##### Analisis COVID

library(dplyr)
## Warning: replacing previous import 'vctrs::data_frame' by 'tibble::data_frame'
## when loading 'dplyr'
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readxl)
library(janitor)
## 
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(skimr)
library(ggplot2)

#### Importar base de datos ####
fvl <- read_excel("Atenciones hospitalarias pctes con diagnostico Covid 19 YASET.xlsx")
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3152 / R3152C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3302 / R3302C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3449 / R3449C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3484 / R3484C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3552 / R3552C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3575 / R3575C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3583 / R3583C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3593 / R3593C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3610 / R3610C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3646 / R3646C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3706 / R3706C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3709 / R3709C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3716 / R3716C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3721 / R3721C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3722 / R3722C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3731 / R3731C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3733 / R3733C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3745 / R3745C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3747 / R3747C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3754 / R3754C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3757 / R3757C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3758 / R3758C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3780 / R3780C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3794 / R3794C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3812 / R3812C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3823 / R3823C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3829 / R3829C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3830 / R3830C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3839 / R3839C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3841 / R3841C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3846 / R3846C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3860 / R3860C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3864 / R3864C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3866 / R3866C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3869 / R3869C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3873 / R3873C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3886 / R3886C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3890 / R3890C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3903 / R3903C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3906 / R3906C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3910 / R3910C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3912 / R3912C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3919 / R3919C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3923 / R3923C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3928 / R3928C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3945 / R3945C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3963 / R3963C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3965 / R3965C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3968 / R3968C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3971 / R3971C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3973 / R3973C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3978 / R3978C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E3996 / R3996C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4000 / R4000C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4001 / R4001C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4004 / R4004C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4009 / R4009C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4015 / R4015C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4019 / R4019C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4020 / R4020C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4023 / R4023C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4025 / R4025C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4027 / R4027C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4031 / R4031C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4036 / R4036C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4040 / R4040C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4045 / R4045C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4050 / R4050C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4052 / R4052C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4053 / R4053C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4059 / R4059C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4060 / R4060C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4061 / R4061C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4063 / R4063C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4064 / R4064C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4070 / R4070C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4071 / R4071C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4078 / R4078C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4079 / R4079C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4080 / R4080C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4081 / R4081C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4083 / R4083C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4084 / R4084C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4085 / R4085C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4086 / R4086C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4089 / R4089C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4091 / R4091C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4092 / R4092C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4096 / R4096C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4097 / R4097C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4098 / R4098C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4099 / R4099C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4101 / R4101C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4104 / R4104C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4105 / R4105C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4106 / R4106C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4109 / R4109C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4112 / R4112C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4114 / R4114C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4115 / R4115C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4116 / R4116C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4117 / R4117C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4118 / R4118C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4119 / R4119C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4120 / R4120C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4121 / R4121C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4122 / R4122C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4124 / R4124C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4126 / R4126C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4127 / R4127C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4128 / R4128C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4129 / R4129C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4131 / R4131C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4132 / R4132C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4133 / R4133C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4134 / R4134C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4135 / R4135C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4136 / R4136C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4138 / R4138C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4139 / R4139C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4141 / R4141C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4142 / R4142C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4143 / R4143C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4144 / R4144C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4145 / R4145C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4146 / R4146C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4148 / R4148C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4149 / R4149C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4150 / R4150C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4151 / R4151C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4152 / R4152C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4153 / R4153C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4154 / R4154C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4155 / R4155C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4156 / R4156C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4157 / R4157C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4158 / R4158C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4159 / R4159C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4160 / R4160C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4161 / R4161C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4162 / R4162C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4163 / R4163C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4164 / R4164C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4165 / R4165C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4166 / R4166C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4167 / R4167C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4168 / R4168C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4169 / R4169C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4170 / R4170C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4171 / R4171C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4172 / R4172C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4173 / R4173C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4174 / R4174C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4175 / R4175C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4176 / R4176C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4177 / R4177C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4178 / R4178C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4179 / R4179C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4180 / R4180C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4181 / R4181C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4182 / R4182C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4183 / R4183C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4184 / R4184C5: got 'Hospitalizado'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Expecting date in E4185 / R4185C5: got 'Hospitalizado'
### Olas
fvl$`Fecha Admisión` <- as.Date(fvl$`Fecha Admisión`, format = "%Y-%m-%d")

