#packages

library("tidyverse")
library("ggsignif")

#ejemplo para boxplot convencional con colores


boxplot(df$UFC.mL ~ df$Material, data = df, col = c("tomato", "lightblue"), ylab = "UFC/mL", xlab = "Material", main="Agregar el Titulo que quieras")

#abro el aureus

aureus <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSKVOUoPU4CzAZUYqzy4FzyK0ZnX7xPfmTJ9m4xnRfdUCxsQf2hJrLxZ9rct15BrIQemdn-Agkf9Xi8/pub?gid=0&single=true&output=csv")

#grafica

aureus %>% 
  ggplot(aes(x=Material, y=UCF.cm2, fill=Material))+
  geom_boxplot()+
  theme_classic()+
  scale_fill_viridis_d(direction = -1) + #para darle fotmato de colores 
   annotate("text", x = 1.5 ,y = 2500000000, label = "****", size = 5)+ #para añadir significancia
  ggtitle("titulo")+ #para el titulo general de la grafica 
  ylab("UCF/mL") # para el titulo al eje y

NA

#abro el df para candida

candida <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSKVOUoPU4CzAZUYqzy4FzyK0ZnX7xPfmTJ9m4xnRfdUCxsQf2hJrLxZ9rct15BrIQemdn-Agkf9Xi8/pub?gid=782499918&single=true&output=csv")

#grafica para candida

candida %>% 
  ggplot(aes(x=Material, y=UCF.cm2))+
  geom_boxplot()+
  theme_classic()

#t.test para candida

t.test(candida$UCF.cm2~candida$Material)

    Welch Two Sample t-test

data:  candida$UCF.cm2 by candida$Material
t = -1.7432, df = 3.011, p-value = 0.1793
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -277867281   80931255
sample estimates:
mean in group Grafé  mean in group PEEK 
           18141492           116609505 

#para fuso

fuso <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSKVOUoPU4CzAZUYqzy4FzyK0ZnX7xPfmTJ9m4xnRfdUCxsQf2hJrLxZ9rct15BrIQemdn-Agkf9Xi8/pub?gid=1516983171&single=true&output=csv")

── Column specification ─────────────────────────────────────────────────────────────────────
cols(
  Material = col_character(),
  `UCF/cm2` = col_double()
)

#grafica para fuso

fuso %>% 
  ggplot(aes(x=Material, y=`UCF/cm2`))+
  geom_boxplot()+
  theme_classic()

#prevotela

prevo <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSKVOUoPU4CzAZUYqzy4FzyK0ZnX7xPfmTJ9m4xnRfdUCxsQf2hJrLxZ9rct15BrIQemdn-Agkf9Xi8/pub?gid=1052216705&single=true&output=csv")

── Column specification ─────────────────────────────────────────────────────────────────────
cols(
  Material = col_character(),
  `UCF/cm2` = col_double()
)

#grafica

prevo %>% 
  ggplot(aes(x=Material, y=`UCF/cm2`))+
  geom_boxplot()+
  theme_classic()

