1 bayesian correlation

library(brms)
library(rstan)
 # can remove the unnecessary iterations
corrs <- brm(mvbind(ethicalPreference, financialPreference, socialPreference, healthAndSafetyPreference, recreationalPreference) ~ 1, data = experiment_dataset_analysis, family = student, prior = c(prior(gamma(2, .1), class = "nu"), prior(normal(0, 1), class = "Intercept"), prior(normal(0, 1), class = "sigma", resp = "ethicalPreference"), prior(normal(0, 1), class = "sigma", resp = "financialPreference"), prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyPreference"), prior(normal(0, 1), class = "sigma", resp = "recreationalPreference"), prior(normal(0, 1), class = "sigma", resp = "socialPreference")), iter = 2000, warmup = 500)

summary(corrs)
plot(corrs)
kable(correlation_table, format = "html", booktabs = T, escape = F, longtabe = F, digits = 2) %>%
  kable_styling(full_width = F)
X Estimate Est.Error l.95..CI u.95..CI Rhat Bulk_ESS Tail_ESS
rescor(ethicalPreference,financialPreference) 0.80 0.04 0.72 0.87 1 6592 11232
rescor(ethicalPreference,socialPreference) 0.80 0.04 0.71 0.87 1 6930 10919
rescor(financialPreference,socialPreference) 0.81 0.04 0.73 0.87 1 7792 11703
rescor(ethicalPreference,healthAndSafetyPreference) 0.83 0.03 0.76 0.89 1 6976 10829
rescor(financialPreference,healthAndSafetyPreference) 0.81 0.04 0.72 0.87 1 7675 11399
rescor(socialPreference,healthAndSafetyPreference) 0.81 0.04 0.73 0.88 1 7962 11921
rescor(ethicalPreference,recreationalPreference) 0.83 0.03 0.76 0.89 1 8220 12133
rescor(financialPreference,recreationalPreference) 0.78 0.04 0.69 0.85 1 8022 11702
rescor(socialPreference,recreationalPreference) 0.74 0.05 0.64 0.83 1 8081 11897
rescor(healthAndSafetyPreference,recreationalPreference) 0.78 0.04 0.69 0.85 1 8133 11982

2 DoPL and General Risk preference

experiment_dataset_analysis <- subset(experiment_dataset_analysis, experiment_dataset_analysis$Gender != "2")

m1 <- brm(generalRiskPreference ~ dominanceSum + prestigeSum + leadershipSum + Gender + Age, data = experiment_dataset_analysis, 
           prior = c(prior(normal(0, 1), class = "Intercept"),
                     prior(normal(3, 1), class = "b", coef = "dominanceSum"),
                     prior(normal(0, 1), class = "b", coef = "prestigeSum"), 
                     prior(normal(-2, 1), class = "b", coef = "leadershipSum"),
                     prior(normal(-3, 1), class = "b", coef = "Gender1"), 
                     prior(normal(-3, 1), class = "b", coef = "Age")), save_all_pars = T, iter = 4000)

summary(m1)

2.1 DoPL and General Risk Preference HDI

library(bayestestR)
m1_hdi <- bayestestR::hdi(m1, effects = "fixed", component = "conditional", ci = .95)

kable(m1_hdi[sign(m1_hdi$CI_low) == sign(m1_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
4 b_Intercept 0.95 1.37 5.81
2 b_dominanceSum 0.95 1.07 4.91
5 b_leadershipSum 0.95 -3.88 -0.02
3 b_Gender1 0.95 -4.95 -1.09
1 b_Age 0.95 -4.80 -0.96

3 Interaction between gender and each of the DoPL motives

# interaction between gender and each of the DoPL motives
m1_int <- brm(generalRiskPreference ~ dominanceSum*Gender+ prestigeSum*Gender + leadershipSum*Gender + Age, data=experiment_dataset_analysis,
              prior=c(prior(normal(0,1), class="Intercept"),
                      prior(normal(3,1), class="b", coef="dominanceSum"),
                      prior(normal(0,1), class="b", coef="prestigeSum"),
                      prior(normal(-2,1), class="b", coef="leadershipSum"),
                      prior(normal(-3,1), class="b", coef="Gender1"),
                      prior(normal(-3,1), class="b", coef="Age"),
                      prior(normal(0,1), class="b", coef="dominanceSum:Gender1"),
                      prior(normal(0,1), class="b", coef="Gender1:leadershipSum"),
                      prior(normal(0,1), class="b", coef="Gender1:prestigeSum")), 
              save_all_pars = T, iter = 4000, warmup = 500)
summary(m1_int)

3.1 HDI interval for interaction between gender and the DoPL motives.

# hdi intervals interaction model
m1_int_hdi <- bayestestR::hdi(m1_int, effects = "fixed", component = "conditional", ci = .95)
kable(m1_int_hdi[sign(m1_int_hdi$CI_low) == sign(m1_int_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
7 b_Intercept 0.95 1.41 5.80
2 b_dominanceSum 0.95 1.01 4.84
4 b_Gender1 0.95 -4.99 -1.08
1 b_Age 0.95 -4.78 -0.97

4 Specific interaction between gender and dominance orientation.

# Interaction between gender and dominance
m1_int_d <- brm(generalRiskPreference ~ dominanceSum*Gender+ prestigeSum + leadershipSum + Age, data =experiment_dataset_analysis,
              prior=c(prior(normal(0,1), class="Intercept"),
                      prior(normal(3,1), class="b", coef="dominanceSum"),
                      prior(normal(0,1), class="b", coef="prestigeSum"),
                      prior(normal(-2,1), class="b", coef="leadershipSum"),
                      prior(normal(-3,1), class="b", coef="Gender1"),
                      prior(normal(-3,1), class="b", coef="Age"),
                      prior(normal(0,1), class="b", coef="dominanceSum:Gender1")), 
              save_all_pars = T, iter = 4000, warmup = 500)

summary(m1_int_d)

4.1 HDI interval for interaction for gender and dominance orientation

# HDI
m1_int_d_hdi <- bayestestR::hdi(m1_int_d, effects = "fixed", component = "conditional", ci = .95)
kable(m1_int_d_hdi[sign(m1_int_d_hdi$CI_low) == sign(m1_int_d_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
5 b_Intercept 0.95 1.33 5.93
2 b_dominanceSum 0.95 1.13 4.92
4 b_Gender1 0.95 -4.96 -0.98
1 b_Age 0.95 -4.78 -0.94

4.1.1 Specific interaction between gender and leadership

# Interaction between gender and leadership
m1_int_l <- brm(generalRiskPreference ~ dominanceSum + prestigeSum + leadershipSum*Gender + Age, data=experiment_dataset_analysis,
              prior=c(prior(normal(0,1), class="Intercept"),
                      prior(normal(3,1), class="b", coef="dominanceSum"),
                      prior(normal(0,1), class="b", coef="prestigeSum"),
                      prior(normal(-2,1), class="b", coef="leadershipSum"),
                      prior(normal(-3,1), class="b", coef="Gender1"),
                      prior(normal(-3,1), class="b", coef="Age"),
                      prior(normal(0,1), class="b", coef="leadershipSum:Gender1")), 
              save_all_pars = T, iter = 4000, warmup = 500)

summary(m1_int_l)