#### Filter No Covid ####
fvl <- fvl %>%
  filter(`Descripción diagnóstico Covid` == "COVID-19 (virus identificado)")


#### DEFINICION DE OLAS ####
fvl <- fvl %>%
  mutate(olas = case_when(
    `Fecha Admisión` >= "2020-08-01" & `Fecha Admisión` <= "2020-08-31" ~ 1,
    `Fecha Admisión` >= "2021-01-01" & `Fecha Admisión` <= "2021-01-31" ~ 2,
    `Fecha Admisión` >= "2021-04-17" & `Fecha Admisión` <= "2021-05-17" ~ 3,
  ))

fvl %>%
  tabyl(olas)
##  olas    n    percent valid_percent
##     1  224 0.07353907     0.2491657
##     2  353 0.11588969     0.3926585
##     3  322 0.10571241     0.3581758
##    NA 2147 0.70485883            NA
#### Pacientes de las Olas
fvl_pte <- fvl %>%
  filter( olas >= 1)

#### ESTADISTICA DESCRIPTIVA


### Edad
fvl_pte %>%
   skim(Edad)
Data summary
Name Piped data
Number of rows 899
Number of columns 40
_______________________
Column type frequency:
numeric 1
________________________
Group variables

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Edad 0 1 57.05 19.08 0 46.5 59 70 99 ▁▂▇▇▂
fvl_pte %>%
  group_by(olas) %>%
  skim(Edad)
Data summary
Name Piped data
Number of rows 899
Number of columns 40
_______________________
Column type frequency:
numeric 1
________________________
Group variables olas

Variable type: numeric

skim_variable olas n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Edad 1 0 1 55.58 19.26 0 43 57 70 92 ▁▃▆▇▃
Edad 2 0 1 59.37 18.88 0 50 62 72 98 ▁▂▅▇▂
Edad 3 0 1 55.53 18.98 0 43 58 68 99 ▁▃▇▇▂
m1 <- aov(Edad ~ olas, data = fvl_pte)
summary(m1)
##              Df Sum Sq Mean Sq F value Pr(>F)
## olas          1     47    47.0   0.129  0.719
## Residuals   897 326884   364.4
### Sexo
fvl_pte %>%
  tabyl(Género)
##     Género   n   percent
##   Femenino 370 0.4115684
##  Masculino 529 0.5884316
fvl_pte %>%
  tabyl(Género, olas) %>%
  adorn_totals(c("col")) %>%
  adorn_percentages(denominator = "col") %>%
  adorn_pct_formatting() %>%
  adorn_ns(position = "front") %>%
  adorn_title() 
##                   olas                                    
##     Género           1           2           3       Total
##   Femenino  80 (35.7%) 152 (43.1%) 138 (42.9%) 370 (41.2%)
##  Masculino 144 (64.3%) 201 (56.9%) 184 (57.1%) 529 (58.8%)
fvl_pte %>%
  tabyl(Género, olas) %>%
  chisq.test()
## 
##  Pearson's Chi-squared test
## 
## data:  .
## X-squared = 3.6518, df = 2, p-value = 0.1611
#### Dias de Hospitalizacion

fvl_pte$`Fecha egreso` <- as.Date(fvl_pte$`Fecha egreso`, format = "%Y-%m-%d")
fvl_pte <- fvl_pte %>%
  mutate(LOS = `Fecha egreso` - `Fecha Admisión`)

fvl_pte$LOS <- as.numeric(fvl_pte$LOS)

fvl_pte %>%
  skim(LOS)
Data summary
Name Piped data
Number of rows 899
Number of columns 41
_______________________
Column type frequency:
numeric 1
________________________
Group variables

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
LOS 32 0.96 12.46 15.86 0 3 7 15 131 ▇▁▁▁▁
fvl_pte %>%
  group_by(olas) %>%
  skim(LOS)
Data summary
Name Piped data
Number of rows 899
Number of columns 41
_______________________
Column type frequency:
numeric 1
________________________
Group variables olas

Variable type: numeric

skim_variable olas n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
LOS 1 0 1.0 12.84 15.56 0 3 7 16 105 ▇▁▁▁▁
LOS 2 0 1.0 15.05 19.83 0 3 8 18 131 ▇▁▁▁▁
LOS 3 32 0.9 9.02 8.21 0 3 7 12 43 ▇▃▁▁▁
#### Distribucion de la Estancia por Box PLot

ggplot( data = fvl_pte, aes(y = LOS)) +
  geom_boxplot()+
  facet_wrap(~olas)
## Warning: Removed 32 rows containing non-finite values (stat_boxplot).

