076)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>13.004</td></tr>
## <tr><td style="text-align:left"></td><td>(185.469)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.090<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.018)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-1.404<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.235)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,405</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-2,065.180</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>4,156.360</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_SK_GLM_C_EXP <- exp(coef(All_SK_GLM_C))
All_SK_GLM_C_Prob1 <- All_SK_GLM_C_EXP - 1 
All_SK_GLM_C_Prob2 <- All_SK_GLM_C_Prob1 * 100
All_SK_GLM_C_Prob2
##      (Intercept) All_Programs_GLM            Race2            Race3 
##    -7.544897e+01     5.360513e-01     1.765829e+01    -2.291104e+01 
##            Race4            Race5            Race6     Partisanship 
##     1.207927e+01     2.483203e+01     4.591598e+01     1.281297e+01 
##           Income              Age          Gender2          Gender3 
##     1.675136e+00     8.641191e+00    -2.535657e+01     4.442116e+07 
##        Education 
##     9.462187e+00
tab_df(All_SK_GLM_C_Prob2, file = "All_SK_sj1")
X.Intercept. All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-75.45 0.54 17.66 -22.91 12.08 24.83 45.92 12.81 1.68 8.64 -25.36 44421163.95 9.46
Shows_SK_GLM <- glm(Senate_K ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(Shows_SK_GLM)
## 
## Call:
## glm(formula = Senate_K ~ Traditional_Political_News_Programs_GLM + 
##     Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Apolitical_Entertainment_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1130  -1.2840   0.7316   0.9060   1.5611  
## 
## Coefficients:
##                                                                      Estimate
## (Intercept)                                                         -1.293825
## Traditional_Political_News_Programs_GLM                             -0.060582
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.109179
## Expressly_Political_Entertainment_Programs_GLM                       0.072148
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  -0.013314
## Apolitical_Entertainment_Programs_GLM                               -0.029851
## Race2                                                                0.138485
## Race3                                                               -0.248504
## Race4                                                                0.139358
## Race5                                                                0.203985
## Race6                                                                0.363756
## Partisanship                                                         0.113299
## Income                                                               0.016034
## Age                                                                  0.081283
## Gender2                                                             -0.272996
## Gender3                                                             12.975684
## Education                                                            0.083594
##                                                                    Std. Error
## (Intercept)                                                          0.242727
## Traditional_Political_News_Programs_GLM                              0.023269
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.025788
## Expressly_Political_Entertainment_Programs_GLM                       0.055763
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.029359
## Apolitical_Entertainment_Programs_GLM                                0.026542
## Race2                                                                0.131850
## Race3                                                                0.210015
## Race4                                                                0.582147
## Race5                                                                0.130100
## Race6                                                                0.206603
## Partisanship                                                         0.036097
## Income                                                               0.005306
## Age                                                                  0.012473
## Gender2                                                              0.076820
## Gender3                                                            186.143004
## Education                                                            0.018638
##                                                                    z value
## (Intercept)                                                         -5.330
## Traditional_Political_News_Programs_GLM                             -2.604
## Entertainment_or_Opinion_Political_News_Programs_GLM                 4.234
## Expressly_Political_Entertainment_Programs_GLM                       1.294
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  -0.453
## Apolitical_Entertainment_Programs_GLM                               -1.125
## Race2                                                                1.050
## Race3                                                               -1.183
## Race4                                                                0.239
## Race5                                                                1.568
## Race6                                                                1.761
## Partisanship                                                         3.139
## Income                                                               3.022
## Age                                                                  6.517
## Gender2                                                             -3.554
## Gender3                                                              0.070
## Education                                                            4.485
##                                                                    Pr(>|z|)    
## (Intercept)                                                        9.80e-08 ***
## Traditional_Political_News_Programs_GLM                             0.00923 ** 
## Entertainment_or_Opinion_Political_News_Programs_GLM               2.30e-05 ***
## Expressly_Political_Entertainment_Programs_GLM                      0.19573    
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.65020    
## Apolitical_Entertainment_Programs_GLM                               0.26074    
## Race2                                                               0.29357    
## Race3                                                               0.23670    
## Race4                                                               0.81081    
## Race5                                                               0.11690    
## Race6                                                               0.07830 .  
## Partisanship                                                        0.00170 ** 
## Income                                                              0.00251 ** 
## Age                                                                7.18e-11 ***
## Gender2                                                             0.00038 ***
## Gender3                                                             0.94443    
## Education                                                          7.29e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4288.9  on 3404  degrees of freedom
## Residual deviance: 4109.2  on 3388  degrees of freedom
##   (865 observations deleted due to missingness)
## AIC: 4143.2
## 
## Number of Fisher Scoring iterations: 12
stargazer(Shows_SK_GLM, type = "html", out = "Shows_SK_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Senate_K</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>-0.061<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.023)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>0.109<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.026)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.072</td></tr>
## <tr><td style="text-align:left"></td><td>(0.056)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>-0.013</td></tr>
## <tr><td style="text-align:left"></td><td>(0.029)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>-0.030</td></tr>
## <tr><td style="text-align:left"></td><td>(0.027)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.138</td></tr>
## <tr><td style="text-align:left"></td><td>(0.132)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.249</td></tr>
## <tr><td style="text-align:left"></td><td>(0.210)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.139</td></tr>
## <tr><td style="text-align:left"></td><td>(0.582)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.204</td></tr>
## <tr><td style="text-align:left"></td><td>(0.130)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.364<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.207)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.113<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.036)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.016<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.005)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.081<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.012)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.273<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.077)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>12.976</td></tr>
## <tr><td style="text-align:left"></td><td>(186.143)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.084<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.019)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-1.294<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.243)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,405</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-2,054.583</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>4,143.166</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_SK_GLM_EXP <- exp(coef(Shows_SK_GLM))
Shows_SK_GLM_Prob1 <- Shows_SK_GLM_EXP - 1 
Shows_SK_GLM_Prob2 <- Shows_SK_GLM_Prob1 * 100
Shows_SK_GLM_Prob2
##                                                        (Intercept) 
##                                                      -7.257801e+01 
##                            Traditional_Political_News_Programs_GLM 
##                                                      -5.878357e+00 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                       1.153621e+01 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                       7.481442e+00 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                      -1.322539e+00 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                      -2.940965e+00 
##                                                              Race2 
##                                                       1.485322e+01 
##                                                              Race3 
##                                                      -2.200332e+01 
##                                                              Race4 
##                                                       1.495361e+01 
##                                                              Race5 
##                                                       2.262796e+01 
##                                                              Race6 
##                                                       4.387225e+01 
##                                                       Partisanship 
##                                                       1.199664e+01 
##                                                             Income 
##                                                       1.616322e+00 
##                                                                Age 
##                                                       8.467831e+00 
##                                                            Gender2 
##                                                      -2.389045e+01 
##                                                            Gender3 
##                                                       4.317846e+07 
##                                                          Education 
##                                                       8.718707e+00
tab_df(Shows_SK_GLM_Prob2, file = "Shows_SK_GLM_sj1")
X.Intercept. Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-72.58 -5.88 11.54 7.48 -1.32 -2.94 14.85 -22.00 14.95 22.63 43.87 12.00 1.62 8.47 -23.89 43178458.73 8.72
### Creates Probability Prediction Plots for the Statistically Significant Results ###
News_SK_GLM_GG <-ggpredict(Shows_SK_GLM, terms = "Traditional_Political_News_Programs_GLM")
News_SK_GLM_P <- plot(News_SK_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent Knew Which\n party had the most seats in the Senate") + xlab ("Number of News Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