4.2 HDI intervales for specific interaction between gender and leadership

# HDI 
m1_int_l_hdi <- bayestestR::hdi(m1_int_l, effects = "fixed", component = "conditional", ci = .95)
kable(m1_int_l_hdi[sign(m1_int_l_hdi$CI_low) == sign(m1_int_l_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
5 b_Intercept 0.95 1.45 5.98
2 b_dominanceSum 0.95 0.86 4.72
1 b_Age 0.95 -4.73 -0.86
4 b_Gender1 0.95 -5.05 -1.19
# Interaction between gender and prestige
m1_int_p <- brm(generalRiskPreference ~ dominanceSum+ prestigeSum*Gender + leadershipSum + Age, data=experiment_dataset_analysis,
              prior=c(prior(normal(0,1), class="Intercept"),
                      prior(normal(3,1), class="b", coef="dominanceSum"),
                      prior(normal(0,1), class="b", coef="prestigeSum"),
                      prior(normal(-2,1), class="b", coef="leadershipSum"),
                      prior(normal(-3,1), class="b", coef="Gender1"),
                      prior(normal(-3,1), class="b", coef="Age"),
                      prior(normal(0,1), class="b", coef="prestigeSum:Gender1")), 
              save_all_pars = T, iter = 4000)

summary(m1_int_p)
# HDI
m1_int_p_hdi <- bayestestR::hdi(m1_int_p, effects = "fixed", component = "conditional", ci = .95)
kable(m1_int_p_hdi[sign(m1_int_p_hdi$CI_low) == sign(m1_int_p_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
4 b_Intercept 0.95 1.40 5.92
2 b_dominanceSum 0.95 1.05 4.97
3 b_Gender1 0.95 -4.85 -1.05
1 b_Age 0.95 -4.81 -1.04
# Domain specific model
m2 <- brm(mvbind(ethicalPreference, financialPreference, socialPreference, healthAndSafetyPreference, recreationalPreference) ~ dominanceSum + prestigeSum + leadershipSum + Gender + Age, data = experiment_dataset_analysis, cores = 6
    prior = c(prior(normal(0, 1),  coef = "Age", resp = "ethicalPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "ethicalPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "ethicalPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "ethicalPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "ethicalPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "ethicalPreference"), 
              prior(normal(0, 1), class = "sigma", resp = "ethicalPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "financialPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "financialPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "financialPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "financialPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "financialPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "financialPreference"),
              prior(normal(0, 1), class = "sigma", resp = "financialPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "healthAndSafetyPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyPreference"),
              #----
              prior(normal(0, 1),  coef = "Age", resp = "recreationalPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "recreationalPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "recreationalPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "recreationalPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "sigma", resp = "recreationalPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "socialPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "socialPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "socialPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "socialPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "socialPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "socialPreference"), 
              prior(normal(0, 1), class = "sigma", resp = "socialPreference")), 
              save_all_pars = T, iter = 6000, warmup = 500) 


summary(m2)
m2_hdi <- bayestestR::hdi(m2, effects = "fixed", component = "conditional", ci = .95)
kable(m2_hdi[sign(m2_hdi$CI_low) == sign(m2_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
4 b_ethicalPreference_Intercept 0.95 2.86 4.40
2 b_ethicalPreference_dominanceSum 0.95 0.58 1.48
10 b_financialPreference_Intercept 0.95 7.47 9.70
8 b_financialPreference_dominanceSum 0.95 0.12 1.37
28 b_socialPreference_Intercept 0.95 8.27 11.64
26 b_socialPreference_dominanceSum 0.95 0.48 2.54
16 b_healthAndSafetyPreference_Intercept 0.95 4.68 6.60
14 b_healthAndSafetyPreference_dominanceSum 0.95 0.52 1.63
22 b_recreationalPreference_Intercept 0.95 0.85 2.40
20 b_recreationalPreference_dominanceSum 0.95 0.76 1.66
21 b_recreationalPreference_Gender1 0.95 -1.85 -0.51
19 b_recreationalPreference_Age 0.95 0.04 0.85
 # Domain specific model with Gender-DOPL interactions
m3 <- brm(mvbind(ethicalPreference, financialPreference, socialPreference, healthAndSafetyPreference, recreationalPreference) ~ dominanceSum*Gender + prestigeSum*Gender + leadershipSum*Gender + Age, data = experiment_dataset_analysis, cores = 6,
              prior = c(prior(normal(0, 1),  coef = "Age", resp = "ethicalPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "ethicalPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "ethicalPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "ethicalPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "ethicalPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "ethicalPreference"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "ethicalPreference"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "ethicalPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "ethicalPreference"), 
              prior(normal(0, 1), class = "sigma", resp = "ethicalPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "financialPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "financialPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "financialPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "financialPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "financialPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "financialPreference"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "financialPreference"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "financialPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "financialPreference"),
              prior(normal(0, 1), class = "sigma", resp = "financialPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "healthAndSafetyPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "recreationalPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "recreationalPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "recreationalPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "recreationalPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "recreationalPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "recreationalPreference"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "recreationalPreference"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "sigma", resp = "recreationalPreference"),
              #----
              prior(normal(0, 1),  coef = "Age", resp = "socialPreference"),
              prior(normal(0, 1),  coef = "Gender1", resp = "socialPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "socialPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "socialPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "socialPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "socialPreference"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "socialPreference"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "socialPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "socialPreference"), 
              prior(normal(0, 1), class = "sigma", resp = "socialPreference")), 
save_all_pars = T, iter = 6000, warmup = 500) 

summary(m3)
# HDI
m3_hdi <- bayestestR::hdi(m3, effects = "fixed", component = "conditional", ci = .95)
kable(m3_hdi[sign(m3_hdi$CI_low) == sign(m3_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
7 b_ethicalPreference_Intercept 0.95 2.85 4.42
2 b_ethicalPreference_dominanceSum 0.95 0.61 1.71
16 b_financialPreference_Intercept 0.95 7.50 9.67
11 b_financialPreference_dominanceSum 0.95 0.14 1.59
43 b_socialPreference_Intercept 0.95 8.34 11.67
38 b_socialPreference_dominanceSum 0.95 0.60 2.87
25 b_healthAndSafetyPreference_Intercept 0.95 4.65 6.59
20 b_healthAndSafetyPreference_dominanceSum 0.95 0.41 1.77
34 b_recreationalPreference_Intercept 0.95 0.95 2.48
29 b_recreationalPreference_dominanceSum 0.95 0.66 1.74
31 b_recreationalPreference_Gender1 0.95 -1.83 -0.47
28 b_recreationalPreference_Age 0.95 0.06 0.87
# Model Comparison: M2 and M3
#co <- loo(m2,m3, moment_match = T)