m1 <- aov(LOS ~ olas, data = fvl_pte)
summary(m1)
##              Df Sum Sq Mean Sq F value  Pr(>F)   
## olas          1   2302  2302.4   9.244 0.00243 **
## Residuals   865 215451   249.1                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 32 observations deleted due to missingness
### UCI Admission
fvl_pte <- fvl_pte %>%
  mutate(uci = ifelse(`Fecha primer ingreso a UCI` != is.na(`Fecha primer ingreso a UCI`),1,0))

fvl_pte$uci[is.na(fvl_pte$uci)] <- 0

fvl_pte %>%
  tabyl(uci)
##  uci   n   percent
##    0 550 0.6117909
##    1 349 0.3882091
fvl_pte %>%
  tabyl(uci, olas) %>%
  adorn_totals(c("col")) %>%
  adorn_percentages(denominator = "col") %>%
  adorn_pct_formatting() %>%
  adorn_ns(position = "front") %>%
  adorn_title() 
##             olas                                    
##  uci           1           2           3       Total
##    0 106 (47.3%) 222 (62.9%) 222 (68.9%) 550 (61.2%)
##    1 118 (52.7%) 131 (37.1%) 100 (31.1%) 349 (38.8%)
fvl_pte %>%
  tabyl(uci, olas) %>%
  chisq.test()
## 
##  Pearson's Chi-squared test
## 
## data:  .
## X-squared = 26.721, df = 2, p-value = 1.576e-06
#### MUERTOS

fvl_pte$`Estado al egreso`[is.na(fvl_pte$`Estado al egreso`)] <- "Vivo"

fvl_pte %>%
  tabyl(`Estado al egreso`)
##  Estado al egreso   n   percent
##            Muerte 165 0.1835373
##              Vivo 734 0.8164627
fvl_pte %>%
  tabyl(`Estado al egreso`, olas) %>%
  adorn_totals(c("col")) %>%
  adorn_percentages(denominator = "col") %>%
  adorn_pct_formatting() %>%
  adorn_ns(position = "front") %>%
  adorn_title() 
##                          olas                                    
##  Estado al egreso           1           2           3       Total
##            Muerte  37 (16.5%)  77 (21.8%)  51 (15.8%) 165 (18.4%)
##              Vivo 187 (83.5%) 276 (78.2%) 271 (84.2%) 734 (81.6%)
fvl_pte %>%
  tabyl(`Estado al egreso`, olas) %>%
  chisq.test()
## 
##  Pearson's Chi-squared test
## 
## data:  .
## X-squared = 4.6822, df = 2, p-value = 0.09622
#############################
#### EDADES

fvl_pte$Edad[fvl_pte$Edad < 18]
##  [1] 15 16 15  0 17  1 12 17 11  2  0  9  2  2  2 16 17 12 11  4 11 14 13  0  0
## [26]  9 11  0  0  9  0 13  3  9 10 11 10  1  2
fvl_pte <- fvl_pte %>%
  mutate(edad_groups = case_when(
    Edad < 18 ~ "18 menor",
    Edad >= 18 & Edad <= 29 ~ "18-29",
    Edad >= 30 & Edad <= 39 ~ "30-39",
    Edad >= 40 & Edad <= 49 ~ "40-49",
    Edad >= 50 & Edad <= 59 ~ "50-59",
    Edad >= 60 & Edad <= 69 ~ "60-69",
    Edad >= 70 & Edad <= 79 ~ "70-89",
    Edad >= 80 ~ "80 mayor",
  ))

fvl_pte %>%
  tabyl(edad_groups)
##  edad_groups   n    percent
##        18-29  46 0.05116796
##     18 menor  39 0.04338154
##        30-39  66 0.07341491
##        40-49 119 0.13236930
##        50-59 184 0.20467186
##        60-69 204 0.22691880
##        70-89 148 0.16462736
##     80 mayor  93 0.10344828
fvl_pte %>%
  tabyl(`Estado al egreso`, olas) %>%
  adorn_totals(c("col")) %>%
  adorn_percentages(denominator = "col") %>%
  adorn_pct_formatting() %>%
  adorn_ns(position = "front") %>%
  adorn_title() 
##                          olas                                    
##  Estado al egreso           1           2           3       Total
##            Muerte  37 (16.5%)  77 (21.8%)  51 (15.8%) 165 (18.4%)
##              Vivo 187 (83.5%) 276 (78.2%) 271 (84.2%) 734 (81.6%)
fvl_pte %>%
  tabyl(`Estado al egreso`, olas) %>%
  chisq.test()
## 
##  Pearson's Chi-squared test
## 
## data:  .
## X-squared = 4.6822, df = 2, p-value = 0.09622
#### UCI

