knitr::opts_chunk$set(results = 'hide', warning=FALSE)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.0.6 v dplyr 1.0.4
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
state.graphs <- function(ur_state){
ggplot(data = subset(ICU_all_combine_1, state %in% c(ur_state)),
aes(x=month.year.date,
y=Subgroup.discharges))+
geom_line()+
theme_bw()+
labs(title = ur_state,
x= "Month and Year",
y= "Number of Discharges with ICU Care")+
theme(axis.title = element_text(size = 14),
axis.text.x = element_text(angle = 60, hjust = 1, size =12),
axis.text.y = element_text(size = 12))
}
Original data has numbers of discharges with different types of subspecialty care, such cardiac ICU…. Here we only look at the number of discharges receiving any type of ICU.
load("C:/Users/jkempke/OneDrive - Emory University/Side Projects/HCUP ICU Time Series/Data/raw_data/ICU_all_combine.RData")
ICU_all_combine_1 <- ICU_all_combine %>%
mutate(Subgroup.discharges = as.numeric(Subgroup.discharges),
year.string = sapply(strsplit(ICU_all_combine$month, split = "-"), getElement,1),
month.string = sapply(strsplit(ICU_all_combine$month, split = "-"), getElement,2),
month.string = ifelse(nchar(month.string) == 1, str_pad(month.string, 2, pad = "0"),
month.string),
month.year = paste("01",month.string, year.string, sep = "/" ),
month.year.date = as.Date(month.year, format = "%d/%m/%y"))
ICU_any_US <- ICU_all_combine_1 %>%
filter(icu.type=="intensive care")%>%
group_by(month.year.date)%>%
summarise(US.discharges = sum(Subgroup.discharges, na.rm = T))
Looks like data inclusion falls off in 2019.
ggplot(data = ICU_any_US,
aes(x=month.year.date,
y=US.discharges))+
geom_line()+
theme_bw()+
labs(title = "All available states",
x= "Month and Year",
y= "Number of Discharges with ICU Care")+
theme(axis.title = element_text(size = 14),
axis.text.x = element_text(angle = 60, hjust = 1, size =12),
axis.text.y = element_text(size = 12))
Exclude data after December 2018 given above result
ICU_all_combine_1 <- ICU_all_combine_1 %>%
filter(year.string<19 & icu.type=="intensive care")%>%
select(-month, -month.year, -icu.type, -mech.vent)
Several states without data. Many other states seem quite variable.
lapply(unique(ICU_all_combine_1$state), state.graphs)