ADG vs patch contrast

Weight Gains

Questions/Hypothesis

Are animals gaining weight each year? -I expect average daily gain to be positive for each livestock class each year

Do weight gains differ between years for any livetock class? -I do not expect years to differ despite variable precipitation

Results

Gain, Hold, or Lose

## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = ADG ~ Year + 0 + (1 | Pasture1), data = HrecEwe, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##               Estimate Std. Error z value Pr(>|z|)    
## Year2016 == 0 0.257668   0.006649   38.75   <2e-16 ***
## Year2017 == 0 0.289309   0.006907   41.89   <2e-16 ***
## Year2018 == 0 0.347246   0.006873   50.53   <2e-16 ***
## Year2019 == 0 0.285975   0.007097   40.30   <2e-16 ***
## Year2020 == 0 0.230448   0.007034   32.76   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Confidence Intervals
## 
## Fit: lmer(formula = ADG ~ Year + 0 + (1 | Pasture1), data = HrecEwe, 
##     REML = FALSE)
## 
## Quantile = 2.5424
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##               Estimate lwr    upr   
## Year2016 == 0 0.2577   0.2408 0.2746
## Year2017 == 0 0.2893   0.2717 0.3069
## Year2018 == 0 0.3472   0.3298 0.3647
## Year2019 == 0 0.2860   0.2679 0.3040
## Year2020 == 0 0.2304   0.2126 0.2483
## boundary (singular) fit: see ?isSingular
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = ADG ~ Year + 0 + (1 | Pasture1), data = HrecCow, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##               Estimate Std. Error z value Pr(>|z|)    
## Year2016 == 0  0.63743    0.07042   9.051  < 2e-16 ***
## Year2017 == 0  0.45246    0.07134   6.342 1.13e-09 ***
## Year2018 == 0  1.28520    0.06954  18.482  < 2e-16 ***
## Year2019 == 0  0.62715    0.07599   8.254 1.11e-15 ***
## Year2020 == 0  0.62208    0.07656   8.126 2.22e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Confidence Intervals
## 
## Fit: lmer(formula = ADG ~ Year + 0 + (1 | Pasture1), data = HrecCow, 
##     REML = FALSE)
## 
## Quantile = 2.569
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##               Estimate lwr    upr   
## Year2016 == 0 0.6374   0.4565 0.8183
## Year2017 == 0 0.4525   0.2692 0.6357
## Year2018 == 0 1.2852   1.1066 1.4638
## Year2019 == 0 0.6271   0.4319 0.8224
## Year2020 == 0 0.6221   0.4254 0.8188
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = ADG ~ Year + 0 + (1 | Pasture1), data = HrecCalf, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##               Estimate Std. Error z value Pr(>|z|)    
## Year2016 == 0  2.98508    0.03921   76.13   <2e-16 ***
## Year2017 == 0  3.09372    0.03896   79.40   <2e-16 ***
## Year2018 == 0  2.62170    0.03875   67.66   <2e-16 ***
## Year2019 == 0  2.95727    0.04116   71.86   <2e-16 ***
## Year2020 == 0  2.96987    0.04198   70.75   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Confidence Intervals
## 
## Fit: lmer(formula = ADG ~ Year + 0 + (1 | Pasture1), data = HrecCalf, 
##     REML = FALSE)
## 
## Quantile = 2.5639
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##               Estimate lwr    upr   
## Year2016 == 0 2.9851   2.8846 3.0856
## Year2017 == 0 3.0937   2.9938 3.1936
## Year2018 == 0 2.6217   2.5224 2.7210
## Year2019 == 0 2.9573   2.8518 3.0628
## Year2020 == 0 2.9699   2.8622 3.0775

