library(readxl)
Fat_allo <- read_excel("C:/Users/Admin/Desktop/Fat_allo.xlsx",
col_types = c("text", "text", "numeric"))
require(multcomp)
require(lsmeans)
require(ggpubr)
require(car)
attach(Fat_allo)
Treatment=as.factor(Fat_allo$Treatment)
Compartment=as.factor(Fat_allo$Compartment)
plot=ggline(Fat_allo,x="Treatment",y="Allo_fat",color="Compartment",add=c("mean_se","dotplot"),palette = c("black","pink","blue"))
plot
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

model1=lm(Allo_fat~Treatment*Compartment,data = Fat_allo)
anova(model1)
## Analysis of Variance Table
##
## Response: Allo_fat
## Df Sum Sq Mean Sq F value Pr(>F)
## Treatment 3 0.0035 0.00116 0.6881 0.5682
## Compartment 2 3.8675 1.93373 1149.0027 < 2.2e-16 ***
## Treatment:Compartment 6 0.1360 0.02267 13.4679 1.177e-06 ***
## Residuals 24 0.0404 0.00168
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
posthoc=lsmeans(model1,pairwise~Treatment*Compartment,adjust="Tukey")
cld(posthoc[[1]],alpha=0.05,Letters=letters)
## Treatment Compartment lsmean SE df lower.CL upper.CL .group
## High_carb Fillet 0.0388 0.0237 24 -0.0101 0.0876 a
## Control Fillet 0.0590 0.0237 24 0.0101 0.1078 a
## Mixed Fillet 0.1115 0.0237 24 0.0626 0.1604 ab
## High_carb Viscera 0.1434 0.0237 24 0.0945 0.1923 ab
## High_fat Viscera 0.1569 0.0237 24 0.1080 0.2058 ab
## High_fat Fillet 0.1862 0.0237 24 0.1373 0.2351 b
## Mixed Viscera 0.1883 0.0237 24 0.1394 0.2372 b
## Control Viscera 0.1924 0.0237 24 0.1435 0.2413 b
## High_fat Remaining 0.7205 0.0237 24 0.6716 0.7694 c
## Mixed Remaining 0.7788 0.0237 24 0.7299 0.8277 cd
## Control Remaining 0.8493 0.0237 24 0.8005 0.8982 de
## High_carb Remaining 0.9597 0.0237 24 0.9108 1.0086 e
##
## Confidence level used: 0.95
## P value adjustment: tukey method for comparing a family of 12 estimates
## significance level used: alpha = 0.05