LS0tCnRpdGxlOiAiUGF1bGEiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI3BhY2thZ2VzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KCJnZ3NpZ25pZiIpCmBgYAojZWplbXBsbyBwYXJhIGJveHBsb3QgY29udmVuY2lvbmFsIGNvbiBjb2xvcmVzIApgYGB7cn0KCmJveHBsb3QoZGYkVUZDLm1MIH4gZGYkTWF0ZXJpYWwsIGRhdGEgPSBkZiwgY29sID0gYygidG9tYXRvIiwgImxpZ2h0Ymx1ZSIpLCB5bGFiID0gIlVGQy9tTCIsIHhsYWIgPSAiTWF0ZXJpYWwiLCBtYWluPSJBZ3JlZ2FyIGVsIFRpdHVsbyBxdWUgcXVpZXJhcyIpCmBgYAojYWJybyBlbCBhdXJldXMgCmBgYHtyfQphdXJldXMgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZTS1ZPVW9QVTRDekFaVVlxenk0Rnp5SzBablg3eFBmbVRKOW00eG5SZmRVQ3hzUWYyaEpyTHhaOXJjdDE1QnJJUWVtZG4tQWdrZjlYaTgvcHViP2dpZD0wJnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI2dyYWZpY2EKYGBge3J9CmF1cmV1cyAlPiUgCiAgZ2dwbG90KGFlcyh4PU1hdGVyaWFsLCB5PVVDRi5jbTIsIGZpbGw9TWF0ZXJpYWwpKSsKICBnZW9tX2JveHBsb3QoKSsKICB0aGVtZV9jbGFzc2ljKCkrCiAgc2NhbGVfZmlsbF92aXJpZGlzX2QoZGlyZWN0aW9uID0gLTEpICsgI3BhcmEgZGFybGUgZm90bWF0byBkZSBjb2xvcmVzIAogICBhbm5vdGF0ZSgidGV4dCIsIHggPSAxLjUgLHkgPSAyNTAwMDAwMDAwLCBsYWJlbCA9ICIqKioqIiwgc2l6ZSA9IDUpKyAjcGFyYSBhw7FhZGlyIHNpZ25pZmljYW5jaWEKICBnZ3RpdGxlKCJ0aXR1bG8iKSsgI3BhcmEgZWwgdGl0dWxvIGdlbmVyYWwgZGUgbGEgZ3JhZmljYSAKICB5bGFiKCJVQ0YvbUwiKSAjIHBhcmEgZWwgdGl0dWxvIGFsIGVqZSB5CiAgCmBgYAojYWJybyBlbCBkZiBwYXJhIGNhbmRpZGEKYGBge3J9CmNhbmRpZGEgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZTS1ZPVW9QVTRDekFaVVlxenk0Rnp5SzBablg3eFBmbVRKOW00eG5SZmRVQ3hzUWYyaEpyTHhaOXJjdDE1QnJJUWVtZG4tQWdrZjlYaTgvcHViP2dpZD03ODI0OTk5MTgmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojZ3JhZmljYSBwYXJhIGNhbmRpZGEKYGBge3J9CmNhbmRpZGEgJT4lIAogIGdncGxvdChhZXMoeD1NYXRlcmlhbCwgeT1VQ0YuY20yKSkrCiAgZ2VvbV9ib3hwbG90KCkrCiAgdGhlbWVfY2xhc3NpYygpCmBgYAojdC50ZXN0IHBhcmEgY2FuZGlkYQpgYGB7cn0KdC50ZXN0KGNhbmRpZGEkVUNGLmNtMn5jYW5kaWRhJE1hdGVyaWFsKQpgYGAKI3BhcmEgZnVzbwpgYGB7cn0KZnVzbyA8LSByZWFkX2NzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlNLVk9Vb1BVNEN6QVpVWXF6eTRGenlLMFpuWDd4UGZtVEo5bTR4blJmZFVDeHNRZjJoSnJMeFo5cmN0MTVCcklRZW1kbi1BZ2tmOVhpOC9wdWI/Z2lkPTE1MTY5ODMxNzEmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojZ3JhZmljYSBwYXJhIGZ1c28KYGBge3J9CmZ1c28gJT4lIAogIGdncGxvdChhZXMoeD1NYXRlcmlhbCwgeT1gVUNGL2NtMmApKSsKICBnZW9tX2JveHBsb3QoKSsKICB0aGVtZV9jbGFzc2ljKCkKYGBgCiNwcmV2b3RlbGEKYGBge3J9CnByZXZvIDwtIHJlYWRfY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2U0tWT1VvUFU0Q3pBWlVZcXp5NEZ6eUswWm5YN3hQZm1USjltNHhuUmZkVUN4c1FmMmhKckx4WjlyY3QxNUJySVFlbWRuLUFna2Y5WGk4L3B1Yj9naWQ9MTA1MjIxNjcwNSZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiNncmFmaWNhCmBgYHtyfQpwcmV2byAlPiUgCiAgZ2dwbG90KGFlcyh4PU1hdGVyaWFsLCB5PWBVQ0YvY20yYCkpKwogIGdlb21fYm94cGxvdCgpKwogIHRoZW1lX2NsYXNzaWMoKQpgYGAKCgoK