ADG CI's

ADG Means

Year Test

## 
## Model selection based on AICc:
## 
##         K     AICc Delta_AICc AICcWt Cum.Wt      LL
## EweY    7 -3361.01       0.00      1      1 1687.53
## EweNull 3 -3133.30     227.71      0      1 1569.65
## Data: HrecEwe
## Models:
## EweNull: ADG ~ 1 + (1 | Pasture1)
## EweY: ADG ~ Year + (1 | Pasture1)
##         npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)    
## EweNull    3 -3133.3 -3115.7 1569.7  -3139.3                         
## EweY       7 -3361.1 -3320.1 1687.5  -3375.1 235.74  4  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Model selection based on AICc:
## 
##          K   AICc Delta_AICc AICcWt Cum.Wt      LL
## CalfY    7 179.70       0.00      1      1  -82.69
## CalfNull 3 260.19      80.49      0      1 -127.06
## Data: HrecCalf
## Models:
## CalfNull: ADG ~ 1 + (1 | Pasture1)
## CalfY: ADG ~ Year + (1 | Pasture1)
##          npar    AIC    BIC   logLik deviance  Chisq Df Pr(>Chisq)    
## CalfNull    3 260.12 271.68 -127.058   254.12                         
## CalfY       7 179.37 206.36  -82.685   165.37 88.745  4  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## 
## Model selection based on AICc:
## 
##         K   AICc Delta_AICc AICcWt Cum.Wt      LL
## CowY    7 707.26       0.00      1      1 -346.47
## CowNull 3 774.98      67.72      0      1 -384.45
## Data: HrecCow
## Models:
## CowNull: ADG ~ 1 + (1 | Pasture1)
## CowY: ADG ~ Year + (1 | Pasture1)
##         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## CowNull    3 774.91 786.63 -384.45   768.91                         
## CowY       7 706.95 734.28 -346.47   692.95 75.964  4  1.246e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

NIR Ordination

Questions/Hypotheses

How do the measured forage quality parameters relate to each other? - I expected protein to be dissimilar from fibers and lignin

Which treatment and environmental variables influence the ordination? - I expected differences within TSF levels and between months - I expected biomass to be more associated with fibers and lignin - I expected selection index and moisture content to be more associated with protein -

Results Summary

The first axis explains 71% of the variation.

Moisture, Month, TSF, Selection Index and Biomass are significant environmental variables for the forage quality data.

Available biomass vector is more associated with fibers. Selection Index vector is more associated with protein. Moisture vector is opposite of lignin.

TSF: Pairwise factorfit says they are all different. Recent burns has

Ordination Setup

##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       1.19            0.47            0.01
## Proportion Explained             0.71            0.28            0.01
## Cumulative Proportion            0.71            0.99            1.00
## 
## ***VECTORS
## 
##              MDS1     MDS2     r2 Pr(>r)   
## Moisture  0.96763 -0.25239 0.6335  0.002 **
## Powell    0.88703  0.46171 0.1246  0.002 **
## KgHa     -0.90506 -0.42529 0.2003  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                      MDS1    MDS2
## TSFRB              0.1109  0.0322
## TSF1to2           -0.0056 -0.0606
## TSF2to3           -0.0730 -0.1032
## TSF3plus          -0.1284 -0.0443
## TSFNYB            -0.0237  0.0618
## ESDClayey          0.0073  0.0227
## ESDLoamy           0.0148 -0.0202
## ESDSaline Lowland -0.0224 -0.0120
## ESDSandy           0.0096  0.0063
## ESDThin Claypan   -0.0182 -0.0827
## MonthMay           0.0769 -0.0019
## MonthJune          0.2541 -0.0566
## MonthJuly          0.0098 -0.0343
## MonthAugust       -0.0897  0.0052
## MonthSeptember    -0.1193  0.0717
## TreatmentCattle    0.0217  0.0543
## TreatmentSheep    -0.0252 -0.0631
## 
## Goodness of fit:
##               r2 Pr(>r)   
## TSF       0.1025  0.002 **
## ESD       0.0063  0.508   
## Month     0.2360  0.002 **
## Treatment 0.0451  1.000   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Ordinations

Figure: NIR Ordi + Vectors

Figure: NIR TSF Ordi

## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  NIR.cap3 by NIREnv_2$TSF
## 999 permutations 
## 
##       RB     1to2   2to3   3plus 
## 1to2  0.0012 -      -      -     
## 2to3  0.0012 0.0056 -      -     
## 3plus 0.0012 0.0012 0.0160 -     
## NYB   0.0012 0.0012 0.0012 0.0012
## 
## P value adjustment method: fdr
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.

Figure: NIR Month Ordi

Available Biomass (Kg/Ha)

Hypothesis

Recently burned patches will have lower available biomass than other patches, especially not yet burned and 3 years since fire.

