library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3.9000     v purrr   0.3.4     
## v tibble  3.0.6          v dplyr   1.0.4     
## v tidyr   1.1.2          v stringr 1.4.0     
## v readr   1.4.0          v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(benford.analysis)
## Warning: package 'benford.analysis' was built under R version 4.0.5
library(readxl)

ben <- read_excel("ben_final.xlsx")

#positive

fd_pos1<- benford(ben$pos,number.of.digits = 1)
fd_pos1
## 
## Benford object:
##  
## Data: ben$pos 
## Number of observations used = 36013 
## Number of obs. for second order = 1077 
## First digits analysed = 1
## 
## Mantissa: 
## 
##    Statistic  Value
##         Mean  0.468
##          Var  0.079
##  Ex.Kurtosis -1.068
##     Skewness  0.056
## 
## 
## The 5 largest deviations: 
## 
##   digits absolute.diff
## 1      2       1567.43
## 2      1       1399.99
## 3      3        581.58
## 4      9        242.86
## 5      8        218.16
## 
## Stats:
## 
##  Pearson's Chi-squared test
## 
## data:  ben$pos
## X-squared = 747.29, df = 8, p-value < 2.2e-16
## 
## 
##  Mantissa Arc Test
## 
## data:  ben$pos
## L2 = 0.0041113, df = 2, p-value < 2.2e-16
## 
## Mean Absolute Deviation (MAD): 0.01407166
## MAD Conformity - Nigrini (2012): Marginally acceptable conformity
## Distortion Factor: -14.64946
## 
## Remember: Real data will never conform perfectly to Benford's Law. You should not focus on p-values!
plot(fd_pos1)

fd_pos2<- benford(ben$pos,number.of.digits = 2)
fd_pos2
## 
## Benford object:
##  
## Data: ben$pos 
## Number of observations used = 36013 
## Number of obs. for second order = 1077 
## First digits analysed = 2
## 
## Mantissa: 
## 
##    Statistic  Value
##         Mean  0.468
##          Var  0.079
##  Ex.Kurtosis -1.068
##     Skewness  0.056
## 
## 
## The 5 largest deviations: 
## 
##   digits absolute.diff
## 1     20       3755.91
## 2     30       2409.16
## 3     40       1687.80
## 4     50       1403.28
## 5     60       1078.48
## 
## Stats:
## 
##  Pearson's Chi-squared test
## 
## data:  ben$pos
## X-squared = 66341, df = 89, p-value < 2.2e-16
## 
## 
##  Mantissa Arc Test
## 
## data:  ben$pos
## L2 = 0.0041113, df = 2, p-value < 2.2e-16
## 
## Mean Absolute Deviation (MAD): 0.008474712
## MAD Conformity - Nigrini (2012): Nonconformity
## Distortion Factor: -14.64946
## 
## Remember: Real data will never conform perfectly to Benford's Law. You should not focus on p-values!
plot(fd_pos2)

#negative

fd_neg1<- benford(ben$neg,number.of.digits = 1)
fd_neg1
## 
## Benford object:
##  
## Data: ben$neg 
## Number of observations used = 20709 
## Number of obs. for second order = 171 
## First digits analysed = 1
## 
## Mantissa: 
## 
##    Statistic Value
##         Mean  0.33
##          Var  0.09
##  Ex.Kurtosis -1.06
##     Skewness  0.41
## 
## 
## The 5 largest deviations: 
## 
##   digits absolute.diff
## 1      1       2180.97
## 2      2        735.33
## 3      8        538.32
## 4      7        517.96
## 5      6        502.40
## 
## Stats:
## 
##  Pearson's Chi-squared test
## 
## data:  ben$neg
## X-squared = 2037.8, df = 8, p-value < 2.2e-16
## 
## 
##  Mantissa Arc Test
## 
## data:  ben$neg
## L2 = 0.029807, df = 2, p-value < 2.2e-16
## 
## Mean Absolute Deviation (MAD): 0.03129392
## MAD Conformity - Nigrini (2012): Nonconformity
## Distortion Factor: -35.13094
## 
## Remember: Real data will never conform perfectly to Benford's Law. You should not focus on p-values!
plot(fd_neg1)

fd_neg2<- benford(ben$neg,number.of.digits = 2)
fd_neg2
## 
## Benford object:
##  
## Data: ben$neg 
## Number of observations used = 20709 
## Number of obs. for second order = 171 
## First digits analysed = 2
## 
## Mantissa: 
## 
##    Statistic Value
##         Mean  0.33
##          Var  0.09
##  Ex.Kurtosis -1.06
##     Skewness  0.41
## 
## 
## The 5 largest deviations: 
## 
##   digits absolute.diff
## 1     10       5892.80
## 2     20       3308.19
## 3     30       1936.09
## 4     40       1283.92
## 5     50        905.90
## 
## Stats:
## 
##  Pearson's Chi-squared test
## 
## data:  ben$neg
## X-squared = 110163, df = 89, p-value < 2.2e-16
## 
## 
##  Mantissa Arc Test
## 
## data:  ben$neg
## L2 = 0.029807, df = 2, p-value < 2.2e-16
## 
## Mean Absolute Deviation (MAD): 0.01628231
## MAD Conformity - Nigrini (2012): Nonconformity
## Distortion Factor: -35.13094
## 
## Remember: Real data will never conform perfectly to Benford's Law. You should not focus on p-values!
plot(fd_neg2)