Opinion_SK_GLM_GG <- ggpredict(Shows_SK_GLM, terms = "Entertainment_or_Opinion_Political_News_Programs_GLM") 
Opinion_SK_GLM_P <- plot(Opinion_SK_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent Knew Which\n party had the most seats in the Senate") + xlab ("Number of Opinion Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

grid.arrange(News_SK_GLM_P, Opinion_SK_GLM_P) + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

## NULL
### Creates a logistic regression model for all 6 groups of shows against all 10 dependent variables with control variables then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_TW_GLM_C <- polr(Trust_W ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, Hess = TRUE)
(ctable <- coef(summary(All_TW_GLM_C)))
##                          Value  Std. Error     t value
## All_Programs_GLM  0.0155808529 0.006761077  2.30449271
## Race2             0.5698857013 0.112525806  5.06448897
## Race3             0.7405223021 0.183691222  4.03134289
## Race4             0.0849349503 0.476234442  0.17834693
## Race5             0.8700543822 0.108628979  8.00941322
## Race6             0.1961634346 0.168775625  1.16227349
## Partisanship      0.1637838633 0.030616847  5.34946874
## Income            0.0008635154 0.004447287  0.19416675
## Age              -0.0108507428 0.009684581 -1.12041430
## Gender2           0.1656073378 0.063945985  2.58980039
## Gender3          -0.0405311685 0.666998076 -0.06076654
## Education         0.0186407270 0.015396996  1.21067299
## 1|2              -1.0129352409 0.201933532 -5.01618146
## 2|3               1.1835661464 0.201223483  5.88184903
## 3|4               3.0512077148 0.207330630 14.71662783
## 4|5               5.3252871025 0.248327743 21.44459187
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
(ctable <- cbind(ctable, "p value" = p))
##                          Value  Std. Error     t value       p value
## All_Programs_GLM  0.0155808529 0.006761077  2.30449271  2.119500e-02
## Race2             0.5698857013 0.112525806  5.06448897  4.094973e-07
## Race3             0.7405223021 0.183691222  4.03134289  5.545906e-05
## Race4             0.0849349503 0.476234442  0.17834693  8.584505e-01
## Race5             0.8700543822 0.108628979  8.00941322  1.152570e-15
## Race6             0.1961634346 0.168775625  1.16227349  2.451244e-01
## Partisanship      0.1637838633 0.030616847  5.34946874  8.821280e-08
## Income            0.0008635154 0.004447287  0.19416675  8.460453e-01
## Age              -0.0108507428 0.009684581 -1.12041430  2.625373e-01
## Gender2           0.1656073378 0.063945985  2.58980039  9.603160e-03
## Gender3          -0.0405311685 0.666998076 -0.06076654  9.515451e-01
## Education         0.0186407270 0.015396996  1.21067299  2.260208e-01
## 1|2              -1.0129352409 0.201933532 -5.01618146  5.270855e-07
## 2|3               1.1835661464 0.201223483  5.88184903  4.057083e-09
## 3|4               3.0512077148 0.207330630 14.71662783  5.041823e-49
## 4|5               5.3252871025 0.248327743 21.44459187 5.129420e-102
stargazer(All_TW_GLM_C, type = "html",  out = "All_TW_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Trust_W</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.016<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.007)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.570<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.113)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>0.741<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.184)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.085</td></tr>
## <tr><td style="text-align:left"></td><td>(0.476)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.870<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.109)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.196</td></tr>
## <tr><td style="text-align:left"></td><td>(0.169)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.164<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.031)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.001</td></tr>
## <tr><td style="text-align:left"></td><td>(0.004)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>-0.011</td></tr>
## <tr><td style="text-align:left"></td><td>(0.010)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>0.166<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.064)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>-0.041</td></tr>
## <tr><td style="text-align:left"></td><td>(0.667)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.019</td></tr>
## <tr><td style="text-align:left"></td><td>(0.015)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,481</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_TW_GLM_C_EXP <- exp(coef(All_TW_GLM_C))
All_TW_GLM_C_Prob1 <-All_TW_GLM_C_EXP - 1 
All_TW_GLM_C_Prob2 <- All_TW_GLM_C_Prob1 * 100
All_TW_GLM_C_Prob2
## All_Programs_GLM            Race2            Race3            Race4 
##       1.57028673      76.80649523     109.70305119       8.86462482 
##            Race5            Race6     Partisanship           Income 
##     138.70406625      21.67257441      17.79596872       0.08638883 
##              Age          Gender2          Gender3        Education 
##      -1.07920858      18.01096263      -3.97207665       1.88155499
tab_df(All_TW_GLM_C_Prob2, file = "All_TW_sj1")
All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
1.57 76.81 109.70 8.86 138.70 21.67 17.80 0.09 -1.08 18.01 -3.97 1.88
Shows_TW_GLM <- polr(Trust_W ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, Hess =  TRUE)
(ctable <- coef(summary(Shows_TW_GLM)))
##                                                                           Value
## Traditional_Political_News_Programs_GLM                             0.085803721
## Entertainment_or_Opinion_Political_News_Programs_GLM               -0.073341353
## Expressly_Political_Entertainment_Programs_GLM                      0.052230539
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -0.025301966
## Apolitical_Entertainment_Programs_GLM                               0.044172972
## Race2                                                               0.569340682
## Race3                                                               0.707951364
## Race4                                                               0.053198516
## Race5                                                               0.875848427
## Race6                                                               0.203137515
## Partisanship                                                        0.166830919
## Income                                                              0.000339318
## Age                                                                -0.005798193
## Gender2                                                             0.148371921
## Gender3                                                            -0.053566931
## Education                                                           0.018181176
## 1|2                                                                -1.005548812
## 2|3                                                                 1.204588797
## 3|4                                                                 3.080855551
## 4|5                                                                 5.355245192
##                                                                     Std. Error
## Traditional_Political_News_Programs_GLM                            0.019203032
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.020260579
## Expressly_Political_Entertainment_Programs_GLM                     0.045531182
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.024396181
## Apolitical_Entertainment_Programs_GLM                              0.022261875
## Race2                                                              0.113123580
## Race3                                                              0.183843411
## Race4                                                              0.479949529
## Race5                                                              0.109478933
## Race6                                                              0.169023748
## Partisanship                                                       0.030719997
## Income                                                             0.004474029
## Age                                                                0.010517698
## Gender2                                                            0.064141084
## Gender3                                                            0.665554841
## Education                                                          0.015660902
## 1|2                                                                0.208486781
## 2|3                                                                0.207864552
## 3|4                                                                0.213821101
## 4|5                                                                0.253757019
##                                                                        t value
## Traditional_Political_News_Programs_GLM                             4.46823818
## Entertainment_or_Opinion_Political_News_Programs_GLM               -3.61990411
## Expressly_Political_Entertainment_Programs_GLM                      1.14713779
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -1.03712815
## Apolitical_Entertainment_Programs_GLM                               1.98424309
## Race2                                                               5.03290899
## Race3                                                               3.85083892
## Race4                                                               0.11084190
## Race5                                                               8.00015495
## Race6                                                               1.20182825
## Partisanship                                                        5.43069441
## Income                                                              0.07584172
## Age                                                                -0.55127966
## Gender2                                                             2.31321195
## Gender3                                                            -0.08048462
## Education                                                           1.16092776
## 1|2                                                                -4.82308186
## 2|3                                                                 5.79506600
## 3|4                                                                14.40856652
## 4|5                                                                21.10383077
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
(ctable <- cbind(ctable, "p value" = p))
##                                                                           Value
## Traditional_Political_News_Programs_GLM                             0.085803721
## Entertainment_or_Opinion_Political_News_Programs_GLM               -0.073341353
## Expressly_Political_Entertainment_Programs_GLM                      0.052230539
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -0.025301966