fvl_pte2 <- fvl_pte %>%
  filter(uci == 1)

fvl_pte2 %>%
  tabyl(edad_groups)
##  edad_groups   n    percent
##        18-29  16 0.04584527
##     18 menor  17 0.04871060
##        30-39  23 0.06590258
##        40-49  43 0.12320917
##        50-59  61 0.17478510
##        60-69 100 0.28653295
##        70-89  68 0.19484241
##     80 mayor  21 0.06017192
fvl_pte2 %>%
  tabyl(edad_groups, olas) %>%
  adorn_totals(c("col")) %>%
  adorn_percentages(denominator = "col") %>%
  adorn_pct_formatting() %>%
  adorn_ns(position = "front") %>%
  adorn_title() 
##                    olas                                  
##  edad_groups          1          2          3       Total
##        18-29  9  (7.6%)  3  (2.3%)  4  (4.0%)  16  (4.6%)
##     18 menor  5  (4.2%)  8  (6.1%)  4  (4.0%)  17  (4.9%)
##        30-39 11  (9.3%)  4  (3.1%)  8  (8.0%)  23  (6.6%)
##        40-49 12 (10.2%) 19 (14.5%) 12 (12.0%)  43 (12.3%)
##        50-59 23 (19.5%) 17 (13.0%) 21 (21.0%)  61 (17.5%)
##        60-69 26 (22.0%) 43 (32.8%) 31 (31.0%) 100 (28.7%)
##        70-89 23 (19.5%) 29 (22.1%) 16 (16.0%)  68 (19.5%)
##     80 mayor  9  (7.6%)  8  (6.1%)  4  (4.0%)  21  (6.0%)
fvl_pte2 %>%
  tabyl(edad_groups, olas) %>%
  fisher.test(simulate.p.value = T)
## 
##  Fisher's Exact Test for Count Data with simulated p-value (based on
##  2000 replicates)
## 
## data:  .
## p-value = 0.2324
## alternative hypothesis: two.sided
### Dias de Estancia

fvl_pte %>%
  group_by(edad_groups) %>%
  skim(LOS)
Data summary
Name Piped data
Number of rows 899
Number of columns 43
_______________________
Column type frequency:
numeric 1
________________________
Group variables edad_groups

Variable type: numeric

skim_variable edad_groups n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
LOS 18-29 1 0.98 8.84 13.96 0 1.0 3.0 8.00 65 ▇▁▁▁▁
LOS 18 menor 0 1.00 10.00 14.27 1 2.5 5.0 10.00 67 ▇▁▁▁▁
LOS 30-39 1 0.98 8.54 8.39 0 2.0 6.0 12.00 51 ▇▂▁▁▁
LOS 40-49 4 0.97 12.12 15.97 1 3.0 6.0 14.50 105 ▇▁▁▁▁
LOS 50-59 8 0.96 12.52 14.78 0 4.0 8.0 14.00 95 ▇▁▁▁▁
LOS 60-69 11 0.95 16.20 20.04 0 4.0 11.0 19.00 131 ▇▁▁▁▁
LOS 70-89 6 0.96 13.51 16.00 0 4.0 9.0 18.00 126 ▇▁▁▁▁
LOS 80 mayor 1 0.99 8.90 10.79 0 3.0 4.5 9.25 67 ▇▁▁▁▁
fvl_pte %>%
  group_by(olas,edad_groups) %>%
  skim(LOS)
Data summary
Name Piped data
Number of rows 899
Number of columns 43
_______________________
Column type frequency:
numeric 1
________________________
Group variables olas, edad_groups