Summary

Results

Figure: Biomass Overall

Biomass Model Results

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## 
## Model selection based on AICc:
## 
##           K    AICc Delta_AICc AICcWt Cum.Wt       LL
## KgHaInt  14 3590.71       0.00      1      1 -1781.25
## KgHaT     9 3637.25      46.54      0      1 -1809.58
## KgHaTG   10 3638.61      47.90      0      1 -1809.25
## KgHaNull  5 4002.96     412.25      0      1 -1996.46
## KgHaG     6 4004.32     413.61      0      1 -1996.14
## Data: HRECSIOmit
## Models:
## KgHaT: log(KgHa + 1) ~ TSF + (1 | Location/Year/Month)
## KgHaInt: log(KgHa + 1) ~ TSF * Treatment + (1 | Location/Year/Month)
##         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## KgHaT      9 3637.2 3687.5 -1809.6   3619.2                         
## KgHaInt   14 3590.5 3668.8 -1781.2   3562.5 56.661  5  5.941e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(KgHa + 1) ~ TSF + (1 | Location/Year/Month), 
##     data = subset(HRECSIOmit, Treatment == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0     0.33516    0.05185   6.463   <0.001 ***
## 2to3 - RB == 0     0.42032    0.06095   6.896   <0.001 ***
## 3plus - RB == 0    0.46521    0.08255   5.635   <0.001 ***
## NYB - RB == 0      0.48111    0.04764  10.100   <0.001 ***
## 2to3 - 1to2 == 0   0.08516    0.06198   1.374   0.6331    
## 3plus - 1to2 == 0  0.13006    0.08323   1.563   0.5090    
## NYB - 1to2 == 0    0.14595    0.05410   2.698   0.0508 .  
## 3plus - 2to3 == 0  0.04489    0.08481   0.529   0.9835    
## NYB - 2to3 == 0    0.06079    0.06556   0.927   0.8812    
## NYB - 3plus == 0   0.01589    0.08827   0.180   0.9998    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(KgHa + 1) ~ TSF + (1 | Location/Year/Month), 
##     data = subset(HRECSIOmit, Treatment == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0     0.75425    0.05769  13.075  < 0.001 ***
## 2to3 - RB == 0     0.95273    0.06681  14.261  < 0.001 ***
## 3plus - RB == 0    1.08377    0.08568  12.649  < 0.001 ***
## NYB - RB == 0      0.56043    0.05432  10.318  < 0.001 ***
## 2to3 - 1to2 == 0   0.19848    0.06861   2.893  0.02965 *  
## 3plus - 1to2 == 0  0.32952    0.08672   3.800  0.00138 ** 
## NYB - 1to2 == 0   -0.19382    0.06123  -3.165  0.01296 *  
## 3plus - 2to3 == 0  0.13104    0.08962   1.462  0.57700    
## NYB - 2to3 == 0   -0.39229    0.07306  -5.370  < 0.001 ***
## NYB - 3plus == 0  -0.52334    0.09341  -5.603  < 0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

ADF

Hypothesis

Recently burned patches will have lower ADF than other patches, especially not yet burned and 3 years since fire.

Summary

Results

Figure: ADF Overall

ADF Overall Models

## 
## Model selection based on AICc:
## 
##          K    AICc Delta_AICc AICcWt Cum.Wt       LL
## ADFTG   10 9419.42       0.00   0.53   0.53 -4699.65
## ADFT     9 9420.35       0.93   0.33   0.86 -4701.13
## ADFInt  14 9422.01       2.60   0.14   1.00 -4696.90
## ADFG     6 9769.77     350.35   0.00   1.00 -4878.86
## ADFNull  5 9770.57     351.15   0.00   1.00 -4880.27
## Data: HRECSIOmit
## Models:
## ADFT: ADF ~ TSF + (1 | Location/Year/Month)
## ADFTG: ADF ~ TSF + Treatment + (1 | Location/Year/Month)
## ADFInt: ADF ~ TSF * Treatment + (1 | Location/Year/Month)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## ADFT      9 9420.3 9470.6 -4701.1   9402.3                       
## ADFTG    10 9419.3 9475.3 -4699.7   9399.3 2.9521  1    0.08577 .
## ADFInt   14 9421.8 9500.1 -4696.9   9393.8 5.5062  4    0.23919  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = ADF ~ TSF + (1 | Location/Year/Month), data = subset(HRECSIOmit, 
##     Treatment == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0     2.18428    0.24391   8.955   <0.001 ***
## 2to3 - RB == 0     2.97242    0.28631  10.382   <0.001 ***
## 3plus - RB == 0    3.28390    0.38732   8.479   <0.001 ***
## NYB - RB == 0      2.15293    0.22369   9.624   <0.001 ***
## 2to3 - 1to2 == 0   0.78814    0.29141   2.705   0.0501 .  
## 3plus - 1to2 == 0  1.09962    0.39073   2.814   0.0369 *  
## NYB - 1to2 == 0   -0.03135    0.25377  -0.124   0.9999    
## 3plus - 2to3 == 0  0.31148    0.39866   0.781   0.9329    
## NYB - 2to3 == 0   -0.81949    0.30695  -2.670   0.0552 .  
## NYB - 3plus == 0  -1.13097    0.41310  -2.738   0.0457 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = ADF ~ TSF + (1 | Location/Year/Month), data = subset(HRECSIOmit, 
##     Treatment == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0      2.6093     0.2235  11.676  < 0.001 ***
## 2to3 - RB == 0      2.9632     0.2584  11.469  < 0.001 ***
## 3plus - RB == 0     3.1265     0.3307   9.455  < 0.001 ***
## NYB - RB == 0       1.8031     0.2096   8.603  < 0.001 ***
## 2to3 - 1to2 == 0    0.3538     0.2656   1.332  0.66192    
## 3plus - 1to2 == 0   0.5172     0.3350   1.544  0.52364    
## NYB - 1to2 == 0    -0.8062     0.2359  -3.418  0.00542 ** 
## 3plus - 2to3 == 0   0.1633     0.3468   0.471  0.98947    
## NYB - 2to3 == 0    -1.1601     0.2808  -4.131  < 0.001 ***
## NYB - 3plus == 0   -1.3234     0.3586  -3.691  0.00210 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