## Apolitical_Entertainment_Programs_GLM                               0.044172972
## Race2                                                               0.569340682
## Race3                                                               0.707951364
## Race4                                                               0.053198516
## Race5                                                               0.875848427
## Race6                                                               0.203137515
## Partisanship                                                        0.166830919
## Income                                                              0.000339318
## Age                                                                -0.005798193
## Gender2                                                             0.148371921
## Gender3                                                            -0.053566931
## Education                                                           0.018181176
## 1|2                                                                -1.005548812
## 2|3                                                                 1.204588797
## 3|4                                                                 3.080855551
## 4|5                                                                 5.355245192
##                                                                     Std. Error
## Traditional_Political_News_Programs_GLM                            0.019203032
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.020260579
## Expressly_Political_Entertainment_Programs_GLM                     0.045531182
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.024396181
## Apolitical_Entertainment_Programs_GLM                              0.022261875
## Race2                                                              0.113123580
## Race3                                                              0.183843411
## Race4                                                              0.479949529
## Race5                                                              0.109478933
## Race6                                                              0.169023748
## Partisanship                                                       0.030719997
## Income                                                             0.004474029
## Age                                                                0.010517698
## Gender2                                                            0.064141084
## Gender3                                                            0.665554841
## Education                                                          0.015660902
## 1|2                                                                0.208486781
## 2|3                                                                0.207864552
## 3|4                                                                0.213821101
## 4|5                                                                0.253757019
##                                                                        t value
## Traditional_Political_News_Programs_GLM                             4.46823818
## Entertainment_or_Opinion_Political_News_Programs_GLM               -3.61990411
## Expressly_Political_Entertainment_Programs_GLM                      1.14713779
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM -1.03712815
## Apolitical_Entertainment_Programs_GLM                               1.98424309
## Race2                                                               5.03290899
## Race3                                                               3.85083892
## Race4                                                               0.11084190
## Race5                                                               8.00015495
## Race6                                                               1.20182825
## Partisanship                                                        5.43069441
## Income                                                              0.07584172
## Age                                                                -0.55127966
## Gender2                                                             2.31321195
## Gender3                                                            -0.08048462
## Education                                                           1.16092776
## 1|2                                                                -4.82308186
## 2|3                                                                 5.79506600
## 3|4                                                                14.40856652
## 4|5                                                                21.10383077
##                                                                         p value
## Traditional_Political_News_Programs_GLM                            7.886646e-06
## Entertainment_or_Opinion_Political_News_Programs_GLM               2.947122e-04
## Expressly_Political_Entertainment_Programs_GLM                     2.513247e-01
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 2.996761e-01
## Apolitical_Entertainment_Programs_GLM                              4.722875e-02
## Race2                                                              4.830925e-07
## Race3                                                              1.177139e-04
## Race4                                                              9.117417e-01
## Race5                                                              1.242627e-15
## Race6                                                              2.294301e-01
## Partisanship                                                       5.613519e-08
## Income                                                             9.395450e-01
## Age                                                                5.814420e-01
## Gender2                                                            2.071099e-02
## Gender3                                                            9.358518e-01
## Education                                                          2.456713e-01
## 1|2                                                                1.413569e-06
## 2|3                                                                6.829432e-09
## 3|4                                                                4.570993e-47
## 4|5                                                                7.334644e-99
stargazer(Shows_TW_GLM, type = "html", out = "Shows_TW_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Trust_W</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>0.086<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.019)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>-0.073<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.020)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.052</td></tr>
## <tr><td style="text-align:left"></td><td>(0.046)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>-0.025</td></tr>
## <tr><td style="text-align:left"></td><td>(0.024)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>0.044<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.022)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.569<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.113)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>0.708<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.184)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.053</td></tr>
## <tr><td style="text-align:left"></td><td>(0.480)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.876<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.109)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.203</td></tr>
## <tr><td style="text-align:left"></td><td>(0.169)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.167<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.031)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.0003</td></tr>
## <tr><td style="text-align:left"></td><td>(0.004)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>-0.006</td></tr>
## <tr><td style="text-align:left"></td><td>(0.011)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>0.148<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.064)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>-0.054</td></tr>
## <tr><td style="text-align:left"></td><td>(0.666)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.018</td></tr>
## <tr><td style="text-align:left"></td><td>(0.016)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,481</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_TW_GLM_EXP <- exp(coef(Shows_TW_GLM))
Shows_TW_GLM_Prob1 <- Shows_TW_GLM_EXP - 1 
Shows_TW_GLM_Prob2 <- Shows_TW_GLM_Prob1 * 100
Shows_TW_GLM_Prob2
##                            Traditional_Political_News_Programs_GLM 
##                                                         8.95924429 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                        -7.07164375 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                         5.36186150 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                        -2.49845536 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                         4.51631233 
##                                                              Race2 
##                                                        76.71015859 
##                                                              Race3 
##                                                       102.98286158 
##                                                              Race4 
##                                                         5.46389871 
##                                                              Race5 
##                                                       140.09114284 
##                                                              Race6 
##                                                        22.52409455 
##                                                       Partisanship 
##                                                        18.15544697 
##                                                             Income 
##                                                         0.03393756 
##                                                                Age 
##                                                        -0.57814156 
##                                                            Gender2 
##                                                        15.99442233 
##                                                            Gender3 
##                                                        -5.21575016 
##                                                          Education 
##                                                         1.83474597
tab_df(Shows_TW_GLM_Prob2, file = "Shows_TW_GLM_sj1")
Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
8.96 -7.07 5.36 -2.50 4.52 76.71 102.98 5.46 140.09 22.52 18.16 0.03 -0.58 15.99 -5.22 1.83
### Creates Probability Prediction Plots for the Statistically Significant Results ###
News_TW_GLM_GG <-ggpredict(Shows_TW_GLM, terms = "Traditional_Political_News_Programs_GLM")
News_TW_GLM_P <- plot(News_TW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Trusts Washington More") + xlab ("Number of News Shows Watched") + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))
News_TW_GLM_P