#co$loos$m2$looic
#co$loos$m2$elpd_loo

#co$loos$m3$looic
#co$loos$m3$elpd_loo

# Model Comparison (m2 and m3)
co <- loo(m2,m3)

looic_ <- c(co$loos$m2$looic, co$loos$m3$looic)
looic_se <- c(co$loos$m2$se_looic, co$loos$m3$se_looic)
looic_elpd <- c(co$loos$m2$elpd_loo, co$loos$m3$elpd_loo)
looic_elpd_se <- c(co$loos$m2$se_elpd_loo, co$loos$m3$se_elpd_loo)

loo_table <- data.frame(looic_, looic_se, looic_elpd,looic_elpd_se, row.names = c("m2", "m3"))
kable(loo_table, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = F)
looic_ looic_se looic_elpd looic_elpd_se
m2 2407.76 48.03 -1203.88 24.02
m3 2422.23 47.55 -1211.11 23.77
apa_table(bayes_R2(m2))
(#tab:unnamed-chunk-15)
**
Estimate Est.Error Q2.5 Q97.5
R2ethicalPreference 0.21 0.06 0.10 0.32
R2financialPreference 0.12 0.05 0.04 0.23
R2socialPreference 0.16 0.06 0.05 0.27
R2healthAndSafetyPreference 0.17 0.05 0.07 0.28
R2recreationalPreference 0.28 0.05 0.17 0.38
apa_table(bayes_R2(m3))
(#tab:unnamed-chunk-15)
**
Estimate Est.Error Q2.5 Q97.5
R2ethicalPreference 0.21 0.05 0.11 0.32
R2financialPreference 0.13 0.05 0.05 0.24
R2socialPreference 0.17 0.05 0.07 0.28
R2healthAndSafetyPreference 0.17 0.05 0.07 0.28
R2recreationalPreference 0.29 0.05 0.18 0.39
m6 <- brm(mvbind(ethicalPreference, financialPreference, socialPreference, healthAndSafetyPreference, recreationalPreference) ~ dominanceSum*Age + prestigeSum*Age + leadershipSum*Age + Age, data = experiment_dataset_analysis, cores = 6,
              prior = c(prior(normal(0, 1),  coef = "Age", resp = "ethicalPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "ethicalPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "ethicalPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "ethicalPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Age", resp = "ethicalPreference"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "ethicalPreference"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "ethicalPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "ethicalPreference"), 
              prior(normal(0, 1), class = "sigma", resp = "ethicalPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "financialPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "financialPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "financialPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "financialPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Age", resp = "financialPreference"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "financialPreference"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "financialPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "financialPreference"),
              prior(normal(0, 1), class = "sigma", resp = "financialPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "healthAndSafetyPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Age", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyPreference"), 
              #----
              prior(normal(0, 1),  coef = "Age", resp = "recreationalPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "recreationalPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "recreationalPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "recreationalPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Age", resp = "recreationalPreference"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "recreationalPreference"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "sigma", resp = "recreationalPreference"),
              #----
              prior(normal(0, 1),  coef = "Age", resp = "socialPreference"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "socialPreference"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "socialPreference"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "socialPreference"),
              prior(normal(0, 1), coef = "dominanceSum:Age", resp = "socialPreference"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "socialPreference"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "socialPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "socialPreference"), 
              prior(normal(0, 1), class = "sigma", resp = "socialPreference")), 
save_all_pars = T, iter = 6000, warmup = 500) 
# summary(m6)

m6_hdi <- bayestestR::hdi(m6, effects = "fixed", component = "conditional", ci = .95)
kable(m6_hdi[sign(m6_hdi$CI_low) == sign(m6_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
6 b_ethicalPreference_Intercept 0.95 2.93 4.27
4 b_ethicalPreference_dominanceSum 0.95 0.52 1.42
14 b_financialPreference_Intercept 0.95 7.63 9.54
12 b_financialPreference_dominanceSum 0.95 0.09 1.27
38 b_socialPreference_Intercept 0.95 8.23 11.31
36 b_socialPreference_dominanceSum 0.95 0.44 2.47
22 b_healthAndSafetyPreference_Intercept 0.95 4.89 6.56
20 b_healthAndSafetyPreference_dominanceSum 0.95 0.51 1.60
30 b_recreationalPreference_Intercept 0.95 0.26 1.65
28 b_recreationalPreference_dominanceSum 0.95 0.79 1.73
# HDI
m6_hdi <- hdi(m6, effects = "fixed", component = "conditional", ci = .95)
m6_hdi[sign(m6_hdi$CI_low) == sign(m6_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')]
# Benefit, perception and risk taking across subdomains for DOPL motives
m4 <-  brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ dominanceSum + prestigeSum + leadershipSum + Age + Gender, data= experiment_dataset_analysis,
          prior = c(prior(normal(0, 1), class = "Intercept", resp = "riskSum"), 
              prior(normal(0, 1), class = "sigma", resp = "riskSum"), 
              prior(normal(-3, 1),  coef = "Age", resp = "riskSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "riskSum"),
              prior(normal(3, 1),  coef = "dominanceSum", resp = "riskSum"),
              prior(normal(-2, 1),  coef = "leadershipSum", resp = "riskSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "riskSum"),
              #----
              prior(normal(0, 1), class = "Intercept", resp = "riskPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "riskPerceptionSum"), 
              prior(normal(3, 1),  coef = "Age", resp = "riskPerceptionSum"),
              prior(normal(3, 1),  coef = "Gender1", resp = "riskPerceptionSum"),
              prior(normal(-3, 1),  coef = "dominanceSum", resp = "riskPerceptionSum"),
              prior(normal(2, 1),  coef = "leadershipSum", resp = "riskPerceptionSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "riskPerceptionSum"),
              #----
              prior(normal(0, 1), class = "Intercept", resp = "riskBenefitSum"),
              prior(normal(0, 1), class = "sigma", resp = "riskBenefitSum"),
              prior(normal(-3, 1),  coef = "Age", resp = "riskBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "riskBenefitSum"),
              prior(normal(3, 1),  coef = "dominanceSum", resp = "riskBenefitSum"),
              prior(normal(-2, 1),  coef = "leadershipSum", resp = "riskBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "riskBenefitSum")), save_all_pars = T, iter = 6500, cores = 6, warmup = 500)
              
summary(m4) 
# HDI
m4_hdi <- bayestestR::hdi(m4, effects = "fixed", component = "conditional", ci = .95)
kable(m4_hdi[sign(m4_hdi$CI_low) == sign(m4_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
16 b_riskSum_Intercept 0.95 0.02 0.50
14 b_riskSum_dominanceSum 0.95 0.18 0.57
15 b_riskSum_Gender1 0.95 -0.86 -0.16
8 b_riskPerceptionSum_dominanceSum 0.95 -0.46 -0.04
9 b_riskPerceptionSum_Gender1 0.95 0.05 0.82
4 b_riskBenefitSum_Intercept 0.95 0.01 0.52
2 b_riskBenefitSum_dominanceSum 0.95 0.01 0.42
3 b_riskBenefitSum_Gender1 0.95 -0.98 -0.23
# Benefit, perception and risk taking across subdomains for DOPL motives and interactions
m5 <-  brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ dominanceSum*Gender + prestigeSum*Gender + leadershipSum*Gender + Age, data= experiment_dataset_analysis, iter = 6000, cores = 6, warmup = 500, 
          prior = c(prior(normal(0, 1), class = "Intercept", resp = "riskSum"), 
              prior(normal(0, 1), class = "sigma", resp = "riskSum"), 
              prior(normal(-3, 1), coef = "Age", resp = "riskSum"),
              prior(normal(-3, 1), coef = "Gender1", resp = "riskSum"),
              prior(normal(3, 1), coef = "dominanceSum", resp = "riskSum"),
              prior(normal(-2, 1), coef = "leadershipSum", resp = "riskSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "riskSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "riskSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "riskSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "riskSum"),
              #----
              prior(normal(0, 1), class = "Intercept", resp = "riskPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "riskPerceptionSum"), 
              prior(normal(3, 1), coef = "Age", resp = "riskPerceptionSum"),
              prior(normal(3, 1), coef = "Gender1", resp = "riskPerceptionSum"),
              prior(normal(-3, 1), coef = "dominanceSum", resp = "riskPerceptionSum"),
              prior(normal(2, 1), coef = "leadershipSum", resp = "riskPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "riskPerceptionSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "riskPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "riskPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "riskPerceptionSum"),
              #----
              prior(normal(0, 1), class = "Intercept", resp = "riskBenefitSum"),
              prior(normal(0, 1), class = "sigma", resp = "riskBenefitSum"),
              prior(normal(-3, 1), coef = "Age", resp = "riskBenefitSum"),
              prior(normal(-3, 1), coef = "Gender1", resp = "riskBenefitSum"),
              prior(normal(3, 1), coef = "dominanceSum", resp = "riskBenefitSum"),
              prior(normal(-2, 1), coef = "leadershipSum", resp = "riskBenefitSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "riskBenefitSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "riskBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "riskBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "riskBenefitSum")), save_all_pars = T)

