Carrega a base de dados

library(readxl)

db <- read_excel("Base de dados ARAE.xlsx", sheet = "Grupo 1")

# db <- db[, c(2, 18:106)]

library(dplyr)

db[,c(2, 18:106)] <- lapply(db[,c(2, 18:106)],function(x) ifelse(x > 5, 5, x)) %>% data.frame()

Corrige os polos

polos_inv <- c(paste0('SENNA_1_', seq(2, 36, 2)))


table(db$SENNA_1_2)
## 
##   1   2   3   4   5 
## 115  28  33  22   2
for(i in 1:length(polos_inv)){
db[, polos_inv[i]] <- (db[, polos_inv[i]] -6) *-1
}

table(db$SENNA_1_2)
## 
##   1   2   3   4   5 
##   2  22  33  28 115

Calculando os scores

db$caas_PREO <- rowSums(db[,c(paste0('CAAS_', 1:6))], na.rm = TRUE)
db$caas_CONT <- rowSums(db[,c(paste0('CAAS_', 7:12))], na.rm = TRUE)
db$caas_CURI <- rowSums(db[,c(paste0('CAAS_', 13:18))], na.rm = TRUE)
db$caas_CONF <- rowSums(db[,c(paste0('CAAS_', 19:24))], na.rm = TRUE)
db$caas_COOP <- rowSums(db[,c('CAAS_34','CAAS_28','CAAS_33','CAAS_31','CAAS_29','CAAS_30')], na.rm = TRUE)

db$senna_O <- rowSums(db[,c(paste0('SENNA_1_', 1:8), paste0('SENNA_2_', 1:4))], na.rm = TRUE)
db$senna_C <- rowSums(db[,c(paste0('SENNA_1_', 9:18), paste0('SENNA_2_', 5:9))], na.rm = TRUE)
db$senna_E <- rowSums(db[,c(paste0('SENNA_1_', 19:24), paste0('SENNA_2_', 10:12))], na.rm = TRUE)
db$senna_A <- rowSums(db[,c(paste0('SENNA_1_', 25:30), paste0('SENNA_2_', 13:15))], na.rm = TRUE)
db$senna_N <- rowSums(db[,c(paste0('SENNA_1_', 31:36), paste0('SENNA_2_', 16:18))], na.rm = TRUE)

Summary dos scores

summary(db$caas_PREO)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   11.00   20.00   23.00   22.62   26.00   30.00
summary(db$caas_CONT)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.00   20.00   23.00   23.17   27.00   30.00
summary(db$caas_CURI)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    9.00   19.00   22.00   21.98   25.00   30.00
summary(db$caas_CONF)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   13.00   21.00   24.00   23.92   27.00   30.00
summary(db$caas_COOP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    11.0    21.0    24.0    23.8    27.0    30.0
summary(db$senna_O)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   30.00   43.00   47.00   46.43   50.00   60.00
summary(db$senna_C)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   35.00   55.00   61.00   61.01   66.25   75.00
summary(db$senna_E)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   16.00   29.00   32.00   32.62   37.00   45.00
summary(db$senna_A)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   16.00   26.00   32.00   31.27   36.00   45.00
summary(db$senna_N)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   13.00   30.00   33.00   33.27   38.00   45.00

Correlação

library(Hmisc)

correlacao <- rcorr(as.matrix(db[,91:100]))