Opinion_TW_GLM_GG <- ggpredict(Shows_TW_GLM, terms = "Entertainment_or_Opinion_Political_News_Programs_GLM") 
Opinion_TW_GLM_P <- plot(Opinion_TW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Trusts Washington More") + xlab ("Number of Opinion Shows Watched") + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))
Opinion_TW_GLM_P 

Apolitical_TW_GLM_GG <- ggpredict(Shows_TW_GLM, terms = "Apolitical_Entertainment_Programs_GLM") 
Apolitical_TW_GLM_P <- plot(Apolitical_TW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Trusts Washington More") + xlab ("Number of Apolitical Entertainment Shows Watched") + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))
Apolitical_TW_GLM_P

All_TW_GLM_GG <- ggpredict(All_TW_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_TW_GLM_P <- plot(All_TW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Trusts Washington More") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
All_TW_GLM_P

### Creates a logistic regression model for all 6 groups of shows against all 10 dependent variables with control variables then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_GC_GLM_C <- polr(Government_C ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, Hess = TRUE)
(ctable <- coef(summary(All_GC_GLM_C)))
##                         Value  Std. Error    t value
## All_Programs_GLM  0.015070639 0.006750427  2.2325461
## Race2             0.351199576 0.111094841  3.1612591
## Race3             0.368983618 0.181502348  2.0329413
## Race4            -0.684777321 0.480325017 -1.4256541
## Race5             0.557353866 0.109500604  5.0899616
## Race6            -0.117099881 0.169574967 -0.6905493
## Partisanship      0.145321928 0.030372168  4.7847071
## Income            0.008169532 0.004429398  1.8443887
## Age               0.051958232 0.009589995  5.4179621
## Gender2          -0.212563560 0.063722566 -3.3357658
## Gender3           0.069972456 0.679652590  0.1029533
## Education         0.091541719 0.015297854  5.9839581
## 1|2              -1.345193610 0.211014121 -6.3748985
## 2|3               1.372905460 0.197302397  6.9583821
## 3|4               2.925864287 0.202438441 14.4531062
## 4|5               7.282710582 0.303216282 24.0182042
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
(ctable <- cbind(ctable, "p value" = p))
##                         Value  Std. Error    t value       p value
## All_Programs_GLM  0.015070639 0.006750427  2.2325461  2.557889e-02
## Race2             0.351199576 0.111094841  3.1612591  1.570887e-03
## Race3             0.368983618 0.181502348  2.0329413  4.205845e-02
## Race4            -0.684777321 0.480325017 -1.4256541  1.539682e-01
## Race5             0.557353866 0.109500604  5.0899616  3.581361e-07
## Race6            -0.117099881 0.169574967 -0.6905493  4.898488e-01
## Partisanship      0.145321928 0.030372168  4.7847071  1.712368e-06
## Income            0.008169532 0.004429398  1.8443887  6.512651e-02
## Age               0.051958232 0.009589995  5.4179621  6.028217e-08
## Gender2          -0.212563560 0.063722566 -3.3357658  8.506478e-04
## Gender3           0.069972456 0.679652590  0.1029533  9.180001e-01
## Education         0.091541719 0.015297854  5.9839581  2.177793e-09
## 1|2              -1.345193610 0.211014121 -6.3748985  1.830841e-10
## 2|3               1.372905460 0.197302397  6.9583821  3.442027e-12
## 3|4               2.925864287 0.202438441 14.4531062  2.396304e-47
## 4|5               7.282710582 0.303216282 24.0182042 1.794831e-127
stargazer(All_GC_GLM_C, type = "html",  out = "All_GC_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Government_C</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.015<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.007)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.351<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.111)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>0.369<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.182)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>-0.685</td></tr>
## <tr><td style="text-align:left"></td><td>(0.480)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.557<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.110)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>-0.117</td></tr>
## <tr><td style="text-align:left"></td><td>(0.170)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.145<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.030)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.008<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.004)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.052<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.010)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.213<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.064)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>0.070</td></tr>
## <tr><td style="text-align:left"></td><td>(0.680)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.092<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.015)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,468</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_GC_GLM_C_EXP <- exp(coef(All_GC_GLM_C))
All_GC_GLM_C_Prob1 <-All_GC_GLM_C_EXP - 1 
All_GC_GLM_C_Prob2 <- All_GC_GLM_C_Prob1 * 100
All_GC_GLM_C_Prob2
## All_Programs_GLM            Race2            Race3            Race4 
##        1.5184774       42.0770850       44.6263911      -49.5797507 
##            Race5            Race6     Partisanship           Income 
##       74.6046110      -11.0503655       15.6411791        0.8202993 
##              Age          Gender2          Gender3        Education 
##        5.3331746      -19.1491074        7.2478640        9.5862494
tab_df(All_GC_GLM_C_Prob2, file = "All_GC_sj1")
All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
1.52 42.08 44.63 -49.58 74.60 -11.05 15.64 0.82 5.33 -19.15 7.25 9.59
Shows_GC_GLM <- polr(Government_C ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, Hess =  TRUE)
(ctable <- coef(summary(Shows_GC_GLM)))
##                                                                            Value
## Traditional_Political_News_Programs_GLM                             0.0793570265
## Entertainment_or_Opinion_Political_News_Programs_GLM               -0.0377938497
## Expressly_Political_Entertainment_Programs_GLM                     -0.0068571792
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.0131206160
## Apolitical_Entertainment_Programs_GLM                              -0.0008423052
## Race2                                                               0.3504501313
## Race3                                                               0.3387433496
## Race4                                                              -0.7310955164
## Race5                                                               0.5466095048
## Race6                                                              -0.1214582419
## Partisanship                                                        0.1509113613
## Income                                                              0.0087251188
## Age                                                                 0.0467801537
## Gender2                                                            -0.2256180111
## Gender3                                                             0.0522444750
## Education                                                           0.0931017249
## 1|2                                                                -1.3734098235
## 2|3                                                                 1.3478110510
## 3|4                                                                 2.9059420091
## 4|5                                                                 7.2689143618
##                                                                     Std. Error
## Traditional_Political_News_Programs_GLM                            0.019143646
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.020316670
## Expressly_Political_Entertainment_Programs_GLM                     0.045881630
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.024299756
## Apolitical_Entertainment_Programs_GLM                              0.022253108
## Race2                                                              0.111648843
## Race3                                                              0.182080853
## Race4                                                              0.480610845
## Race5                                                              0.110072962
## Race6                                                              0.170074017
## Partisanship                                                       0.030498336
## Income                                                             0.004461236
## Age                                                                0.010433370
## Gender2                                                            0.063934731
## Gender3                                                            0.676468420
## Education                                                          0.015543516
## 1|2                                                                0.217587210
## 2|3                                                                0.204372430
## 3|4                                                                0.209293558
## 4|5                                                                0.307814306
##                                                                        t value
## Traditional_Political_News_Programs_GLM                             4.14534539
## Entertainment_or_Opinion_Political_News_Programs_GLM               -1.86023842
## Expressly_Political_Entertainment_Programs_GLM                     -0.14945370
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.53994846
## Apolitical_Entertainment_Programs_GLM                              -0.03785113
## Race2                                                               3.13886039
## Race3                                                               1.86040072
## Race4                                                              -1.52117982
## Race5                                                               4.96588351
## Race6                                                              -0.71414931
## Partisanship                                                        4.94818342
## Income                                                              1.95576268
## Age                                                                 4.48370496
## Gender2                                                            -3.52888030
## Gender3                                                             0.07723121
## Education                                                           5.98974693
## 1|2                                                                -6.31199704
## 2|3                                                                 6.59487705
## 3|4                                                                13.88452674
## 4|5                                                                23.61460859
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
(ctable <- cbind(ctable, "p value" = p))
##                                                                            Value
## Traditional_Political_News_Programs_GLM                             0.0793570265
## Entertainment_or_Opinion_Political_News_Programs_GLM               -0.0377938497
## Expressly_Political_Entertainment_Programs_GLM                     -0.0068571792
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.0131206160