#notr

fd_ntr1<- benford(ben$notr,number.of.digits = 1)
fd_ntr1
## 
## Benford object:
##  
## Data: ben$notr 
## Number of observations used = 18775 
## Number of obs. for second order = 216 
## First digits analysed = 1
## 
## Mantissa: 
## 
##    Statistic  Value
##         Mean  0.327
##          Var  0.093
##  Ex.Kurtosis -1.052
##     Skewness  0.453
## 
## 
## The 5 largest deviations: 
## 
##   digits absolute.diff
## 1      1       2471.16
## 2      7        470.80
## 3      6        460.93
## 4      9        430.10
## 5      4        424.49
## 
## Stats:
## 
##  Pearson's Chi-squared test
## 
## data:  ben$notr
## X-squared = 2149, df = 8, p-value < 2.2e-16
## 
## 
##  Mantissa Arc Test
## 
## data:  ben$notr
## L2 = 0.042732, df = 2, p-value < 2.2e-16
## 
## Mean Absolute Deviation (MAD): 0.03406478
## MAD Conformity - Nigrini (2012): Nonconformity
## Distortion Factor: -31.31379
## 
## Remember: Real data will never conform perfectly to Benford's Law. You should not focus on p-values!
plot(fd_ntr1)

fd_ntr2<- benford(ben$notr,number.of.digits = 2)
fd_ntr2
## 
## Benford object:
##  
## Data: ben$notr 
## Number of observations used = 18775 
## Number of obs. for second order = 216 
## First digits analysed = 2
## 
## Mantissa: 
## 
##    Statistic  Value
##         Mean  0.327
##          Var  0.093
##  Ex.Kurtosis -1.052
##     Skewness  0.453
## 
## 
## The 5 largest deviations: 
## 
##   digits absolute.diff
## 1     10       5447.85
## 2     20       2588.17
## 3     30       1462.64
## 4     40        995.66
## 5     50        741.53
## 
## Stats:
## 
##  Pearson's Chi-squared test
## 
## data:  ben$notr
## X-squared = 87877, df = 89, p-value < 2.2e-16
## 
## 
##  Mantissa Arc Test
## 
## data:  ben$notr
## L2 = 0.042732, df = 2, p-value < 2.2e-16
## 
## Mean Absolute Deviation (MAD): 0.0152508
## MAD Conformity - Nigrini (2012): Nonconformity
## Distortion Factor: -31.31379
## 
## Remember: Real data will never conform perfectly to Benford's Law. You should not focus on p-values!
plot(fd_ntr2)

#total

fd_tot1<- benford(ben$total,number.of.digits = 1)
fd_tot1
## 
## Benford object:
##  
## Data: ben$total 
## Number of observations used = 37221 
## Number of obs. for second order = 1141 
## First digits analysed = 1
## 
## Mantissa: 
## 
##    Statistic  Value
##         Mean  0.489
##          Var  0.072
##  Ex.Kurtosis -1.050
##     Skewness  0.075
## 
## 
## The 5 largest deviations: 
## 
##   digits absolute.diff
## 1      1       2831.64
## 2      2       2159.71
## 3      3        809.66
## 4      4        351.91
## 5      9        184.14
## 
## Stats:
## 
##  Pearson's Chi-squared test
## 
## data:  ben$total
## X-squared = 1651.9, df = 8, p-value < 2.2e-16
## 
## 
##  Mantissa Arc Test
## 
## data:  ben$total
## L2 = 0.012481, df = 2, p-value < 2.2e-16
## 
## Mean Absolute Deviation (MAD): 0.02034735
## MAD Conformity - Nigrini (2012): Nonconformity
## Distortion Factor: -14.46284
## 
## Remember: Real data will never conform perfectly to Benford's Law. You should not focus on p-values!
plot(fd_tot1)

fd_tot2<- benford(ben$total,number.of.digits = 2)
fd_tot2
## 
## Benford object:
##  
## Data: ben$total 
## Number of observations used = 37221 
## Number of obs. for second order = 1141 
## First digits analysed = 2
## 
## Mantissa: 
## 
##    Statistic  Value
##         Mean  0.489
##          Var  0.072
##  Ex.Kurtosis -1.050
##     Skewness  0.075
## 
## 
## The 5 largest deviations: 
## 
##   digits absolute.diff
## 1     20       4228.31
## 2     30       2701.96
## 3     40       1970.85
## 4     50       1439.89
## 5     60       1235.81
## 
## Stats:
## 
##  Pearson's Chi-squared test
## 
## data:  ben$total
## X-squared = 77718, df = 89, p-value < 2.2e-16
## 
## 
##  Mantissa Arc Test
## 
## data:  ben$total
## L2 = 0.012481, df = 2, p-value < 2.2e-16
## 
## Mean Absolute Deviation (MAD): 0.008562129
## MAD Conformity - Nigrini (2012): Nonconformity
## Distortion Factor: -14.46284
## 
## Remember: Real data will never conform perfectly to Benford's Law. You should not focus on p-values!
plot(fd_tot2)