Hello

ENroll.sch[ENroll.sch==-8]<-0
ENroll.sch[ENroll.sch==-9]<-0
ENroll.sch[ENroll.sch==-8]<-0
ENroll.sch[ENroll.sch==-6]<-0
ENroll.sch[ENroll.sch==-5]<-0
ENroll.sch[ENroll.sch==-3]<-0

charter.sch[charter.sch==-8]<-0
charter.sch[charter.sch==-9]<-0
charter.sch[charter.sch==-8]<-0
charter.sch[charter.sch==-6]<-0
charter.sch[charter.sch==-5]<-0
charter.sch[charter.sch==-3]<-0

Charter Schools

## [1] 3091232
## [1] 11.13042
b <- a %>%
    group_by(LEA_STATE_NAME.y) %>%
    summarize(TOT_ENR_F = sum(TOT_ENR_F))

c <- a %>%
    group_by(LEA_STATE_NAME.y) %>%
    summarize(TOT_ENR_M = sum(TOT_ENR_M))

d <- a %>%
    group_by(LEA_STATE_NAME.y) %>%
    summarize(SCH_ENR_LEP_F = sum(SCH_ENR_LEP_F))

e <- a %>%
    group_by(LEA_STATE_NAME.y) %>%
    summarize(SCH_ENR_LEP_M = sum(SCH_ENR_LEP_M))



combo <- left_join(b,c, by= "LEA_STATE_NAME.y")

combo$TOT_ENR_CHARTER <- combo$TOT_ENR_F + combo$TOT_ENR_M

combo
## # A tibble: 46 x 4
##    LEA_STATE_NAME.y     TOT_ENR_F TOT_ENR_M TOT_ENR_CHARTER
##    <chr>                    <dbl>     <dbl>           <dbl>
##  1 ALABAMA                    218       290             508
##  2 ALASKA                    3369      3378            6747
##  3 ARIZONA                 102285     98859          201144
##  4 ARKANSAS                 16018     15729           31747
##  5 CALIFORNIA              302366    300700          603066
##  6 COLORADO                 60526     60185          120711
##  7 CONNECTICUT               5285      5121           10406
##  8 DELAWARE                  7797      7588           15385
##  9 DISTRICT OF COLUMBIA     18545     19165           37710
## 10 FLORIDA                 147846    147979          295825
## # ... with 36 more rows
combolep <- left_join(d,e, by = "LEA_STATE_NAME.y")

combolep$TOT_ENR_CHARTER_LEP <- combolep$SCH_ENR_LEP_F + combolep$SCH_ENR_LEP_M

combolep
## # A tibble: 46 x 4
##    LEA_STATE_NAME.y     SCH_ENR_LEP_F SCH_ENR_LEP_M TOT_ENR_CHARTER_LEP
##    <chr>                        <dbl>         <dbl>               <dbl>
##  1 ALABAMA                          6             7                  13
##  2 ALASKA                         109           127                 236
##  3 ARIZONA                       4633          5598               10231
##  4 ARKANSAS                       874           981                1855
##  5 CALIFORNIA                   44428         50023               94451
##  6 COLORADO                      9196          9813               19009
##  7 CONNECTICUT                    307           336                 643
##  8 DELAWARE                       407           462                 869
##  9 DISTRICT OF COLUMBIA          1278          1522                2800
## 10 FLORIDA                      13783         15225               29008
## # ... with 36 more rows
tbl <- left_join(combo,combolep, by = "LEA_STATE_NAME.y")

tbl$LEPPERC <- round((tbl$TOT_ENR_CHARTER_LEP/tbl$TOT_ENR_CHARTER)*100,2)

tbl
## # A tibble: 46 x 8
##    LEA_STATE_NAME.y TOT_ENR_F TOT_ENR_M TOT_ENR_CHARTER SCH_ENR_LEP_F
##    <chr>                <dbl>     <dbl>           <dbl>         <dbl>
##  1 ALABAMA                218       290             508             6
##  2 ALASKA                3369      3378            6747           109
##  3 ARIZONA             102285     98859          201144          4633
##  4 ARKANSAS             16018     15729           31747           874
##  5 CALIFORNIA          302366    300700          603066         44428
##  6 COLORADO             60526     60185          120711          9196
##  7 CONNECTICUT           5285      5121           10406           307
##  8 DELAWARE              7797      7588           15385           407
##  9 DISTRICT OF COL~     18545     19165           37710          1278
## 10 FLORIDA             147846    147979          295825         13783
## # ... with 36 more rows, and 3 more variables: SCH_ENR_LEP_M <dbl>,
## #   TOT_ENR_CHARTER_LEP <dbl>, LEPPERC <dbl>
smalltbl <- data.frame(cbind(tbl$LEA_STATE_NAME.y, tbl$TOT_ENR_CHARTER_LEP, tbl$TOT_ENR_CHARTER, tbl$LEPPERC))

smalltbl
##                      X1    X2     X3    X4
## 1               ALABAMA    13    508  2.56
## 2                ALASKA   236   6747   3.5
## 3               ARIZONA 10231 201144  5.09
## 4              ARKANSAS  1855  31747  5.84
## 5            CALIFORNIA 94451 603066 15.66
## 6              COLORADO 19009 120711 15.75
## 7           CONNECTICUT   643  10406  6.18
## 8              DELAWARE   869  15385  5.65
## 9  DISTRICT OF COLUMBIA  2800  37710  7.43
## 10              FLORIDA 29008 295825  9.81
## 11              GEORGIA  2380  72659  3.28
## 12               HAWAII  1182  11145 10.61
## 13                IDAHO   439  21756  2.02
## 14             ILLINOIS  8720  65132 13.39
## 15              INDIANA  3204  43245  7.41
## 16                 IOWA    34    428  7.94
## 17               KANSAS    58   3031  1.91
## 18            LOUISIANA  3895  78880  4.94
## 19                MAINE    15   2293  0.65
## 20             MARYLAND   586  22641  2.59
## 21        MASSACHUSETTS  6255  45500 13.75
## 22             MICHIGAN 16053 143972 11.15
## 23            MINNESOTA 12180  56717 21.48
## 24          MISSISSIPPI     0    948     0
## 25             MISSOURI  3927  24242  16.2
## 26             NEBRASKA     5     16 31.25
## 27               NEVADA  3795  44810  8.47
## 28        NEW HAMPSHIRE    38   3735  1.02
## 29           NEW JERSEY  2004  49677  4.03
## 30           NEW MEXICO  2676  25567 10.47
## 31             NEW YORK  9386 134831  6.96
## 32       NORTH CAROLINA  2714 100469   2.7
## 33                 OHIO  5427  96898   5.6
## 34             OKLAHOMA  2774  29262  9.48
## 35               OREGON   951  34829  2.73
## 36         PENNSYLVANIA  5314 137874  3.85
## 37         RHODE ISLAND  1227   9009 13.62
## 38       SOUTH CAROLINA  1639  33607  4.88
## 39            TENNESSEE  2630  27836  9.45
## 40                TEXAS 78236 323418 24.19
## 41                 UTAH  3888  75678  5.14
## 42             VIRGINIA    14   1183  1.18
## 43           WASHINGTON   215   2465  8.72
## 44        WEST VIRGINIA     1    848  0.12
## 45            WISCONSIN  3060  42814  7.15
## 46              WYOMING    30    568  5.28