## Apolitical_Entertainment_Programs_GLM                              -0.0008423052
## Race2                                                               0.3504501313
## Race3                                                               0.3387433496
## Race4                                                              -0.7310955164
## Race5                                                               0.5466095048
## Race6                                                              -0.1214582419
## Partisanship                                                        0.1509113613
## Income                                                              0.0087251188
## Age                                                                 0.0467801537
## Gender2                                                            -0.2256180111
## Gender3                                                             0.0522444750
## Education                                                           0.0931017249
## 1|2                                                                -1.3734098235
## 2|3                                                                 1.3478110510
## 3|4                                                                 2.9059420091
## 4|5                                                                 7.2689143618
##                                                                     Std. Error
## Traditional_Political_News_Programs_GLM                            0.019143646
## Entertainment_or_Opinion_Political_News_Programs_GLM               0.020316670
## Expressly_Political_Entertainment_Programs_GLM                     0.045881630
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 0.024299756
## Apolitical_Entertainment_Programs_GLM                              0.022253108
## Race2                                                              0.111648843
## Race3                                                              0.182080853
## Race4                                                              0.480610845
## Race5                                                              0.110072962
## Race6                                                              0.170074017
## Partisanship                                                       0.030498336
## Income                                                             0.004461236
## Age                                                                0.010433370
## Gender2                                                            0.063934731
## Gender3                                                            0.676468420
## Education                                                          0.015543516
## 1|2                                                                0.217587210
## 2|3                                                                0.204372430
## 3|4                                                                0.209293558
## 4|5                                                                0.307814306
##                                                                        t value
## Traditional_Political_News_Programs_GLM                             4.14534539
## Entertainment_or_Opinion_Political_News_Programs_GLM               -1.86023842
## Expressly_Political_Entertainment_Programs_GLM                     -0.14945370
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.53994846
## Apolitical_Entertainment_Programs_GLM                              -0.03785113
## Race2                                                               3.13886039
## Race3                                                               1.86040072
## Race4                                                              -1.52117982
## Race5                                                               4.96588351
## Race6                                                              -0.71414931
## Partisanship                                                        4.94818342
## Income                                                              1.95576268
## Age                                                                 4.48370496
## Gender2                                                            -3.52888030
## Gender3                                                             0.07723121
## Education                                                           5.98974693
## 1|2                                                                -6.31199704
## 2|3                                                                 6.59487705
## 3|4                                                                13.88452674
## 4|5                                                                23.61460859
##                                                                          p value
## Traditional_Political_News_Programs_GLM                             3.393019e-05
## Entertainment_or_Opinion_Political_News_Programs_GLM                6.285180e-02
## Expressly_Political_Entertainment_Programs_GLM                      8.811956e-01
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  5.892326e-01
## Apolitical_Entertainment_Programs_GLM                               9.698064e-01
## Race2                                                               1.696062e-03
## Race3                                                               6.282885e-02
## Race4                                                               1.282147e-01
## Race5                                                               6.838900e-07
## Race6                                                               4.751349e-01
## Partisanship                                                        7.490930e-07
## Income                                                              5.049312e-02
## Age                                                                 7.335807e-06
## Gender2                                                             4.173218e-04
## Gender3                                                             9.384396e-01
## Education                                                           2.101678e-09
## 1|2                                                                 2.754575e-10
## 2|3                                                                 4.256084e-11
## 3|4                                                                 7.861792e-44
## 4|5                                                                2.728235e-123
stargazer(Shows_GC_GLM, type = "html", out = "Shows_GC_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Government_C</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>0.079<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.019)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>-0.038<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.020)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>-0.007</td></tr>
## <tr><td style="text-align:left"></td><td>(0.046)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>0.013</td></tr>
## <tr><td style="text-align:left"></td><td>(0.024)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>-0.001</td></tr>
## <tr><td style="text-align:left"></td><td>(0.022)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.350<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.112)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>0.339<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.182)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>-0.731</td></tr>
## <tr><td style="text-align:left"></td><td>(0.481)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>0.547<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.110)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>-0.121</td></tr>
## <tr><td style="text-align:left"></td><td>(0.170)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.151<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.030)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.009<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.004)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>0.047<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.010)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>-0.226<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.064)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>0.052</td></tr>
## <tr><td style="text-align:left"></td><td>(0.676)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.093<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.016)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,468</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_GC_GLM_EXP <- exp(coef(Shows_GC_GLM))
Shows_GC_GLM_Prob1 <- Shows_GC_GLM_EXP - 1 
Shows_GC_GLM_Prob2 <- Shows_GC_GLM_Prob1 * 100
Shows_GC_GLM_Prob2
##                            Traditional_Political_News_Programs_GLM 
##                                                         8.25907667 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                        -3.70885751 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                        -0.68337224 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                         1.32070690 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                        -0.08419506 
##                                                              Race2 
##                                                        41.97064591 
##                                                              Race3 
##                                                        40.31831715 
##                                                              Race4 
##                                                       -51.86186600 
##                                                              Race5 
##                                                        72.73863829 
##                                                              Race6 
##                                                       -11.43719653 
##                                                       Partisanship 
##                                                        16.28935761 
##                                                             Income 
##                                                         0.87632936 
##                                                                Age 
##                                                         4.78916087 
##                                                            Gender2 
##                                                       -20.19771206 
##                                                            Gender3 
##                                                         5.36332981 
##                                                          Education 
##                                                         9.75733801
tab_df(Shows_GC_GLM_Prob2, file = "Shows_GC_GLM_sj1")
Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
8.26 -3.71 -0.68 1.32 -0.08 41.97 40.32 -51.86 72.74 -11.44 16.29 0.88 4.79 -20.20 5.36 9.76
### Creates Probability Prediction Plots for the Statistically Significant Results ###
News_GC_GLM_GG <-ggpredict(Shows_GC_GLM, terms = "Traditional_Political_News_Programs_GLM")
News_GC_GLM_P <- plot(News_GC_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent Thinks\n the Government is less corrupt") + xlab ("Number of News Shows Watched") + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))
News_GC_GLM_P