NDF

Hypothesis

Recently burned patches will have lower NDF than other patches, especially not yet burned and 3 years since fire.

Summary

Results

Figure: NDF Overall

NDF Overall Models

print(aictab(cand.set = NDF.mods, modnames = NDF.mod.names))
## 
## Model selection based on AICc:
## 
##          K     AICc Delta_AICc AICcWt Cum.Wt       LL
## NDFInt  14 11044.53       0.00   0.58   0.58 -5508.16
## NDFTG   10 11045.32       0.79   0.39   0.98 -5512.60
## NDFT     9 11051.09       6.56   0.02   1.00 -5516.50
## NDFG     6 11270.35     225.82   0.00   1.00 -5629.15
## NDFNull  5 11276.16     231.64   0.00   1.00 -5633.07
anova(NDFTG, NDFT, NDFInt)
## Data: HRECSIOmit
## Models:
## NDFT: NDF ~ TSF + (1 | Location/Year/Month)
## NDFTG: NDF ~ TSF + Treatment + (1 | Location/Year/Month)
## NDFInt: NDF ~ TSF * Treatment + (1 | Location/Year/Month)
##        npar   AIC   BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## NDFT      9 11051 11101 -5516.5    11033                        
## NDFTG    10 11045 11101 -5512.6    11025 7.7965  1   0.005235 **
## NDFInt   14 11044 11123 -5508.2    11016 8.8891  4   0.063932 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(Mult_NDFtC)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = NDF ~ TSF + (1 | Location/Year/Month), data = subset(HRECSIOmit, 
##     Treatment == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0      2.8247     0.4050   6.975   <0.001 ***
## 2to3 - RB == 0      3.8974     0.4751   8.203   <0.001 ***
## 3plus - RB == 0     4.4087     0.6425   6.862   <0.001 ***
## NYB - RB == 0       2.6438     0.3711   7.124   <0.001 ***
## 2to3 - 1to2 == 0    1.0727     0.4838   2.217   0.1654    
## 3plus - 1to2 == 0   1.5840     0.6483   2.443   0.0988 .  
## NYB - 1to2 == 0    -0.1809     0.4207  -0.430   0.9925    
## 3plus - 2to3 == 0   0.5114     0.6618   0.773   0.9355    
## NYB - 2to3 == 0    -1.2535     0.5086  -2.465   0.0939 .  
## NYB - 3plus == 0   -1.7649     0.6844  -2.579   0.0704 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(Mult_NDFtS)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = NDF ~ TSF + (1 | Location/Year/Month), data = subset(HRECSIOmit, 
##     Treatment == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0     3.10744    0.29044  10.699  < 1e-04 ***
## 2to3 - RB == 0     3.40599    0.33616  10.132  < 1e-04 ***
## 3plus - RB == 0    3.04894    0.43076   7.078  < 1e-04 ***
## NYB - RB == 0      1.83279    0.27312   6.711  < 1e-04 ***
## 2to3 - 1to2 == 0   0.29856    0.34531   0.865 0.906184    
## 3plus - 1to2 == 0 -0.05849    0.43613  -0.134 0.999924    
## NYB - 1to2 == 0   -1.27464    0.30779  -4.141 0.000254 ***
## 3plus - 2to3 == 0 -0.35705    0.45101  -0.792 0.930309    
## NYB - 2to3 == 0   -1.57320    0.36691  -4.288 0.000174 ***
## NYB - 3plus == 0  -1.21615    0.46879  -2.594 0.068071 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

ADL

Hypothesis

Recently burned patches will have lower ADL than other patches, especially not yet burned and 3 years since fire.