Variable type: numeric

skim_variable olas edad_groups n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
LOS 1 18-29 0 1.00 9.74 15.22 1 1.50 3.0 8.50 58 ▇▁▁▁▁
LOS 1 18 menor 0 1.00 14.00 20.45 2 3.00 11.0 11.00 67 ▇▁▁▁▁
LOS 1 30-39 0 1.00 11.06 12.11 0 4.00 9.0 13.00 51 ▇▃▁▁▁
LOS 1 40-49 0 1.00 14.68 22.77 1 3.00 6.0 16.00 105 ▇▂▁▁▁
LOS 1 50-59 0 1.00 14.45 15.22 1 6.00 10.0 15.50 70 ▇▂▁▁▁
LOS 1 60-69 0 1.00 12.51 14.27 1 3.00 7.0 16.00 60 ▇▂▁▁▁
LOS 1 70-89 0 1.00 12.67 10.98 1 4.00 10.0 20.00 56 ▇▅▁▁▁
LOS 1 80 mayor 0 1.00 11.65 14.97 1 3.00 6.0 17.00 67 ▇▃▁▁▁
LOS 2 18-29 0 1.00 13.67 20.50 1 3.00 6.0 8.00 65 ▇▁▁▁▁
LOS 2 18 menor 0 1.00 9.65 13.21 1 2.00 6.0 9.00 56 ▇▁▁▁▁
LOS 2 30-39 0 1.00 9.00 7.92 1 3.00 5.5 15.25 24 ▇▃▁▂▂
LOS 2 40-49 0 1.00 14.73 15.72 2 4.00 10.0 18.00 81 ▇▂▁▁▁
LOS 2 50-59 0 1.00 12.94 17.77 0 3.00 6.5 13.25 95 ▇▁▁▁▁
LOS 2 60-69 0 1.00 22.89 26.58 0 5.25 15.0 27.75 131 ▇▂▁▁▁
LOS 2 70-89 0 1.00 15.56 20.73 0 3.00 7.5 20.00 126 ▇▂▁▁▁
LOS 2 80 mayor 0 1.00 8.48 9.98 0 2.75 4.0 10.25 42 ▇▃▁▁▁
LOS 3 18-29 1 0.94 5.29 6.15 0 1.00 2.0 8.00 19 ▇▂▂▁▂
LOS 3 18 menor 0 1.00 7.69 10.75 1 2.00 5.0 7.00 42 ▇▁▁▁▁
LOS 3 30-39 1 0.97 6.68 5.32 0 2.00 6.0 10.25 19 ▇▅▃▃▁
LOS 3 40-49 4 0.91 7.79 7.48 1 2.50 5.0 11.00 32 ▇▃▁▁▁
LOS 3 50-59 8 0.88 10.58 9.59 0 3.00 8.0 14.00 43 ▇▅▂▁▁
LOS 3 60-69 11 0.86 10.41 8.24 0 3.25 9.0 14.75 32 ▇▅▅▂▁
LOS 3 70-89 6 0.86 10.66 8.13 1 4.00 10.0 14.75 39 ▇▆▂▁▁
LOS 3 80 mayor 1 0.96 7.12 6.84 0 3.00 5.0 9.00 28 ▇▅▁▁▁
#### MUERTE

fvl_pte2 <- fvl_pte %>%
  filter(`Estado al egreso` == "Muerte")

fvl_pte2 %>%
  tabyl(edad_groups)
##  edad_groups  n    percent
##        18-29  4 0.02424242
##     18 menor  5 0.03030303
##        30-39  2 0.01212121
##        40-49 11 0.06666667
##        50-59 17 0.10303030
##        60-69 45 0.27272727
##        70-89 44 0.26666667
##     80 mayor 37 0.22424242
fvl_pte2 %>%
  tabyl(edad_groups, olas) %>%
  adorn_totals(c("col")) %>%
  adorn_percentages(denominator = "col") %>%
  adorn_pct_formatting() %>%
  adorn_ns(position = "front") %>%
  adorn_title() 
##                    olas                                 
##  edad_groups          1          2          3      Total
##        18-29  2  (5.4%)  0  (0.0%)  2  (3.9%)  4  (2.4%)
##     18 menor  1  (2.7%)  4  (5.2%)  0  (0.0%)  5  (3.0%)
##        30-39  1  (2.7%)  1  (1.3%)  0  (0.0%)  2  (1.2%)
##        40-49  4 (10.8%)  3  (3.9%)  4  (7.8%) 11  (6.7%)
##        50-59  3  (8.1%)  6  (7.8%)  8 (15.7%) 17 (10.3%)
##        60-69  7 (18.9%) 24 (31.2%) 14 (27.5%) 45 (27.3%)
##        70-89 13 (35.1%) 19 (24.7%) 12 (23.5%) 44 (26.7%)
##     80 mayor  6 (16.2%) 20 (26.0%) 11 (21.6%) 37 (22.4%)
fvl_pte2 %>%
  tabyl(edad_groups, olas) %>%
  fisher.test(simulate.p.value = T)
## 
##  Fisher's Exact Test for Count Data with simulated p-value (based on
##  2000 replicates)
## 
## data:  .
## p-value = 0.2764
## alternative hypothesis: two.sided