Opinion_GC_GLM_GG <- ggpredict(Shows_TW_GLM, terms = "Entertainment_or_Opinion_Political_News_Programs_GLM") 
Opinion_GC_GLM_P <- plot(Opinion_GC_GLM_GG) + ggtitle(" ") + ylab ("PProbablity that the Respondent Thinks\n the Government is less corrupt") + xlab ("Number of Opinion Shows Watched") + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))
Opinion_GC_GLM_P 

All_GC_GLM_GG <- ggpredict(All_GC_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_GC_GLM_P <- plot(All_GC_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent Thinks\n the Government is less corrupt") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))
All_GC_GLM_P

### Creates a logistic regression model for all 5 groups of shows against all 10 dependent variables with control variables compared to the control group then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_CW_GLM_C <- glm(Community_W ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(All_CW_GLM_C)
## 
## Call:
## glm(formula = Community_W ~ All_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6551  -0.9124  -0.7135   1.2434   2.4371  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -3.716462   0.271383 -13.695  < 2e-16 ***
## All_Programs_GLM  0.045213   0.008548   5.289 1.23e-07 ***
## Race2             0.158267   0.140169   1.129  0.25885    
## Race3            -0.660497   0.267635  -2.468  0.01359 *  
## Race4             0.458200   0.612811   0.748  0.45464    
## Race5            -0.034100   0.144019  -0.237  0.81283    
## Race6             0.279579   0.207523   1.347  0.17791    
## Partisanship      0.091698   0.039776   2.305  0.02114 *  
## Income            0.005965   0.005699   1.047  0.29526    
## Age              -0.016609   0.012407  -1.339  0.18068    
## Gender2           0.263173   0.082136   3.204  0.00135 ** 
## Gender3           1.951235   0.848794   2.299  0.02151 *  
## Education         0.202095   0.020740   9.744  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3805.9  on 3000  degrees of freedom
## Residual deviance: 3613.0  on 2988  degrees of freedom
##   (1269 observations deleted due to missingness)
## AIC: 3639
## 
## Number of Fisher Scoring iterations: 4
stargazer(All_CW_GLM_C, type = "html",  out = "All_CW_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Community_W</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.045<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.009)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.158</td></tr>
## <tr><td style="text-align:left"></td><td>(0.140)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.660<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.268)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.458</td></tr>
## <tr><td style="text-align:left"></td><td>(0.613)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.034</td></tr>
## <tr><td style="text-align:left"></td><td>(0.144)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.280</td></tr>
## <tr><td style="text-align:left"></td><td>(0.208)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.092<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.040)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.006</td></tr>
## <tr><td style="text-align:left"></td><td>(0.006)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>-0.017</td></tr>
## <tr><td style="text-align:left"></td><td>(0.012)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>0.263<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.082)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>1.951<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.849)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.202<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.021)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-3.716<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.271)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,001</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-1,806.493</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>3,638.985</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_CW_GLM_C_EXP <- exp(coef(All_CW_GLM_C))
All_CW_GLM_C_Prob1 <- All_CW_GLM_C_EXP - 1 
All_CW_GLM_C_Prob2 <- All_CW_GLM_C_Prob1 * 100
All_CW_GLM_C_Prob2
##      (Intercept) All_Programs_GLM            Race2            Race3 
##      -97.5680138        4.6250957       17.1478785      -48.3405457 
##            Race4            Race5            Race6     Partisanship 
##       58.1224459       -3.3525437       32.2573216        9.6034187 
##           Income              Age          Gender2          Gender3 
##        0.5982808       -1.6471494       30.1051690      603.7371670 
##        Education 
##       22.3963743
tab_df(All_CW_GLM_C_Prob2, file = "All_CW_sj1")
X.Intercept. All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-97.57 4.63 17.15 -48.34 58.12 -3.35 32.26 9.60 0.60 -1.65 30.11 603.74 22.40
Shows_CW_GLM <- glm(Community_W ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(Shows_CW_GLM)
## 
## Call:
## glm(formula = Community_W ~ Traditional_Political_News_Programs_GLM + 
##     Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Apolitical_Entertainment_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6717  -0.9114  -0.7127   1.2460   2.4131  
## 
## Coefficients:
##                                                                     Estimate
## (Intercept)                                                        -3.665970
## Traditional_Political_News_Programs_GLM                             0.055020
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.048222
## Expressly_Political_Entertainment_Programs_GLM                      0.059830
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.015119
## Apolitical_Entertainment_Programs_GLM                               0.044735
## Race2                                                               0.147885
## Race3                                                              -0.667388
## Race4                                                               0.444287
## Race5                                                              -0.042746
## Race6                                                               0.275458
## Partisanship                                                        0.089092
## Income                                                              0.005497
## Age                                                                -0.016501
## Gender2                                                             0.265623
## Gender3                                                             1.949501
## Education                                                           0.199365
##                                                                    Std. Error
## (Intercept)                                                          0.280281
## Traditional_Political_News_Programs_GLM                              0.023954
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.025239
## Expressly_Political_Entertainment_Programs_GLM                       0.057128
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.031343
## Apolitical_Entertainment_Programs_GLM                                0.028129
## Race2                                                                0.140674
## Race3                                                                0.267822
## Race4                                                                0.613592
## Race5                                                                0.144600
## Race6                                                                0.207788
## Partisanship                                                         0.039928
## Income                                                               0.005735
## Age                                                                  0.013546
## Gender2                                                              0.082427
## Gender3                                                              0.848535
## Education                                                            0.021079
##                                                                    z value
## (Intercept)                                                        -13.080
## Traditional_Political_News_Programs_GLM                              2.297
## Entertainment_or_Opinion_Political_News_Programs_GLM                 1.911
## Expressly_Political_Entertainment_Programs_GLM                       1.047
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.482
## Apolitical_Entertainment_Programs_GLM                                1.590
## Race2                                                                1.051
## Race3                                                               -2.492
## Race4                                                                0.724
## Race5                                                               -0.296
## Race6                                                                1.326
## Partisanship                                                         2.231
## Income                                                               0.958
## Age                                                                 -1.218
## Gender2                                                              3.223
## Gender3                                                              2.297
## Education                                                            9.458
##                                                                    Pr(>|z|)    
## (Intercept)                                                         < 2e-16 ***
## Traditional_Political_News_Programs_GLM                             0.02163 *  
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.05606 .  
## Expressly_Political_Entertainment_Programs_GLM                      0.29497    
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.62953    
## Apolitical_Entertainment_Programs_GLM                               0.11175    
## Race2                                                               0.29314    
## Race3                                                               0.01271 *  
## Race4                                                               0.46902    
## Race5                                                               0.76753    
## Race6                                                               0.18495    
## Partisanship                                                        0.02566 *  
## Income                                                              0.33782    
## Age                                                                 0.22317    
## Gender2                                                             0.00127 ** 
## Gender3                                                             0.02159 *  
## Education                                                           < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3805.9  on 3000  degrees of freedom
## Residual deviance: 3611.8  on 2984  degrees of freedom
##   (1269 observations deleted due to missingness)
## AIC: 3645.8
## 
## Number of Fisher Scoring iterations: 4
stargazer(Shows_CW_GLM, type = "html", out = "Shows_CW_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Community_W</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>0.055<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.024)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>0.048<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.025)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.060</td></tr>
## <tr><td style="text-align:left"></td><td>(0.057)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>0.015</td></tr>
## <tr><td style="text-align:left"></td><td>(0.031)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>0.045</td></tr>
## <tr><td style="text-align:left"></td><td>(0.028)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>0.148</td></tr>
## <tr><td style="text-align:left"></td><td>(0.141)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.667<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.268)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.444</td></tr>
## <tr><td style="text-align:left"></td><td>(0.614)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.043</td></tr>
## <tr><td style="text-align:left"></td><td>(0.145)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.275</td></tr>
## <tr><td style="text-align:left"></td><td>(0.208)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.089<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.040)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.005</td></tr>
## <tr><td style="text-align:left"></td><td>(0.006)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>-0.017</td></tr>
## <tr><td style="text-align:left"></td><td>(0.014)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>0.266<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.082)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>1.950<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.849)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.199<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.021)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-3.666<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.280)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,001</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-1,805.918</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>3,645.836</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_CW_GLM_EXP <- exp(coef(Shows_CW_GLM))
Shows_CW_GLM_Prob1 <- Shows_CW_GLM_EXP - 1 
Shows_CW_GLM_Prob2 <- Shows_CW_GLM_Prob1 * 100
Shows_CW_GLM_Prob2
##                                                        (Intercept) 
##                                                         -97.442064 
##                            Traditional_Political_News_Programs_GLM 
##                                                           5.656143 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                           4.940316 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                           6.165570 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                           1.523405 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                           4.575083 
##                                                              Race2 
##                                                          15.937922 
##                                                              Race3 
##                                                         -48.695297 
##                                                              Race4 
##                                                          55.937728 
##                                                              Race5 
##                                                          -4.184497 
##                                                              Race6 
##                                                          31.713375 
##                                                       Partisanship 
##                                                           9.318110 
##                                                             Income 
##                                                           0.551231 
##                                                                Age 
##                                                          -1.636603 
##                                                            Gender2 
##                                                          30.424363 
##                                                            Gender3 
##                                                         602.518160 
##                                                          Education 
##                                                          22.062720
tab_df(Shows_CW_GLM_Prob2, file = "Shows_CW_GLM_sj1")
X.Intercept. Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-97.44 5.66 4.94 6.17 1.52 4.58 15.94 -48.70 55.94 -4.18 31.71 9.32 0.55 -1.64 30.42 602.52 22.06
### Creates Probability Prediction Plots for the Statistically Significant Results ###
News_CW_GLM_GG <-ggpredict(Shows_CW_GLM, terms = "Traditional_Political_News_Programs_GLM")
News_CW_GLM_P <- plot(News_CW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Did community work") + xlab ("Number of News Shows Watched") + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