correlacao
##            SENNA_2_3 SENNA_2_4 SENNA_2_5 SENNA_2_6 SENNA_2_7 SENNA_2_8
## SENNA_2_3       1.00      0.28      0.48      0.36      0.37      0.36
## SENNA_2_4       0.28      1.00      0.20      0.17      0.19      0.18
## SENNA_2_5       0.48      0.20      1.00      0.55      0.52      0.48
## SENNA_2_6       0.36      0.17      0.55      1.00      0.46      0.42
## SENNA_2_7       0.37      0.19      0.52      0.46      1.00      0.37
## SENNA_2_8       0.36      0.18      0.48      0.42      0.37      1.00
## SENNA_2_9       0.32      0.17      0.46      0.38      0.35      0.36
## SENNA_2_10      0.11      0.22      0.10      0.26      0.24      0.11
## SENNA_2_11      0.18      0.05      0.28      0.42      0.33      0.21
## SENNA_2_12      0.03      0.03      0.14      0.19      0.17      0.01
##            SENNA_2_9 SENNA_2_10 SENNA_2_11 SENNA_2_12
## SENNA_2_3       0.32       0.11       0.18       0.03
## SENNA_2_4       0.17       0.22       0.05       0.03
## SENNA_2_5       0.46       0.10       0.28       0.14
## SENNA_2_6       0.38       0.26       0.42       0.19
## SENNA_2_7       0.35       0.24       0.33       0.17
## SENNA_2_8       0.36       0.11       0.21       0.01
## SENNA_2_9       1.00       0.16       0.21       0.20
## SENNA_2_10      0.16       1.00       0.25       0.27
## SENNA_2_11      0.21       0.25       1.00       0.29
## SENNA_2_12      0.20       0.27       0.29       1.00
## 
## n
##            SENNA_2_3 SENNA_2_4 SENNA_2_5 SENNA_2_6 SENNA_2_7 SENNA_2_8
## SENNA_2_3        200       199       200       200       199       200
## SENNA_2_4        199       199       199       199       198       199
## SENNA_2_5        200       199       200       200       199       200
## SENNA_2_6        200       199       200       200       199       200
## SENNA_2_7        199       198       199       199       199       199
## SENNA_2_8        200       199       200       200       199       200
## SENNA_2_9        200       199       200       200       199       200
## SENNA_2_10       200       199       200       200       199       200
## SENNA_2_11       200       199       200       200       199       200
## SENNA_2_12       200       199       200       200       199       200
##            SENNA_2_9 SENNA_2_10 SENNA_2_11 SENNA_2_12
## SENNA_2_3        200        200        200        200
## SENNA_2_4        199        199        199        199
## SENNA_2_5        200        200        200        200
## SENNA_2_6        200        200        200        200
## SENNA_2_7        199        199        199        199
## SENNA_2_8        200        200        200        200
## SENNA_2_9        200        200        200        200
## SENNA_2_10       200        200        200        200
## SENNA_2_11       200        200        200        200
## SENNA_2_12       200        200        200        200
## 
## P
##            SENNA_2_3 SENNA_2_4 SENNA_2_5 SENNA_2_6 SENNA_2_7 SENNA_2_8
## SENNA_2_3            0.0000    0.0000    0.0000    0.0000    0.0000   
## SENNA_2_4  0.0000              0.0046    0.0150    0.0083    0.0126   
## SENNA_2_5  0.0000    0.0046              0.0000    0.0000    0.0000   
## SENNA_2_6  0.0000    0.0150    0.0000              0.0000    0.0000   
## SENNA_2_7  0.0000    0.0083    0.0000    0.0000              0.0000   
## SENNA_2_8  0.0000    0.0126    0.0000    0.0000    0.0000             
## SENNA_2_9  0.0000    0.0157    0.0000    0.0000    0.0000    0.0000   
## SENNA_2_10 0.1141    0.0015    0.1669    0.0002    0.0005    0.1112   
## SENNA_2_11 0.0111    0.4974    0.0000    0.0000    0.0000    0.0029   
## SENNA_2_12 0.6669    0.7157    0.0416    0.0071    0.0137    0.9012   
##            SENNA_2_9 SENNA_2_10 SENNA_2_11 SENNA_2_12
## SENNA_2_3  0.0000    0.1141     0.0111     0.6669    
## SENNA_2_4  0.0157    0.0015     0.4974     0.7157    
## SENNA_2_5  0.0000    0.1669     0.0000     0.0416    
## SENNA_2_6  0.0000    0.0002     0.0000     0.0071    
## SENNA_2_7  0.0000    0.0005     0.0000     0.0137    
## SENNA_2_8  0.0000    0.1112     0.0029     0.9012    
## SENNA_2_9            0.0220     0.0030     0.0044    
## SENNA_2_10 0.0220               0.0003     0.0001    
## SENNA_2_11 0.0030    0.0003                0.0000    
## SENNA_2_12 0.0044    0.0001     0.0000

Alpha

library(psych)


caas_PREO <- db[,c(paste0('CAAS_', 1:6))]
caas_CONT <- db[,c(paste0('CAAS_', 7:12))]
caas_CURI <- db[,c(paste0('CAAS_', 13:18))]
caas_CONF <- db[,c(paste0('CAAS_', 19:24))]
caas_COOP <- db[,c('CAAS_34','CAAS_28','CAAS_33','CAAS_31','CAAS_29','CAAS_30')]