summary(m5) 
# HDI

m5_hdi <- bayestestR::hdi(m5, effects = "fixed", component = "conditional", ci = .95)
kable(m5_hdi[sign(m5_hdi$CI_low) == sign(m5_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
20 b_riskSum_dominanceSum 0.95 0.35 0.94
22 b_riskSum_Gender1 0.95 -0.86 -0.16
21 b_riskSum_dominanceSum.Gender1 0.95 -0.84 -0.10
13 b_riskPerceptionSum_Gender1 0.95 0.05 0.80
18 b_riskPerceptionSum_prestigeSum 0.95 0.01 0.61
14 b_riskPerceptionSum_Gender1.leadershipSum 0.95 0.03 0.81
2 b_riskBenefitSum_dominanceSum 0.95 0.06 0.70
4 b_riskBenefitSum_Gender1 0.95 -0.96 -0.21
m5_hdi <- hdi(m5, effects = "fixed", component = "conditional", ci = .95)
m5_hdi[sign(m5_hdi$CI_low) == sign(m5_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')]
## Highest Density Interval
## 
## Parameter                                 |        95% HDI
## ----------------------------------------------------------
## b_riskSum_dominanceSum                    | [ 0.35,  0.94]
## b_riskSum_Gender1                         | [-0.86, -0.16]
## b_riskSum_dominanceSum.Gender1            | [-0.84, -0.10]
## b_riskPerceptionSum_Gender1               | [ 0.05,  0.80]
## b_riskPerceptionSum_prestigeSum           | [ 0.01,  0.61]
## b_riskPerceptionSum_Gender1.leadershipSum | [ 0.03,  0.81]
## b_riskBenefitSum_dominanceSum             | [ 0.06,  0.70]
## b_riskBenefitSum_Gender1                  | [-0.96, -0.21]
# checking interaction slopes
# plot(conditional_effects(m5), points=T)

# Model comparison
# co2 <- loo(m4,m5)
# co2
# comparisonm4 <- loo(m4)
# comparisonm5 <- loo(m5)
# loocomparison4_5 <- loo_compare(comparisonm4, comparisonm5)
# loocomparison4_5
# 
# co2$loos$m4$looic
# co2$loos$m4$se_looic
# co2$loos$m5$looic
# co2$loos$m5$se_looic
# 
# co2$loos$m4$elpd_loo
# co2$loos$m4$se_elpd_loo
# co2$loos$m5$elpd_loo
# co2$loos$m5$se_elpd_loo

looic_2 <- c(co2$loos$m4$looic, co2$loos$m5$looic)
looic_2_se <- c(co2$loos$m4$se_looic, co2$loos$m5$se_looic)
looic_elpd_2 <- c(co2$loos$m4$elpd_loo, co2$loos$m5$elpd_loo)
looic_elpd_2_se <- c(co2$loos$m4$se_elpd_loo, co2$loos$m5$se_elpd_loo)

loo_table2 <- data.frame(looic_2, looic_2_se, looic_elpd_2,looic_elpd_2_se, row.names = c("m4", "m5"))
kable(loo_table2, format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>%
  kable_styling(full_width = F)
looic_2 looic_2_se looic_elpd_2 looic_elpd_2_se
m4 862.59 32.33 -431.30 16.16
m5 867.63 31.28 -433.82 15.64
# bayes_R2(m4)
# bayes_R2(m5)
# 
# pp_check(m5, resp="riskSum", nsamples = 1000)
# pp_check(m5, resp="riskPerceptionSum", nsamples = 1000)
# pp_check(m5, resp="riskBenefitSum", nsamples = 1000)
m7 <-  brm(mvbind(riskSum, riskPerceptionSum, riskBenefitSum) ~ dominanceSum*Age + prestigeSum*Age + leadershipSum*Age + Gender, data= experiment_dataset_analysis, iter = 4000, cores = 6, 
          prior = c(prior(normal(0, 1), class = "Intercept", resp = "riskSum"), 
              prior(normal(0, 1), class = "sigma", resp = "riskSum"), 
              prior(normal(-3, 1), coef = "Age", resp = "riskSum"),
              prior(normal(-3, 1), coef = "Gender1", resp = "riskSum"),
              prior(normal(3, 1), coef = "dominanceSum", resp = "riskSum"),
              prior(normal(-2, 1), coef = "leadershipSum", resp = "riskSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "riskSum"),
              prior(normal(0, 1), coef = "dominanceSum:Age", resp = "riskSum"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "riskSum"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "riskSum"),
              #----
              prior(normal(0, 1), class = "Intercept", resp = "riskPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "riskPerceptionSum"), 
              prior(normal(3, 1), coef = "Age", resp = "riskPerceptionSum"),
              prior(normal(3, 1), coef = "Gender1", resp = "riskPerceptionSum"),
              prior(normal(-3, 1), coef = "dominanceSum", resp = "riskPerceptionSum"),
              prior(normal(2, 1), coef = "leadershipSum", resp = "riskPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "riskPerceptionSum"),
              prior(normal(0, 1), coef = "dominanceSum:Age", resp = "riskPerceptionSum"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "riskPerceptionSum"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "riskPerceptionSum"),
              #----
              prior(normal(0, 1), class = "Intercept", resp = "riskBenefitSum"),
              prior(normal(0, 1), class = "sigma", resp = "riskBenefitSum"),
              prior(normal(-3, 1), coef = "Age", resp = "riskBenefitSum"),
              prior(normal(-3, 1), coef = "Gender1", resp = "riskBenefitSum"),
              prior(normal(3, 1), coef = "dominanceSum", resp = "riskBenefitSum"),
              prior(normal(-2, 1), coef = "leadershipSum", resp = "riskBenefitSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "riskBenefitSum"),
              prior(normal(0, 1), coef = "dominanceSum:Age", resp = "riskBenefitSum"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "riskBenefitSum"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "riskBenefitSum")), save_all_pars = T)