Opinion_CW_GLM_GG <- ggpredict(Shows_CW_GLM, terms = "Entertainment_or_Opinion_Political_News_Programs_GLM") 
Opinion_CW_GLM_P <- plot(Opinion_CW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Did community work") + xlab ("Number of Opinion Shows Watched") + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

All_CW_GLM_GG <- ggpredict(All_CW_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_CW_GLM_P<- plot(All_CW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Did community work") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

grid.arrange(News_CW_GLM_P, Opinion_CW_GLM_P, All_CW_GLM_P) + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

## NULL
### Creates a logistic regression model for all 5 groups of shows against all 10 dependent variables with control variables compared to the control group then summarizes the data in a table and then exponentiates the coefficients and then turns them into a percentage ### 
All_VW_GLM_C <- glm(Volunteer_W ~ All_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(All_VW_GLM_C)
## 
## Call:
## glm(formula = Volunteer_W ~ All_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6637  -1.0569  -0.7926   1.1584   2.1646  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -2.831588   0.248203 -11.408  < 2e-16 ***
## All_Programs_GLM  0.031056   0.008191   3.792  0.00015 ***
## Race2            -0.016972   0.134330  -0.126  0.89946    
## Race3            -0.433811   0.233730  -1.856  0.06345 .  
## Race4             0.548247   0.566259   0.968  0.33295    
## Race5            -0.221138   0.134503  -1.644  0.10015    
## Race6             0.079121   0.201096   0.393  0.69399    
## Partisanship      0.073251   0.037182   1.970  0.04883 *  
## Income            0.017318   0.005370   3.225  0.00126 ** 
## Age              -0.019526   0.011642  -1.677  0.09351 .  
## Gender2           0.174215   0.077351   2.252  0.02431 *  
## Gender3          -0.496491   0.844593  -0.588  0.55664    
## Education         0.177553   0.019196   9.250  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4127.1  on 3001  degrees of freedom
## Residual deviance: 3938.8  on 2989  degrees of freedom
##   (1268 observations deleted due to missingness)
## AIC: 3964.8
## 
## Number of Fisher Scoring iterations: 4
stargazer(All_VW_GLM_C, type = "html",  out = "All_VW_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Volunteer_W</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">All_Programs_GLM</td><td>0.031<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.008)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.017</td></tr>
## <tr><td style="text-align:left"></td><td>(0.134)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.434<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.234)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.548</td></tr>
## <tr><td style="text-align:left"></td><td>(0.566)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.221</td></tr>
## <tr><td style="text-align:left"></td><td>(0.135)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.079</td></tr>
## <tr><td style="text-align:left"></td><td>(0.201)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.073<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.037)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.017<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.005)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>-0.020<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.012)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>0.174<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.077)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>-0.496</td></tr>
## <tr><td style="text-align:left"></td><td>(0.845)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.178<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.019)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-2.832<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.248)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,002</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-1,969.396</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>3,964.792</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
All_VW_GLM_C_EXP <- exp(coef(All_VW_GLM_C))
All_VW_GLM_C_Prob1 <- All_VW_GLM_C_EXP - 1 
All_VW_GLM_C_Prob2 <- All_VW_GLM_C_Prob1 * 100
All_VW_GLM_C_Prob2
##      (Intercept) All_Programs_GLM            Race2            Race3 
##       -94.108080         3.154357        -1.682894       -35.196547 
##            Race4            Race5            Race6     Partisanship 
##        73.021751       -19.839366         8.233558         7.600076 
##           Income              Age          Gender2          Gender3 
##         1.746919        -1.933626        19.031119       -39.133751 
##        Education 
##        19.429097
tab_df(All_VW_GLM_C_Prob2, file = "All_VW_sj1")
X.Intercept. All_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-94.11 3.15 -1.68 -35.20 73.02 -19.84 8.23 7.60 1.75 -1.93 19.03 -39.13 19.43
Shows_VW_GLM <- glm(Volunteer_W ~ Traditional_Political_News_Programs_GLM + Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + Apolitical_Entertainment_Programs_GLM + Race + Partisanship + Income + Age + Gender + Education, data = anes_clean, family = "binomial")
summary(Shows_VW_GLM)
## 
## Call:
## glm(formula = Volunteer_W ~ Traditional_Political_News_Programs_GLM + 
##     Entertainment_or_Opinion_Political_News_Programs_GLM + Expressly_Political_Entertainment_Programs_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM + 
##     Apolitical_Entertainment_Programs_GLM + Race + Partisanship + 
##     Income + Age + Gender + Education, family = "binomial", data = anes_clean)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6430  -1.0545  -0.7953   1.1577   2.1616  
## 
## Coefficients:
##                                                                     Estimate
## (Intercept)                                                        -2.793715
## Traditional_Political_News_Programs_GLM                             0.054037
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.021051
## Expressly_Political_Entertainment_Programs_GLM                      0.028101
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.001739
## Apolitical_Entertainment_Programs_GLM                               0.033107
## Race2                                                              -0.026312
## Race3                                                              -0.450192
## Race4                                                               0.522174
## Race5                                                              -0.229996
## Race6                                                               0.075999
## Partisanship                                                        0.071706
## Income                                                              0.017028
## Age                                                                -0.020170
## Gender2                                                             0.173728
## Gender3                                                            -0.489839
## Education                                                           0.176215
##                                                                    Std. Error
## (Intercept)                                                          0.256550
## Traditional_Political_News_Programs_GLM                              0.022976
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.024226
## Expressly_Political_Entertainment_Programs_GLM                       0.055389
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.029631
## Apolitical_Entertainment_Programs_GLM                                0.026870
## Race2                                                                0.134811
## Race3                                                                0.234011
## Race4                                                                0.566821
## Race5                                                                0.135073
## Race6                                                                0.201400
## Partisanship                                                         0.037334
## Income                                                               0.005408
## Age                                                                  0.012685
## Gender2                                                              0.077611
## Gender3                                                              0.844608
## Education                                                            0.019521
##                                                                    z value
## (Intercept)                                                        -10.890
## Traditional_Political_News_Programs_GLM                              2.352
## Entertainment_or_Opinion_Political_News_Programs_GLM                 0.869
## Expressly_Political_Entertainment_Programs_GLM                       0.507
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM   0.059