senna_O <- db[,c(paste0('SENNA_1_', 1:8), paste0('SENNA_2_', 1:4))]
senna_C <- db[,c(paste0('SENNA_1_', 9:18), paste0('SENNA_2_', 5:9))]
senna_E <- db[,c(paste0('SENNA_1_', 19:24), paste0('SENNA_2_', 10:12))]
senna_A <- db[,c(paste0('SENNA_1_', 25:30), paste0('SENNA_2_', 13:15))]
senna_N <- db[,c(paste0('SENNA_1_', 31:36), paste0('SENNA_2_', 16:18))]


psych::alpha(caas_PREO)
## 
## Reliability analysis   
## Call: psych::alpha(x = caas_PREO)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.83      0.83    0.81      0.44 4.7 0.019  3.8 0.69     0.43
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.83 0.86 
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CAAS_1      0.79      0.79    0.76      0.43 3.8    0.024 0.0059  0.42
## CAAS_2      0.81      0.81    0.78      0.45 4.1    0.022 0.0072  0.45
## CAAS_3      0.79      0.79    0.76      0.43 3.7    0.024 0.0034  0.42
## CAAS_4      0.80      0.80    0.77      0.44 4.0    0.023 0.0060  0.44
## CAAS_5      0.79      0.79    0.76      0.42 3.7    0.024 0.0053  0.42
## CAAS_6      0.82      0.82    0.79      0.47 4.4    0.021 0.0045  0.46
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean   sd
## CAAS_1 200  0.76  0.75  0.69   0.63  3.7 1.00
## CAAS_2 200  0.70  0.70  0.61   0.56  4.1 0.95
## CAAS_3 199  0.76  0.76  0.71   0.64  3.6 0.96
## CAAS_4 200  0.72  0.73  0.66   0.59  3.8 0.88
## CAAS_5 200  0.77  0.77  0.72   0.65  3.7 0.95
## CAAS_6 200  0.67  0.67  0.56   0.51  3.8 0.96
## 
## Non missing response frequency for each item
##           1    2    3    4    5 miss
## CAAS_1 0.01 0.11 0.31 0.34 0.23 0.00
## CAAS_2 0.01 0.04 0.19 0.34 0.42 0.00
## CAAS_3 0.00 0.14 0.30 0.36 0.20 0.01
## CAAS_4 0.00 0.06 0.30 0.41 0.22 0.00
## CAAS_5 0.01 0.10 0.28 0.40 0.22 0.00
## CAAS_6 0.01 0.09 0.27 0.38 0.26 0.00
psych::alpha(caas_CONT)
## 
## Reliability analysis   
## Call: psych::alpha(x = caas_CONT)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.77      0.78    0.76      0.37 3.5 0.025  3.9 0.67      0.4
## 
##  lower alpha upper     95% confidence boundaries
## 0.73 0.77 0.82 
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CAAS_7       0.75      0.76    0.73      0.38 3.1    0.027 0.0079  0.41
## CAAS_8       0.72      0.72    0.70      0.34 2.6    0.031 0.0103  0.35
## CAAS_9       0.75      0.75    0.72      0.38 3.1    0.027 0.0038  0.40
## CAAS_10      0.73      0.72    0.70      0.34 2.6    0.030 0.0092  0.37
## CAAS_11      0.73      0.73    0.70      0.35 2.8    0.030 0.0087  0.35
## CAAS_12      0.76      0.76    0.74      0.39 3.2    0.027 0.0088  0.41
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean   sd
## CAAS_7  199  0.68  0.65  0.54   0.48  3.4 1.11
## CAAS_8  200  0.74  0.74  0.67   0.59  3.8 1.02
## CAAS_9  200  0.62  0.65  0.56   0.47  4.3 0.85
## CAAS_10 199  0.72  0.74  0.68   0.58  3.9 0.92
## CAAS_11 199  0.72  0.71  0.64   0.57  3.9 1.01
## CAAS_12 200  0.63  0.63  0.51   0.45  3.9 0.93
## 
## Non missing response frequency for each item
##            1    2    3    4    5 miss
## CAAS_7  0.03 0.19 0.35 0.22 0.22 0.01
## CAAS_8  0.01 0.12 0.23 0.35 0.29 0.00
## CAAS_9  0.00 0.04 0.14 0.30 0.52 0.00
## CAAS_10 0.01 0.06 0.26 0.36 0.32 0.01
## CAAS_11 0.01 0.11 0.19 0.39 0.30 0.01
## CAAS_12 0.00 0.06 0.26 0.36 0.32 0.00
psych::alpha(caas_CURI)