Summary

Results

Figure: ADL Overall

ADL Overall Models

print(aictab(cand.set = ADL.mods, modnames = ADL.mod.names))
## 
## Model selection based on AICc:
## 
##          K    AICc Delta_AICc AICcWt Cum.Wt       LL
## ADLT     9 4093.91       0.00   0.65   0.65 -2037.91
## ADLTG   10 4095.46       1.56   0.30   0.95 -2037.68
## ADLInt  14 4098.89       4.99   0.05   1.00 -2035.34
## ADLNull  5 4361.23     267.32   0.00   1.00 -2175.60
## ADLG     6 4362.77     268.87   0.00   1.00 -2175.37
anova(ADLTG, ADLT, ADLInt)
## Data: HRECSIOmit
## Models:
## ADLT: ADL ~ TSF + (1 | Location/Year/Month)
## ADLTG: ADL ~ TSF + Treatment + (1 | Location/Year/Month)
## ADLInt: ADL ~ TSF * Treatment + (1 | Location/Year/Month)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## ADLT      9 4093.8 4144.2 -2037.9   4075.8                     
## ADLTG    10 4095.4 4151.3 -2037.7   4075.4 0.4641  1     0.4957
## ADLInt   14 4098.7 4177.0 -2035.3   4070.7 4.6716  4     0.3227
summary(Mult_ADFtC)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = ADF ~ TSF + (1 | Location/Year/Month), data = subset(HRECSIOmit, 
##     Treatment == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0     2.18428    0.24391   8.955   <0.001 ***
## 2to3 - RB == 0     2.97242    0.28631  10.382   <0.001 ***
## 3plus - RB == 0    3.28390    0.38732   8.479   <0.001 ***
## NYB - RB == 0      2.15293    0.22369   9.624   <0.001 ***
## 2to3 - 1to2 == 0   0.78814    0.29141   2.705   0.0504 .  
## 3plus - 1to2 == 0  1.09962    0.39073   2.814   0.0372 *  
## NYB - 1to2 == 0   -0.03135    0.25377  -0.124   0.9999    
## 3plus - 2to3 == 0  0.31148    0.39866   0.781   0.9329    
## NYB - 2to3 == 0   -0.81949    0.30695  -2.670   0.0553 .  
## NYB - 3plus == 0  -1.13097    0.41310  -2.738   0.0457 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(Mult_ADFtS)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = ADF ~ TSF + (1 | Location/Year/Month), data = subset(HRECSIOmit, 
##     Treatment == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0      2.6093     0.2235  11.676  < 0.001 ***
## 2to3 - RB == 0      2.9632     0.2584  11.469  < 0.001 ***
## 3plus - RB == 0     3.1265     0.3307   9.455  < 0.001 ***
## NYB - RB == 0       1.8031     0.2096   8.603  < 0.001 ***
## 2to3 - 1to2 == 0    0.3538     0.2656   1.332  0.66197    
## 3plus - 1to2 == 0   0.5172     0.3350   1.544  0.52361    
## NYB - 1to2 == 0    -0.8062     0.2359  -3.418  0.00524 ** 
## 3plus - 2to3 == 0   0.1633     0.3468   0.471  0.98947    
## NYB - 2to3 == 0    -1.1601     0.2808  -4.131  < 0.001 ***
## NYB - 3plus == 0   -1.3234     0.3586  -3.691  0.00213 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

CP

Hypothesis

Recently burned patches will have higher CP than other patches, especially not yet burned and 3 years since fire.