summary(m7) 
# HDI
m7_hdi <- bayestestR::hdi(m7, effects = "fixed", component = "conditional", ci = .95)
kable(m7_hdi[sign(m7_hdi$CI_low) == sign(m7_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')], format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
25 b_riskSum_Intercept 0.95 0.01 0.52
22 b_riskSum_dominanceSum 0.95 0.18 0.57
24 b_riskSum_Gender1 0.95 -0.88 -0.17
13 b_riskPerceptionSum_dominanceSum 0.95 -0.47 -0.05
18 b_riskPerceptionSum_prestigeSum 0.95 0.01 0.44
15 b_riskPerceptionSum_Gender1 0.95 0.05 0.81
4 b_riskBenefitSum_dominanceSum 0.95 0.02 0.43
6 b_riskBenefitSum_Gender1 0.95 -0.97 -0.21
library(brms)

demo_m1 <- brm(mvbind(dominanceSum, prestigeSum, leadershipSum) ~ Gender + Age + Ethnicity + Education, 
              data = experiment_dataset_analysis, iter = 4000, cores = 6, warmup = 500, 
              prior = c(prior(normal(0,1), class="Intercept"),
                      prior(normal(3,1), coef="Gender1", resp = "dominanceSum"),
                      prior(normal(0,1), coef="Gender1", resp = "leadershipSum"),
                      prior(normal(-2,1), coef="Gender1", resp = "prestigeSum")))
summary(demo_m1)
# demo_m1_hdi <- bayestestR::hdi(demo_m1, effects = "fixed", component = "conditional", ci = .95)
# demo_m1_hdi[sign(demo_m1_hdi$CI_low) == sign(demo_m1_hdi$CI_high),
#             c('Parameter', 'CI','CI_low', 'CI_high')]

```{ visualization, echo = T, results = ‘hide’, message=FALSE, warning=FALSE}

experiment_dataset_analysis %>% data_grid(generalRiskPreference = seq_range(generalRiskPreference, n = 111)) %>% add_predicted_draws(m2) %>% ggplot(aes(x = generalRiskPreference, y = dominanceSum)) + stat_lineribbon(aes(y = .prediction), .width = c(.99, .95, .8, .5), color = “#08519C”) + geom_point(data = experiment_1_Dataset, size = 2) + scale_fill_brewer()



```r
priorTest <- c(prior(normal(0, 1), class = "b",resp = "ethicalPreference"),
              prior(normal(0, 1), class = "b", coef = "Age", resp = "ethicalPreference"),
              prior(normal(0, 1), class = "b", coef = "Gender1", resp = "ethicalPreference"),
              prior(normal(2, 1), class = "b", coef = "dominanceSum", resp = "ethicalPreference"),
              prior(normal(0, 1), class = "b", coef = "leadershipSum", resp = "ethicalPreference"),
              prior(normal(0, 1), class = "b", coef = "prestigeSum", resp = "ethicalPreference"),
              prior(normal(0, 1), class= "b", coef = "dominanceSum:Gender1", resp = "ethicalPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:prestigeSum", resp = "ethicalPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:leadershipSum", resp = "ethicalPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "ethicalPreference"), 
              prior(normal(0, 1), class = "sigma", resp = "ethicalPreference"), 
              prior(normal(0, 1), class = "b",resp = "financialPreference"),
              prior(normal(0, 1), class = "b", coef = "Age", resp = "financialPreference"),
              prior(normal(0, 1), class = "b", coef = "Gender1", resp = "financialPreference"),
              prior(normal(2, 1), class = "b", coef = "dominanceSum", resp = "financialPreference"),
              prior(normal(0, 1), class = "b", coef = "leadershipSum", resp = "financialPreference"),
              prior(normal(0, 1), class = "b", coef = "prestigeSum", resp = "financialPreference"),
              prior(normal(0, 1), class= "b", coef = "dominanceSum:Gender1", resp = "financialPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:prestigeSum", resp = "financialPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:leadershipSum", resp = "financialPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "financialPreference"),
              prior(normal(0, 1), class = "sigma", resp = "financialPreference"), 
              prior(normal(0, 1), class = "b",resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "b", coef = "Age", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "b", coef = "Gender1", resp = "healthAndSafetyPreference"),
              prior(normal(2, 1), class = "b", coef = "dominanceSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "b", coef = "leadershipSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "b", coef = "prestigeSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class= "b", coef = "dominanceSum:Gender1", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:prestigeSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:leadershipSum", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyPreference"),
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyPreference"), 
              prior(normal(0, 1), class = "b",resp = "recreationalPreference"),
              prior(normal(0, 1), class = "b", coef = "Age", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "b", coef = "Gender1", resp = "recreationalPreference"),
              prior(normal(2, 1), class = "b", coef = "dominanceSum", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "b", coef = "leadershipSum", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "b", coef = "prestigeSum", resp = "recreationalPreference"),
              prior(normal(0, 1), class= "b", coef = "dominanceSum:Gender1", resp = "recreationalPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:prestigeSum", resp = "recreationalPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:leadershipSum", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "recreationalPreference"),
              prior(normal(0, 1), class = "sigma", resp = "recreationalPreference"), 
              prior(normal(0, 1), class = "b",resp = "socialPreference"),
              prior(normal(0, 1), class = "b", coef = "Age", resp = "socialPreference"),
              prior(normal(0, 1), class = "b", coef = "Gender1", resp = "socialPreference"),
              prior(normal(2, 1), class = "b", coef = "dominanceSum", resp = "socialPreference"),
              prior(normal(0, 1), class = "b", coef = "leadershipSum", resp = "socialPreference"),
              prior(normal(0, 1), class = "b", coef = "prestigeSum", resp = "socialPreference"),
              prior(normal(0, 1), class= "b", coef = "dominanceSum:Gender1", resp = "socialPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:prestigeSum", resp = "socialPreference"),
              prior(normal(0, 1), class= "b", coef = "Gender1:leadershipSum", resp = "socialPreference"),
              prior(normal(0, 1), class = "Intercept", resp = "socialPreference"), 
              prior(normal(0, 1), class = "sigma", resp = "socialPreference"))
m7_DoPL_DOSPERT <- brm(mvbind(dominanceSum, prestigeSum, leadershipSum) ~ ethicalPreference + financialPreference + socialPreference + healthAndSafetyPreference + recreationalPreference, data = experiment_dataset_analysis,
                       iter = 6500, warmup = 500,
                     prior = c(prior(normal(0, 1), class = "Intercept"),
                               prior(normal(0, 1), class = "sigma", resp = "dominanceSum"),
                               prior(normal(0, 1), class = "sigma", resp = "prestigeSum"),
                               prior(normal(0, 1), class = "sigma", resp = "leadershipSum"),
                               prior(normal(0, 1), coef = "ethicalPreference", resp = "dominanceSum"),
                               prior(normal(0, 1), coef = "financialPreference", resp = "dominanceSum"),
                               prior(normal(0, 1), coef = "healthAndSafetyPreference", resp = "dominanceSum"), 
                               prior(normal(0, 1), coef = "recreationalPreference", resp = "dominanceSum"), 
                               prior(normal(0, 1), coef = "socialPreference", resp = "dominanceSum"),
                               prior(normal(0, 1), coef = "ethicalPreference", resp = "prestigeSum"),
                               prior(normal(0, 1), coef = "financialPreference", resp = "prestigeSum"),
                               prior(normal(0, 1), coef = "healthAndSafetyPreference", resp = "prestigeSum"), 
                               prior(normal(0, 1), coef = "recreationalPreference", resp = "prestigeSum"), 
                               prior(normal(0, 1), coef = "socialPreference", resp = "prestigeSum"),
                               prior(normal(0, 1), coef = "ethicalPreference", resp = "leadershipSum"),
                               prior(normal(0, 1), coef = "financialPreference", resp = "leadershipSum"),
                               prior(normal(0, 1), coef = "healthAndSafetyPreference", resp = "leadershipSum"), 
                               prior(normal(0, 1), coef = "recreationalPreference", resp = "leadershipSum"), 
                               prior(normal(0, 1), coef = "socialPreference", resp = "leadershipSum")),
                               save_all_pars = T)