## Apolitical_Entertainment_Programs_GLM                                1.232
## Race2                                                               -0.195
## Race3                                                               -1.924
## Race4                                                                0.921
## Race5                                                               -1.703
## Race6                                                                0.377
## Partisanship                                                         1.921
## Income                                                               3.149
## Age                                                                 -1.590
## Gender2                                                              2.238
## Gender3                                                             -0.580
## Education                                                            9.027
##                                                                    Pr(>|z|)    
## (Intercept)                                                         < 2e-16 ***
## Traditional_Political_News_Programs_GLM                             0.01868 *  
## Entertainment_or_Opinion_Political_News_Programs_GLM                0.38487    
## Expressly_Political_Entertainment_Programs_GLM                      0.61192    
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM  0.95320    
## Apolitical_Entertainment_Programs_GLM                               0.21790    
## Race2                                                               0.84525    
## Race3                                                               0.05438 .  
## Race4                                                               0.35693    
## Race5                                                               0.08862 .  
## Race6                                                               0.70591    
## Partisanship                                                        0.05477 .  
## Income                                                              0.00164 ** 
## Age                                                                 0.11183    
## Gender2                                                             0.02519 *  
## Gender3                                                             0.56194    
## Education                                                           < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4127.1  on 3001  degrees of freedom
## Residual deviance: 3936.9  on 2985  degrees of freedom
##   (1268 observations deleted due to missingness)
## AIC: 3970.9
## 
## Number of Fisher Scoring iterations: 4
stargazer(Shows_VW_GLM, type = "html", out = "Shows_VW_GLM_star1")
## 
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Volunteer_W</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Traditional_Political_News_Programs_GLM</td><td>0.054<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.023)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_or_Opinion_Political_News_Programs_GLM</td><td>0.021</td></tr>
## <tr><td style="text-align:left"></td><td>(0.024)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Expressly_Political_Entertainment_Programs_GLM</td><td>0.028</td></tr>
## <tr><td style="text-align:left"></td><td>(0.055)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM</td><td>0.002</td></tr>
## <tr><td style="text-align:left"></td><td>(0.030)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Apolitical_Entertainment_Programs_GLM</td><td>0.033</td></tr>
## <tr><td style="text-align:left"></td><td>(0.027)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race2</td><td>-0.026</td></tr>
## <tr><td style="text-align:left"></td><td>(0.135)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race3</td><td>-0.450<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.234)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race4</td><td>0.522</td></tr>
## <tr><td style="text-align:left"></td><td>(0.567)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race5</td><td>-0.230<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.135)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Race6</td><td>0.076</td></tr>
## <tr><td style="text-align:left"></td><td>(0.201)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Partisanship</td><td>0.072<sup>*</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.037)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Income</td><td>0.017<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.005)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Age</td><td>-0.020</td></tr>
## <tr><td style="text-align:left"></td><td>(0.013)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender2</td><td>0.174<sup>**</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.078)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Gender3</td><td>-0.490</td></tr>
## <tr><td style="text-align:left"></td><td>(0.845)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Education</td><td>0.176<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.020)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>-2.794<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.257)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>3,002</td></tr>
## <tr><td style="text-align:left">Log Likelihood</td><td>-1,968.434</td></tr>
## <tr><td style="text-align:left">Akaike Inf. Crit.</td><td>3,970.868</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>
Shows_VW_GLM_EXP <- exp(coef(Shows_VW_GLM))
Shows_VW_GLM_Prob1 <- Shows_VW_GLM_EXP - 1 
Shows_VW_GLM_Prob2 <- Shows_VW_GLM_Prob1 * 100
Shows_VW_GLM_Prob2
##                                                        (Intercept) 
##                                                        -93.8806563 
##                            Traditional_Political_News_Programs_GLM 
##                                                          5.5523920 
##               Entertainment_or_Opinion_Political_News_Programs_GLM 
##                                                          2.1274593 
##                     Expressly_Political_Entertainment_Programs_GLM 
##                                                          2.8499695 
## Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM 
##                                                          0.1740571 
##                              Apolitical_Entertainment_Programs_GLM 
##                                                          3.3661376 
##                                                              Race2 
##                                                         -2.5969158 
##                                                              Race3 
##                                                        -36.2494137 
##                                                              Race4 
##                                                         68.5688526 
##                                                              Race5 
##                                                        -20.5463078 
##                                                              Race6 
##                                                          7.8961225 
##                                                       Partisanship 
##                                                          7.4339907 
##                                                             Income 
##                                                          1.7173525 
##                                                                Age 
##                                                         -1.9967784 
##                                                            Gender2 
##                                                         18.9732398 
##                                                            Gender3 
##                                                        -38.7275254 
##                                                          Education 
##                                                         19.2694165
tab_df(Shows_VW_GLM_Prob2, file = "Shows_VW_GLM_sj1")
X.Intercept. Traditional_Political_News_Programs_GLM Entertainment_or_Opinion_Political_News_Programs_GLM Expressly_Political_Entertainment_Programs_GLM Entertainment_Programs_that_Focus_on_a_salient_Political_Issue_GLM Apolitical_Entertainment_Programs_GLM Race2 Race3 Race4 Race5 Race6 Partisanship Income Age Gender2 Gender3 Education
-93.88 5.55 2.13 2.85 0.17 3.37 -2.60 -36.25 68.57 -20.55 7.90 7.43 1.72 -2.00 18.97 -38.73 19.27
### Creates Probability Prediction Plots for the Statistically Significant Results ###
News_VW_GLM_GG <-ggpredict(Shows_VW_GLM, terms = "Traditional_Political_News_Programs_GLM")
News_VW_GLM_P <- plot(News_VW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Did volunteer work") + xlab ("Number of News Shows Watched") + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

All_VW_GLM_GG <- ggpredict(All_VW_GLM_C, terms = "All_Programs_GLM") 
## Data were 'prettified'. Consider using `terms="All_Programs_GLM [all]"` to get smooth plots.
All_VW_GLM_P <- plot(All_VW_GLM_GG) + ggtitle(" ") + ylab ("Probablity that the Respondent\n Did volunteer work") + xlab ("Number of Shows Watched") + theme(panel.grid = element_blank(),plot.background = element_rect(fill = "white", color = "grey", size = 1))

grid.arrange(News_VW_GLM_P, All_VW_GLM_P) + theme(panel.grid = element_blank(), plot.background = element_rect(fill = "white", color = "grey", size = 1))

## NULL
TV_Ranked <- read.csv("C:/Users/Owner/Downloads/TV Ranked - Sheet1.csv") %>% as.data.frame() 
TV_Ranked <- subset(TV_Ranked, select = -c(X,X.1))
TV_Rankedf <- as.data.frame(t(TV_Ranked))

krippalpha(TV_Rankedf)
## 
##  Krippendorff's alpha 
## 
##  alpha coders units   level
##  0.713      2    48 nominal
## 
##  Bootstrapped alpha
##  Alpha Std. Error 2.5 % 97.5 % Boot. technique Bootstraps
##     NA         NA    NA     NA    Krippendorff         NA
##     NA         NA    NA     NA   nonparametric         NA
## 
##  P(alpha > alpha_min):
##  alpha_min krippendorff nonparametric
##       0.90           NA            NA
##       0.80           NA            NA
##       0.70           NA            NA
##       0.67           NA            NA
##       0.60           NA            NA
##       0.50           NA            NA