## 
## Reliability analysis   
## Call: psych::alpha(x = caas_CURI)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.83      0.83    0.81      0.44 4.8 0.019  3.7 0.74     0.43
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.83 0.86 
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CAAS_13      0.82      0.82    0.79      0.47 4.5    0.020 0.0047  0.45
## CAAS_14      0.81      0.81    0.78      0.45 4.2    0.022 0.0079  0.43
## CAAS_15      0.80      0.80    0.76      0.44 3.9    0.023 0.0044  0.41
## CAAS_16      0.79      0.79    0.76      0.43 3.7    0.024 0.0043  0.42
## CAAS_17      0.79      0.79    0.76      0.42 3.7    0.024 0.0052  0.40
## CAAS_18      0.79      0.80    0.77      0.44 3.9    0.023 0.0071  0.42
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean   sd
## CAAS_13 199  0.66  0.67  0.56   0.50  3.4 1.02
## CAAS_14 200  0.70  0.70  0.61   0.56  3.9 0.95
## CAAS_15 199  0.74  0.74  0.68   0.60  3.7 1.07
## CAAS_16 199  0.77  0.77  0.72   0.65  3.6 0.98
## CAAS_17 200  0.78  0.77  0.72   0.65  3.5 1.05
## CAAS_18 200  0.74  0.74  0.67   0.61  3.9 0.99
## 
## Non missing response frequency for each item
##            1    2    3    4    5 miss
## CAAS_13 0.02 0.19 0.32 0.31 0.17 0.01
## CAAS_14 0.00 0.08 0.26 0.36 0.30 0.00
## CAAS_15 0.02 0.13 0.24 0.33 0.28 0.01
## CAAS_16 0.03 0.09 0.32 0.37 0.20 0.01
## CAAS_17 0.04 0.16 0.29 0.36 0.16 0.00
## CAAS_18 0.00 0.10 0.19 0.36 0.34 0.00
psych::alpha(caas_CONF)
## 
## Reliability analysis   
## Call: psych::alpha(x = caas_CONF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.83      0.84    0.83      0.46 5.1 0.018    4 0.65     0.45
## 
##  lower alpha upper     95% confidence boundaries
## 0.8 0.83 0.87 
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CAAS_19      0.81      0.81    0.80      0.46 4.3    0.021 0.0100  0.45
## CAAS_20      0.81      0.81    0.79      0.46 4.3    0.021 0.0070  0.45
## CAAS_21      0.80      0.80    0.79      0.45 4.0    0.022 0.0102  0.43
## CAAS_22      0.80      0.80    0.79      0.45 4.1    0.022 0.0105  0.43
## CAAS_23      0.81      0.81    0.78      0.46 4.3    0.022 0.0069  0.46
## CAAS_24      0.81      0.82    0.79      0.47 4.4    0.021 0.0050  0.46
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean   sd
## CAAS_19 200  0.73  0.74  0.66   0.60  4.0 0.87
## CAAS_20 200  0.71  0.73  0.66   0.59  4.2 0.82
## CAAS_21 199  0.76  0.77  0.71   0.64  4.1 0.87
## CAAS_22 199  0.75  0.76  0.69   0.63  4.3 0.83
## CAAS_23 200  0.75  0.74  0.68   0.61  3.8 0.97
## CAAS_24 199  0.73  0.72  0.65   0.58  3.5 0.95
## 
## Non missing response frequency for each item
##            1    2    3    4    5 miss
## CAAS_19 0.00 0.04 0.22 0.38 0.35 0.00
## CAAS_20 0.00 0.03 0.17 0.36 0.44 0.00
## CAAS_21 0.00 0.04 0.23 0.33 0.41 0.01
## CAAS_22 0.01 0.02 0.16 0.32 0.50 0.01
## CAAS_23 0.01 0.09 0.27 0.37 0.26 0.00
## CAAS_24 0.02 0.12 0.35 0.36 0.16 0.01
psych::alpha(caas_COOP)
## 
## Reliability analysis   
## Call: psych::alpha(x = caas_COOP)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.77      0.78    0.77      0.37 3.5 0.025    4 0.64     0.38
## 
##  lower alpha upper     95% confidence boundaries
## 0.72 0.77 0.82 
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CAAS_34      0.72      0.74    0.73      0.36 2.9    0.031 0.0145  0.37