Summary

Results

Figure: CP Overall

CP Overall Models

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
print(aictab(cand.set = CP.mods, 
             modnames = CP.mod.names))
## 
## Model selection based on AICc:
## 
##         K    AICc Delta_AICc AICcWt Cum.Wt     LL
## CPInt  14 -618.72       0.00      1      1 323.47
## CPTG   10 -561.28      57.44      0      1 290.69
## CPT     9 -557.23      61.49      0      1 287.66
## CPG     6 -170.42     448.30      0      1  91.23
## CPNull  5 -166.36     452.36      0      1  88.20
anova(CPInt, CPTG)
## Data: HRECSIOmit
## Models:
## CPTG: log(CP + 1) ~ TSF + Treatment + (1 | Location/Year/Month)
## CPInt: log(CP + 1) ~ TSF * Treatment + (1 | Location/Year/Month)
##       npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)    
## CPTG    10 -561.39 -505.43 290.69  -581.39                         
## CPInt   14 -618.93 -540.58 323.47  -646.93 65.544  4  1.976e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(Mult_CPtC) #Unburned > RB & 1YSF
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(CP + 1) ~ TSF + (1 | Location/Year/Month), 
##     data = subset(HRECSIOmit, Treatment == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0    -0.182507   0.020261  -9.008  < 0.001 ***
## 2to3 - RB == 0    -0.297727   0.023835 -12.491  < 0.001 ***
## 3plus - RB == 0   -0.410821   0.032304 -12.717  < 0.001 ***
## NYB - RB == 0      0.002409   0.018636   0.129  0.99993    
## 2to3 - 1to2 == 0  -0.115220   0.024223  -4.757  < 0.001 ***
## 3plus - 1to2 == 0 -0.228315   0.032551  -7.014  < 0.001 ***
## NYB - 1to2 == 0    0.184916   0.021191   8.726  < 0.001 ***
## 3plus - 2to3 == 0 -0.113094   0.033147  -3.412  0.00547 ** 
## NYB - 2to3 == 0    0.300136   0.025698  11.679  < 0.001 ***
## NYB - 3plus == 0   0.413231   0.034601  11.943  < 0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(Mult_CPtS)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(CP + 1) ~ TSF + (1 | Location/Year/Month), 
##     data = subset(HRECSIOmit, Treatment == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0    -0.19397    0.01683 -11.525   <0.001 ***
## 2to3 - RB == 0    -0.23343    0.01950 -11.970   <0.001 ***
## 3plus - RB == 0   -0.26438    0.02502 -10.567   <0.001 ***
## NYB - RB == 0     -0.14780    0.01587  -9.313   <0.001 ***
## 2to3 - 1to2 == 0  -0.03946    0.02002  -1.972   0.2709    
## 3plus - 1to2 == 0 -0.07041    0.02531  -2.782   0.0410 *  
## NYB - 1to2 == 0    0.04617    0.01791   2.578   0.0711 .  
## 3plus - 2to3 == 0 -0.03095    0.02615  -1.183   0.7531    
## NYB - 2to3 == 0    0.08563    0.02138   4.005   <0.001 ***
## NYB - 3plus == 0   0.11658    0.02733   4.266   <0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Moisture Content

Hypothesis

Recently burned patches will have higher moisture content than other patches, especially not yet burned and 3 years since fire.

Summary

Results

Figure: Moisture Content

Moisture Overall Models

print(aictab(cand.set = Moisture.mods, modnames = Moisture.mod.names))
## 
## Model selection based on AICc:
## 
##               K     AICc Delta_AICc AICcWt Cum.Wt       LL
## MoistureT     9 13872.67       0.00   0.58   0.58 -6927.29
## MoistureTG   10 13873.36       0.69   0.41   0.99 -6926.63
## MoistureInt  14 13880.51       7.83   0.01   1.00 -6926.15
## MoistureNull  5 14249.23     376.56   0.00   1.00 -7119.60
## MoistureG     6 14249.87     377.20   0.00   1.00 -7118.92
anova(MoistureTG, MoistureT, MoistureInt)
## Data: HRECSIOmit
## Models:
## MoistureT: Moisture ~ TSF + (1 | Location/Year/Month)
## MoistureTG: Moisture ~ TSF + Treatment + (1 | Location/Year/Month)
## MoistureInt: Moisture ~ TSF * Treatment + (1 | Location/Year/Month)
##             npar   AIC   BIC  logLik deviance  Chisq Df Pr(>Chisq)
## MoistureT      9 13873 13923 -6927.3    13855                     
## MoistureTG    10 13873 13929 -6926.6    13853 1.3286  1     0.2490
## MoistureInt   14 13880 13959 -6926.1    13852 0.9594  4     0.9159
summary(Mult_MoisturetC)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Moisture ~ TSF + (1 | Location/Year/Month), data = subset(HRECSIOmit, 
##     Treatment == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0     -6.2908     0.6356  -9.897  < 0.001 ***
## 2to3 - RB == 0     -8.9398     0.7490 -11.936  < 0.001 ***
## 3plus - RB == 0   -10.0099     1.0165  -9.847  < 0.001 ***
## NYB - RB == 0      -6.6776     0.5860 -11.395  < 0.001 ***
## 2to3 - 1to2 == 0   -2.6490     0.7602  -3.484  0.00424 ** 
## 3plus - 1to2 == 0  -3.7190     1.0233  -3.634  0.00246 ** 
## NYB - 1to2 == 0    -0.3867     0.6676  -0.579  0.97691    
## 3plus - 2to3 == 0  -1.0700     1.0405  -1.028  0.83535    
## NYB - 2to3 == 0     2.2623     0.8112   2.789  0.03981 *  
## NYB - 3plus == 0    3.3323     1.0924   3.050  0.01800 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(Mult_MoisturetS)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Moisture ~ TSF + (1 | Location/Year/Month), data = subset(HRECSIOmit, 
##     Treatment == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0     -6.8583     0.7420  -9.243   <0.001 ***
## 2to3 - RB == 0     -8.4641     0.8609  -9.832   <0.001 ***
## 3plus - RB == 0   -10.4419     1.1059  -9.442   <0.001 ***
## NYB - RB == 0      -6.6676     0.7018  -9.501   <0.001 ***
## 2to3 - 1to2 == 0   -1.6058     0.8828  -1.819   0.3522    
## 3plus - 1to2 == 0  -3.5836     1.1178  -3.206   0.0113 *  
## NYB - 1to2 == 0     0.1907     0.7933   0.240   0.9992    
## 3plus - 2to3 == 0  -1.9778     1.1534  -1.715   0.4141    
## NYB - 2to3 == 0     1.7964     0.9485   1.894   0.3107    
## NYB - 3plus == 0    3.7743     1.2128   3.112   0.0150 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Selection Index