summary(m7_DoPL_DOSPERT)
m7_DoPL_DOSPERT_hdi <- bayestestR::hdi(m7_DoPL_DOSPERT, effects = "fixed", component = "conditional", ci = .95)
kable(m7_DoPL_DOSPERT_hdi[sign(m7_DoPL_DOSPERT_hdi$CI_low) == sign(m7_DoPL_DOSPERT_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
5 b_dominanceSum_recreationalPreference 0.95 0.00 0.26
16 b_prestigeSum_Intercept 0.95 -2.41 -0.46
bayes_R2(m1)
m4_perceivedRisk_Age <- brm(mvbind(ethicalQuestionsPerceptionSum, financialQuestionsPerceptionSum, socialQuestionsPerceptionSum, recreationalQuestionsPerceptionSum, healthAndSafetyQuestionsPerceptionSum) ~ dominanceSum*Age + prestigeSum*Age + leadershipSum*Age + Gender + Age, iter = 4000, warmup = 500,
                           data = experiment_dataset_analysis, 
                           prior =  
                          c(prior(normal(0, 1), class = "Intercept",resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-3, 1), coef = "Gender1", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-3, 1), coef = "dominanceSum:Age", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "Age:leadershipSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "Age:prestigeSum", resp = "ethicalQuestionsPerceptionSum"), 
              #---- Perception of financial risk taking
              prior(normal(0, 1), coef = "Age", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1", resp = "financialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum:Age", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "Intercept", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "financialQuestionsPerceptionSum"),
              #---- Perception of risk in health and safety
              prior(normal(0, 1), coef = "Age", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum:Age", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyQuestionsPerceptionSum"),
              #---- Perception of risky recreational settings
              prior(normal(0, 1), coef = "Age", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum:Age", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "Intercept", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "recreationalQuestionsPerceptionSum"),
              #---- Perception of social risk
              prior(normal(0, 1), coef = "Age", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1", resp = "socialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum:Age", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age:leadershipSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age:prestigeSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "Intercept", resp = "socialQuestionsPerceptionSum")), 
              save_all_pars = T)
              summary(m4_perceivedRisk_Age)
m4_perceivedRisk_Age_hdi <- bayestestR::hdi(m4_perceivedRisk_Age, effects = "fixed", component = "conditional", ci = .95)

kable(m4_perceivedRisk_Age_hdi[sign(m4_perceivedRisk_Age_hdi$CI_low) == sign(m4_perceivedRisk_Age_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
4 b_ethicalQuestionsPerceptionSum_dominanceSum 0.95 -0.46 -0.07
9 b_ethicalQuestionsPerceptionSum_prestigeSum 0.95 0.04 0.43
5 b_ethicalQuestionsPerceptionSum_dominanceSum.Age 0.95 0.00 0.39
28 b_recreationalQuestionsPerceptionSum_Age 0.95 -0.42 -0.02
36 b_recreationalQuestionsPerceptionSum_prestigeSum 0.95 0.04 0.44
m5_generalRiskPreference <- brm(generalRiskPreference ~ ethicalPreference + socialPreference + financialPreference + healthAndSafetyPreference + recreationalPreference, data = experiment_dataset_analysis,iter = 4000, warmup = 500,
                                prior = c(prior(normal(0, 1), class = "Intercept"),
                               prior(normal(0, 1), coef = "ethicalPreference"),
                               prior(normal(0, 1), coef = "financialPreference"),
                               prior(normal(0, 1), coef = "healthAndSafetyPreference"), 
                               prior(normal(0, 1), coef = "recreationalPreference"), 
                               prior(normal(0, 1), coef = "socialPreference")),
                                          save_all_pars = T)
summary(m5_generalRiskPreference)

m5_benefitRisk_Age <- brm(mvbind(ethicalQuestionsBenefitSum, financialQuestionsBenefitSum, socialQuestionsBenefitSum, recreationalQuestionsBenefitSum, healthAndSafetyQuestionsBenefitSum) ~ dominanceSum*Age + prestigeSum*Age + leadershipSum*Age + Gender + Age, 
                           data = experiment_dataset_analysis, iter = 5000, warmup = 500,
                           prior =  c(prior(normal(0, 1), class = "Intercept", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "Age", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "Gender1", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum:Age", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:leadershipSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:prestigeSum", resp = "ethicalQuestionsBenefitSum"),
              #---- Believed benefit of financial risk 
              prior(normal(0, 1), class = "Intercept", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "Age", resp = "financialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "financialQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum:Age", resp = "financialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:leadershipSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:prestigeSum", resp = "financialQuestionsBenefitSum"),
              #---- Believed benefit of health and safety risk
              prior(normal(0, 1),  coef = "Age", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(3, 1),  coef = "dominanceSum:Age", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:leadershipSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:prestigeSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyQuestionsBenefitSum"),
              #---- Believed benefit of recreational risk
              prior(normal(0, 1),  coef = "Age", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum:Age", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:leadershipSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:prestigeSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1), class = "Intercept", resp = "recreationalQuestionsBenefitSum"),
              #---- Believed benefit of social risk
              prior(normal(0, 1),  coef = "Age", resp = "socialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "socialQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum:Age", resp = "socialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:leadershipSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Age:prestigeSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1), class = "Intercept", resp = "socialQuestionsBenefitSum")), 
              save_all_pars = T)summary(m5_benefitRisk_Age)
m5_generalRiskPreference_hdi <- bayestestR::hdi(m5_generalRiskPreference, effects = "fixed", component = "conditional", ci = .95)


m5_benefitRisk_Age_hdi <- bayestestR::hdi(m5_benefitRisk_Age, effects = "fixed", component = "conditional", ci = .95)