## CAAS_28      0.72      0.73    0.71      0.35 2.7    0.031 0.0117  0.37
## CAAS_33      0.77      0.78    0.75      0.41 3.5    0.025 0.0047  0.40
## CAAS_31      0.74      0.75    0.73      0.37 2.9    0.029 0.0144  0.38
## CAAS_29      0.74      0.75    0.71      0.37 2.9    0.029 0.0034  0.37
## CAAS_30      0.72      0.73    0.72      0.35 2.7    0.031 0.0124  0.35
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean   sd
## CAAS_34 199  0.73  0.71  0.62   0.56  3.7 1.04
## CAAS_28 200  0.72  0.73  0.67   0.57  4.1 0.93
## CAAS_33 199  0.64  0.59  0.47   0.41  3.5 1.13
## CAAS_31 200  0.68  0.69  0.59   0.52  4.1 0.88
## CAAS_29 200  0.64  0.69  0.63   0.51  4.4 0.73
## CAAS_30 199  0.72  0.73  0.66   0.57  4.0 0.89
## 
## Non missing response frequency for each item
##            1    2    3    4    5 miss
## CAAS_34 0.02 0.11 0.28 0.32 0.28 0.01
## CAAS_28 0.01 0.04 0.22 0.32 0.42 0.00
## CAAS_33 0.03 0.18 0.29 0.26 0.24 0.01
## CAAS_31 0.00 0.04 0.19 0.38 0.38 0.00
## CAAS_29 0.00 0.00 0.13 0.33 0.54 0.00
## CAAS_30 0.01 0.04 0.21 0.40 0.35 0.01
psych::alpha(senna_O)
## 
## Reliability analysis   
## Call: psych::alpha(x = senna_O)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.67      0.69    0.74      0.16 2.2 0.035  3.9 0.46     0.15
## 
##  lower alpha upper     95% confidence boundaries
## 0.6 0.67 0.74 
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## SENNA_1_1      0.65      0.67    0.72      0.16 2.0    0.037 0.022  0.15
## SENNA_1_2      0.66      0.67    0.73      0.16 2.1    0.036 0.023  0.15
## SENNA_1_3      0.67      0.69    0.74      0.17 2.2    0.034 0.020  0.16
## SENNA_1_4      0.66      0.69    0.73      0.17 2.2    0.035 0.021  0.16
## SENNA_1_5      0.65      0.67    0.72      0.15 2.0    0.037 0.022  0.15
## SENNA_1_6      0.66      0.68    0.73      0.16 2.1    0.036 0.023  0.15
## SENNA_1_7      0.64      0.66    0.70      0.15 2.0    0.038 0.015  0.15
## SENNA_1_8      0.67      0.69    0.74      0.17 2.2    0.035 0.020  0.15
## SENNA_2_1      0.65      0.67    0.72      0.16 2.0    0.037 0.021  0.15
## SENNA_2_2      0.64      0.67    0.71      0.16 2.0    0.037 0.020  0.15
## SENNA_2_3      0.62      0.64    0.70      0.14 1.8    0.040 0.021  0.11
## SENNA_2_4      0.63      0.66    0.69      0.15 1.9    0.038 0.015  0.15
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean   sd
## SENNA_1_1 200  0.46  0.48  0.40   0.32  3.9 0.84
## SENNA_1_2 200  0.45  0.46  0.37   0.27  4.2 1.12
## SENNA_1_3 200  0.43  0.37  0.26   0.21  3.4 1.29
## SENNA_1_4 199  0.42  0.39  0.30   0.24  4.3 1.06
## SENNA_1_5 199  0.47  0.51  0.44   0.35  4.5 0.74
## SENNA_1_6 199  0.37  0.43  0.33   0.28  4.8 0.54
## SENNA_1_7 200  0.53  0.52  0.53   0.38  3.1 0.98
## SENNA_1_8 199  0.37  0.38  0.28   0.20  3.7 1.02
## SENNA_2_1 199  0.44  0.49  0.41   0.33  4.2 0.71
## SENNA_2_2 199  0.54  0.49  0.43   0.35  3.4 1.27
## SENNA_2_3 200  0.63  0.65  0.62   0.52  4.2 0.87
## SENNA_2_4 199  0.55  0.54  0.55   0.40  3.0 1.03
## 
## Non missing response frequency for each item
##              1    2    3    4    5 miss
## SENNA_1_1 0.00 0.04 0.28 