Hypothesis

Recently burned patches will have a higher selection index than other patches, especially not yet burned and 3 years since fire.

Summary

Results

Figure: Selection Index Overall

Selection Index Overall Model

print(aictab(cand.set = SI.mods, modnames = SI.mod.names))
## 
## Model selection based on AICc:
## 
##         K     AICc Delta_AICc AICcWt Cum.Wt     LL
## SIT     9 -1237.93       0.00   0.64   0.64 628.01
## SITG   10 -1235.91       2.02   0.23   0.87 628.01
## SIInt  14 -1234.74       3.19   0.13   1.00 631.48
## SINull  5 -1078.43     159.50   0.00   1.00 544.23
## SIG     6 -1076.41     161.52   0.00   1.00 544.23
anova(SITG, SIT, SIInt)
## Data: HRECSIOmit
## Models:
## SIT: (Powell + 0.001) ~ TSF + (1 | Location/Year/Month)
## SITG: (Powell + 0.001) ~ TSF + Treatment + (1 | Location/Year/Month)
## SIInt: (Powell + 0.001) ~ TSF * Treatment + (1 | Location/Year/Month)
##       npar   AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)
## SIT      9 -1238 -1187.7 628.01    -1256                     
## SITG    10 -1236 -1180.1 628.01    -1256 0.0028  1     0.9581
## SIInt   14 -1235 -1156.6 631.48    -1263 6.9302  4     0.1396
summary(Mult_SITC)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: glmer(formula = (Powell + 0.001) ~ TSF + (1 | Location/Year/Month), 
##     data = subset(HRECSIOmit, Treatment == "Cattle"), family = Gamma)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0      0.9182     0.2135   4.300  < 0.001 ***
## 2to3 - RB == 0      1.0201     0.2732   3.734  0.00136 ** 
## 3plus - RB == 0     2.8323     0.8314   3.407  0.00453 ** 
## NYB - RB == 0       0.7609     0.1506   5.052  < 0.001 ***
## 2to3 - 1to2 == 0    0.1019     0.3342   0.305  0.99767    
## 3plus - 1to2 == 0   1.9140     0.8534   2.243  0.13664    
## NYB - 1to2 == 0    -0.1573     0.2444  -0.644  0.96091    
## 3plus - 2to3 == 0   1.8121     0.8702   2.082  0.19297    
## NYB - 2to3 == 0    -0.2593     0.2979  -0.870  0.89042    
## NYB - 3plus == 0   -2.0714     0.8399  -2.466  0.08014 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(Mult_SITS)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: glmer(formula = (Powell + 0.001) ~ TSF + (1 | Location/Year/Month), 
##     data = subset(HRECSIOmit, Treatment == "Sheep"), family = Gamma)
## 
## Linear Hypotheses:
##                   Estimate Std. Error z value Pr(>|z|)    
## 1to2 - RB == 0      1.1331     0.2242   5.054  < 0.001 ***
## 2to3 - RB == 0      2.1193     0.4259   4.976  < 0.001 ***
## 3plus - RB == 0     3.8482     0.9421   4.085  < 0.001 ***
## NYB - RB == 0       0.6242     0.1280   4.876  < 0.001 ***
## 2to3 - 1to2 == 0    0.9862     0.4741   2.080  0.18775    
## 3plus - 1to2 == 0   2.7150     0.9649   2.814  0.02939 *  
## NYB - 1to2 == 0    -0.5089     0.2446  -2.081  0.18718    
## 3plus - 2to3 == 0   1.7289     1.0306   1.678  0.39189    
## NYB - 2to3 == 0    -1.4951     0.4369  -3.422  0.00410 ** 
## NYB - 3plus == 0   -3.2239     0.9472  -3.404  0.00437 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