kable(m5_benefitRisk_Age_hdi[sign(m5_benefitRisk_Age_hdi$CI_low) == sign(m5_benefitRisk_Age_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
4 b_ethicalQuestionsBenefitSum_dominanceSum 0.95 0.10 0.51
6 b_ethicalQuestionsBenefitSum_Gender1 0.95 -0.90 -0.16
16 b_financialQuestionsBenefitSum_Intercept 0.95 0.06 0.60
15 b_financialQuestionsBenefitSum_Gender1 0.95 -1.07 -0.30
43 b_socialQuestionsBenefitSum_Intercept 0.95 0.07 0.58
45 b_socialQuestionsBenefitSum_prestigeSum 0.95 0.02 0.43
42 b_socialQuestionsBenefitSum_Gender1 0.95 -1.04 -0.30
34 b_recreationalQuestionsBenefitSum_Intercept 0.95 0.20 0.69
31 b_recreationalQuestionsBenefitSum_dominanceSum 0.95 0.16 0.56
33 b_recreationalQuestionsBenefitSum_Gender1 0.95 -1.29 -0.59
22 b_healthAndSafetyQuestionsBenefitSum_dominanceSum 0.95 0.05 0.47
24 b_healthAndSafetyQuestionsBenefitSum_Gender1 0.95 -0.86 -0.10
m4_perceivedRisk_Gender <- brm(mvbind(ethicalQuestionsPerceptionSum, financialQuestionsPerceptionSum, socialQuestionsPerceptionSum, recreationalQuestionsPerceptionSum, healthAndSafetyQuestionsPerceptionSum) ~ dominanceSum*Gender + prestigeSum*Gender + leadershipSum*Gender + Gender + Age, iter = 6000, warmup = 500,

                           data = experiment_dataset_analysis, 
                           prior =  
                          c(prior(normal(0, 1), class = "Intercept",resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Age", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-3, 1), coef = "Gender1", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-3, 1), coef = "dominanceSum:Gender1", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "Gender1:leadershipSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "Gender1:prestigeSum", resp = "ethicalQuestionsPerceptionSum"), 
              #----
              prior(normal(0, 1), coef = "Age", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1", resp = "financialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum:Gender1", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "Intercept", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "financialQuestionsPerceptionSum"),
              #----
              prior(normal(0, 1), coef = "Age", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum:Gender1", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyQuestionsPerceptionSum"),
              #----
              prior(normal(0, 1), coef = "Age", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum:Gender1", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "Intercept", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "sigma", resp = "recreationalQuestionsPerceptionSum"),
              #----
              prior(normal(0, 1), coef = "Age", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1", resp = "socialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "dominanceSum:Gender1", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), class = "Intercept", resp = "socialQuestionsPerceptionSum")), 
              save_all_pars = T)summary(m4_perceivedRisk_Gender)
m4_perceivedRisk_Gender_hdi <- bayestestR::hdi(m4_perceivedRisk_Gender, effects = "fixed", component = "conditional", ci = .95)

kable(m4_perceivedRisk_Gender_hdi[sign(m4_perceivedRisk_Gender_hdi$CI_low) == sign(m4_perceivedRisk_Gender_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
9 b_ethicalQuestionsPerceptionSum_prestigeSum 0.95 0.13 0.67
5 b_ethicalQuestionsPerceptionSum_Gender1.leadershipSum 0.95 0.00 0.71
36 b_recreationalQuestionsPerceptionSum_prestigeSum 0.95 0.06 0.60
28 b_recreationalQuestionsPerceptionSum_Age 0.95 -0.39 -0.03
30 b_recreationalQuestionsPerceptionSum_dominanceSum.Gender1 0.95 -0.76 -0.04
23 b_healthAndSafetyQuestionsPerceptionSum_Gender1.leadershipSum 0.95 0.07 0.80
m5_generalRiskPreference <- brm(generalRiskPreference ~ ethicalPreference + socialPreference + financialPreference + healthAndSafetyPreference + recreationalPreference, data = experiment_dataset_analysis,iter = 4000, warmup = 500,
                                prior = c(prior(normal(0, 1), class = "Intercept"),
                               prior(normal(0, 1) ,class = "b", coef = "ethicalPreference"),
                               prior(normal(0, 1) ,class = "b", coef = "financialPreference"),
                               prior(normal(0, 1) ,class = "b", coef = "healthAndSafetyPreference"), 
                               prior(normal(0, 1) ,class = "b", coef = "recreationalPreference"), 
                               prior(normal(0, 1) ,class = "b", coef = "socialPreference")),
                                          save_all_pars = T)
summary(m5_generalRiskPreference)

m5_benefitRisk_Gender <- brm(mvbind(ethicalQuestionsBenefitSum, financialQuestionsBenefitSum, socialQuestionsBenefitSum, recreationalQuestionsBenefitSum, healthAndSafetyQuestionsBenefitSum) ~ dominanceSum*Gender + prestigeSum*Gender + leadershipSum*Gender + Gender + Age, 
                           data = experiment_dataset_analysis, iter = 5000, warmup = 500, cores = 6, 
                           prior =  c(prior(normal(0, 1), class = "Intercept", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "Age", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "Gender1", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum:Gender1", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:leadershipSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:prestigeSum", resp = "ethicalQuestionsBenefitSum"),
              #----
              prior(normal(0, 1), class = "Intercept", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "Age", resp = "financialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "financialQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum:Gender1", resp = "financialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:leadershipSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:prestigeSum", resp = "financialQuestionsBenefitSum"),
              #----
              prior(normal(0, 1),  coef = "Age", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(3, 1),  coef = "dominanceSum:Gender1", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:leadershipSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:prestigeSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyQuestionsBenefitSum"),
              #----
              prior(normal(0, 1),  coef = "Age", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum:Gender1", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:leadershipSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:prestigeSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1), class = "Intercept", resp = "recreationalQuestionsBenefitSum"),
              #----
              prior(normal(0, 1),  coef = "Age", resp = "socialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1", resp = "socialQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "leadershipSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1),  coef = "prestigeSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(2, 1),  coef = "dominanceSum:Gender1", resp = "socialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:leadershipSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(-3, 1),  coef = "Gender1:prestigeSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1), class = "Intercept", resp = "socialQuestionsBenefitSum")), 
              save_all_pars = T)summary(m5_benefitRisk_Gender)
m5_benefitRisk_Gender_hdi <- bayestestR::hdi(m5_benefitRisk_Gender, effects = "fixed", component = "conditional", ci = .95)