VP Calc

SI (No good)

knitr::kable(SItrim)
Pasture Model Variable Year grp var1 var2 vcov sdcor
CC SI20CC SI 2020 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
CS SI20CS SI 2020 Month:Patch (Intercept) NA 1.508219e+05 388.3579554
FNC SI20FNC SI 2020 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FNS SI20FNS SI 2020 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FSC SI20FSC SI 2020 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FSS SI20FSS SI 2020 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
CC SI19CC SI 2019 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
CS SI19CS SI 2019 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FNC SI19FNC SI 2019 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FNS SI19FNS SI 2019 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FSC SI19FSC SI 2019 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FSS SI19FSS SI 2019 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
CC SI18CC SI 2018 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
CS SI18CS SI 2018 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FNC SI18FNC SI 2018 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FNS SI18FNS SI 2018 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FSC SI18FSC SI 2018 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FSS SI18FSS SI 2018 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
CC SI17CC SI 2017 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
CS SI17CS SI 2017 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FNC SI17FNC SI 2017 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FNS SI17FNS SI 2017 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FSC SI17FSC SI 2017 Month:Patch (Intercept) NA 0.000000e+00 0.0000000
FSS SI17FSS SI 2017 Month:Patch (Intercept) NA 4.637580e-02 0.2153505

Kg (worked)

knitr::kable(Kgtrim)
Pasture Model Variable Year grp var1 var2 vcov sdcor
CC Kg20CC Kg 2020 Month:Patch (Intercept) NA 0.3471960 0.5892334
CS Kg20CS Kg 2020 Month:Patch (Intercept) NA 1.1933079 1.0923863
FNC Kg20FNC Kg 2020 Month:Patch (Intercept) NA 0.3972905 0.6303098
FNS Kg20FNS Kg 2020 Month:Patch (Intercept) NA 0.1480919 0.3848271
FSC Kg20FSC Kg 2020 Month:Patch (Intercept) NA 0.1147279 0.3387151
FSS Kg20FSS Kg 2020 Month:Patch (Intercept) NA 0.3575610 0.5979641
CC Kg19CC Kg 2019 Month:Patch (Intercept) NA 0.0211822 0.1455411
CS Kg19CS Kg 2019 Month:Patch (Intercept) NA 0.0340281 0.1844671
FNC Kg19FNC Kg 2019 Month:Patch (Intercept) NA 0.0671740 0.2591795
FNS Kg19FNS Kg 2019 Month:Patch (Intercept) NA 0.1166756 0.3415781
FSC Kg19FSC Kg 2019 Month:Patch (Intercept) NA 0.2458152 0.4957976
FSS Kg19FSS Kg 2019 Month:Patch (Intercept) NA 0.0470063 0.2168094
CC Kg18CC Kg 2018 Month:Patch (Intercept) NA 0.0000000 0.0000000
CS Kg18CS Kg 2018 Month:Patch (Intercept) NA 0.0000000 0.0000000
FNC Kg18FNC Kg 2018 Month:Patch (Intercept) NA 0.0534835 0.2312651
FNS Kg18FNS Kg 2018 Month:Patch (Intercept) NA 0.1403747 0.3746661
FSC Kg18FSC Kg 2018 Month:Patch (Intercept) NA 0.0729335 0.2700620
FSS Kg18FSS Kg 2018 Month:Patch (Intercept) NA 0.1081251 0.3288238
CC Kg17CC Kg 2017 Month:Patch (Intercept) NA 0.0000000 0.0000000
CS Kg17CS Kg 2017 Month:Patch (Intercept) NA 0.0000000 0.0000000
FNC Kg17FNC Kg 2017 Month:Patch (Intercept) NA 0.1839535 0.4288980
FNS Kg17FNS Kg 2017 Month:Patch (Intercept) NA 0.0060304 0.0776555
FSC Kg17FSC Kg 2017 Month:Patch (Intercept) NA 0.1365853 0.3695745
FSS Kg17FSS Kg 2017 Month:Patch (Intercept) NA 0.0896470 0.2994110