kable(m5_benefitRisk_Gender_hdi[sign(m5_benefitRisk_Gender_hdi$CI_low) == sign(m5_benefitRisk_Gender_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')] , format = "html", booktabs = T, escape = F, longtable = F, digits = 2) %>% kable_styling(full_width = T)
Parameter CI CI_low CI_high
4 b_ethicalQuestionsBenefitSum_Gender1 0.95 -0.93 -0.18
16 b_financialQuestionsBenefitSum_Intercept 0.95 0.04 0.58
13 b_financialQuestionsBenefitSum_Gender1 0.95 -1.06 -0.30
14 b_financialQuestionsBenefitSum_Gender1.leadershipSum 0.95 -0.90 -0.09
43 b_socialQuestionsBenefitSum_Intercept 0.95 0.04 0.57
40 b_socialQuestionsBenefitSum_Gender1 0.95 -1.06 -0.32
45 b_socialQuestionsBenefitSum_prestigeSum 0.95 0.04 0.63
34 b_recreationalQuestionsBenefitSum_Intercept 0.95 0.19 0.69
31 b_recreationalQuestionsBenefitSum_Gender1 0.95 -1.31 -0.60
28 b_recreationalQuestionsBenefitSum_Age 0.95 0.01 0.38
22 b_healthAndSafetyQuestionsBenefitSum_Gender1 0.95 -0.92 -0.14
27 b_healthAndSafetyQuestionsBenefitSum_prestigeSum 0.95 0.01 0.61
23 b_healthAndSafetyQuestionsBenefitSum_Gender1.leadershipSum 0.95 -0.81 -0.01
m8 <- brm(mvbind(ethicalQuestionsRiskSum, ethicalQuestionsPerceptionSum, ethicalQuestionsBenefitSum, 
                 financialQuestionsRiskSum, financialQuestionsPerceptionSum, financialQuestionsBenefitSum,
                 healthAndSafetyQuestionsRiskSum, healthAndSafetyQuestionsPerceptionSum, healthAndSafetyQuestionsBenefitSum,
                 recreationalQuestionsRiskSum, recreationalQuestionsPerceptionSum, recreationalQuestionsBenefitSum,
                 socialQuestionsRiskSum, socialQuestionsPerceptionSum, socialQuestionsBenefitSum) ~ dominanceSum*Gender + prestigeSum*Gender + leadershipSum*Gender + Age, data= experiment_dataset_analysis, iter = 8000, warmup = 500, save_all_pars = T, cores = 6,
          #----
          prior = c(prior(normal(0, 1), class = "Intercept", resp = "ethicalQuestionsRiskSum"), 
              prior(normal(0, 1), class = "sigma", resp = "ethicalQuestionsRiskSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "ethicalQuestionsRiskSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "ethicalQuestionsRiskSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "ethicalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "ethicalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "ethicalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "ethicalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "ethicalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "ethicalQuestionsRiskSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "ethicalQuestionsPerceptionSum"), 
              prior(normal(0, 1), class = "sigma", resp = "ethicalQuestionsPerceptionSum"), 
              prior(normal(2, 1), coef = "Age", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "Gender1", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "dominanceSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "ethicalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "ethicalQuestionsPerceptionSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "ethicalQuestionsBenefitSum"), 
              prior(normal(0, 1), class = "sigma", resp = "ethicalQuestionsBenefitSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "ethicalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "ethicalQuestionsBenefitSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "financialQuestionsRiskSum"), 
              prior(normal(0, 1), class = "sigma", resp = "financialQuestionsRiskSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "financialQuestionsRiskSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "financialQuestionsRiskSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "financialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "financialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "financialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "financialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "financialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "financialQuestionsRiskSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "financialQuestionsPerceptionSum"), 
              prior(normal(0, 1), class = "sigma", resp = "financialQuestionsPerceptionSum"), 
              prior(normal(2, 1), coef = "Age", resp = "financialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "Gender1", resp = "financialQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "dominanceSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "financialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "financialQuestionsPerceptionSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "financialQuestionsBenefitSum"), 
              prior(normal(0, 1), class = "sigma", resp = "financialQuestionsBenefitSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "financialQuestionsBenefitSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "financialQuestionsBenefitSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "financialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "financialQuestionsBenefitSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyQuestionsRiskSum"), 
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyQuestionsRiskSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "healthAndSafetyQuestionsRiskSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "healthAndSafetyQuestionsRiskSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "healthAndSafetyQuestionsRiskSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "healthAndSafetyQuestionsRiskSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "healthAndSafetyQuestionsRiskSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "healthAndSafetyQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "healthAndSafetyQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "healthAndSafetyQuestionsRiskSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyQuestionsPerceptionSum"), 
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyQuestionsPerceptionSum"), 
              prior(normal(2, 1), coef = "Age", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "Gender1", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "dominanceSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "healthAndSafetyQuestionsPerceptionSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "healthAndSafetyQuestionsBenefitSum"), 
              prior(normal(0, 1), class = "sigma", resp = "healthAndSafetyQuestionsBenefitSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "healthAndSafetyQuestionsBenefitSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "recreationalQuestionsRiskSum"), 
              prior(normal(0, 1), class = "sigma", resp = "recreationalQuestionsRiskSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "recreationalQuestionsRiskSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "recreationalQuestionsRiskSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "recreationalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "recreationalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "recreationalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "recreationalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "recreationalQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "recreationalQuestionsRiskSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "recreationalQuestionsPerceptionSum"), 
              prior(normal(0, 1), class = "sigma", resp = "recreationalQuestionsPerceptionSum"), 
              prior(normal(2, 1), coef = "Age", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "Gender1", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "dominanceSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "recreationalQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "recreationalQuestionsPerceptionSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "recreationalQuestionsBenefitSum"), 
              prior(normal(0, 1), class = "sigma", resp = "recreationalQuestionsBenefitSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "recreationalQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "recreationalQuestionsBenefitSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "socialQuestionsRiskSum"), 
              prior(normal(0, 1), class = "sigma", resp = "socialQuestionsRiskSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "socialQuestionsRiskSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "socialQuestionsRiskSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "socialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "socialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "socialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "socialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "socialQuestionsRiskSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "socialQuestionsRiskSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "socialQuestionsPerceptionSum"), 
              prior(normal(0, 1), class = "sigma", resp = "socialQuestionsPerceptionSum"), 
              prior(normal(2, 1), coef = "Age", resp = "socialQuestionsPerceptionSum"),
              prior(normal(2, 1), coef = "Gender1", resp = "socialQuestionsPerceptionSum"),
              prior(normal(-2, 1), coef = "dominanceSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "socialQuestionsPerceptionSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "socialQuestionsPerceptionSum"),
              #
              prior(normal(0, 1), class = "Intercept", resp = "socialQuestionsBenefitSum"), 
              prior(normal(0, 1), class = "sigma", resp = "socialQuestionsBenefitSum"), 
              prior(normal(-2, 1), coef = "Age", resp = "socialQuestionsBenefitSum"),
              prior(normal(-2, 1), coef = "Gender1", resp = "socialQuestionsBenefitSum"),
              prior(normal(2, 1), coef = "dominanceSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "leadershipSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "prestigeSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "dominanceSum:Gender1", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:prestigeSum", resp = "socialQuestionsBenefitSum"),
              prior(normal(0, 1), coef = "Gender1:leadershipSum", resp = "socialQuestionsBenefitSum")))
summary(m8)

m8_hdi <- hdi(m8, effects = "fixed", component = "conditional", ci = .95)
m8_hdi[sign(m8_hdi$CI_low) == sign(m8_hdi$CI_high),
            c('Parameter', 'CI','CI_low', 'CI_high')]
mcmc_areas_m1 <- mcmc_areas(m1, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

mcmc_dens_m1 <- mcmc_dens_overlay(m1, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

m1_plot <- mcmc_plot(m1, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

mcmc_areas_m2 <- mcmc_areas(m2, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

mcmc_dens_m2 <- mcmc_dens_overlay(m2, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

m2_plot <- mcmc_plot(m2, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

mcmc_areas_m3 <- mcmc_areas(m3, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

mcmc_dens_m3 <- mcmc_dens_overlay(m3, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

m3_plot <- mcmc_plot(m3, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

mcmc_areas_m4 <- mcmc_areas(m4, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

mcmc_dens_m4 <- mcmc_dens_overlay(m4, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))

m4_plot <- mcmc_plot(m4, pars = c("b_dominanceSum", "b_prestigeSum", "b_leadershipSum", "b_Gender1"))