0.42 0.26 0.00
## SENNA_1_2 0.01 0.11 0.16 0.14 0.58 0.00
## SENNA_1_3 0.12 0.11 0.27 0.26 0.24 0.00
## SENNA_1_4 0.04 0.03 0.17 0.16 0.61 0.01
## SENNA_1_5 0.01 0.02 0.08 0.29 0.61 0.01
## SENNA_1_6 0.01 0.01 0.03 0.10 0.87 0.01
## SENNA_1_7 0.04 0.20 0.48 0.16 0.11 0.00
## SENNA_1_8 0.03 0.06 0.36 0.29 0.26 0.01
## SENNA_2_1 0.00 0.01 0.14 0.49 0.36 0.01
## SENNA_2_2 0.11 0.11 0.25 0.30 0.24 0.01
## SENNA_2_3 0.00 0.06 0.15 0.38 0.42 0.00
## SENNA_2_4 0.05 0.29 0.43 0.12 0.12 0.01
psych::alpha(senna_C)
## 
## Reliability analysis   
## Call: psych::alpha(x = senna_C)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.86      0.87     0.9      0.31 6.6 0.014  4.1 0.52      0.3
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.86 0.89 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## SENNA_1_9       0.86      0.86    0.89      0.31 6.4    0.015 0.017  0.30
## SENNA_1_10      0.86      0.87    0.90      0.32 6.5    0.014 0.019  0.31
## SENNA_1_11      0.86      0.86    0.89      0.30 6.1    0.015 0.018  0.29
## SENNA_1_12      0.86      0.87    0.89      0.31 6.4    0.014 0.018  0.30
## SENNA_1_13      0.85      0.86    0.88      0.30 6.0    0.015 0.016  0.30
## SENNA_1_14      0.86      0.87    0.89      0.32 6.5    0.014 0.014  0.31
## SENNA_1_15      0.85      0.86    0.89      0.30 6.1    0.015 0.019  0.30
## SENNA_1_16      0.86      0.86    0.89      0.31 6.2    0.015 0.020  0.30
## SENNA_1_17      0.86      0.86    0.88      0.30 6.1    0.015 0.017  0.30
## SENNA_1_18      0.86      0.87    0.89      0.31 6.4    0.014 0.019  0.30
## SENNA_2_5       0.85      0.85    0.88      0.29 5.8    0.016 0.017  0.29
## SENNA_2_6       0.85      0.85    0.88      0.29 5.8    0.016 0.017  0.29
## SENNA_2_7       0.85      0.85    0.88      0.29 5.8    0.016 0.016  0.29
## SENNA_2_8       0.86      0.86    0.89      0.31 6.2    0.015 0.019  0.30
## SENNA_2_9       0.86      0.86    0.89      0.31 6.2    0.015 0.017  0.30
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean   sd
## SENNA_1_9  200  0.50  0.52  0.48   0.42  4.3 0.77
## SENNA_1_10 200  0.48  0.46  0.39   0.37  4.3 0.99
## SENNA_1_11 200  0.60  0.60  0.57   0.53  3.9 0.79
## SENNA_1_12 199  0.54  0.50  0.45   0.42  3.5 1.13
## SENNA_1_13 200  0.66  0.64  0.64   0.58  3.7 1.06
## SENNA_1_14 199  0.50  0.48  0.45   0.40  4.3 0.90
## SENNA_1_15 199  0.61  0.62  0.58   0.53  3.9 0.90
## SENNA_1_16 200  0.57  0.59  0.54   0.51  4.5 0.71
## SENNA_1_17 199  0.59  0.61  0.60   0.52  4.4 0.76
## SENNA_1_18 200  0.49  0.50  0.44   0.40  4.5 0.83
## SENNA_2_5  200  0.73  0.74  0.72   0.67  4.0 0.84
## SENNA_2_6  200  0.73  0.74  0.73   0.68  3.9 0.86
## SENNA_2_7  199  0.73  0.71  0.71   0.67  3.9 0.90
## SENNA_2_8  200  0.59  0.59  0.55   0.50  3.8 0.87
## SENNA_2_9  200  0.57  0.59  0.57   0.49  4.3 0.78
## 
## Non missing response frequency for each item
##               1    2    3    4    5 miss
## SENNA_1_9  0.00 0.02 0.10 0.42 0.45 0.00
## SENNA_1_10 0.02 0.04 0.16 0.22 0.56 0.00
## SENNA_1_11 0.00 0.03 0.30 0.45 0.22 0.00
## SENNA_1_12 0.07 0.10 0.30 0.34 0.20 0.01
## SENNA_1_13 0.01 0.10 0.36 0.21 0.32 0.00
## SENNA_1_14 0.01 0.05 0.13 0.31 0.51 0.01
## SENNA_1_15 0.01 0.06 0.29 0.38 0.28 0.01
## SENNA_1_16 0.00 0.00 0.10 0.27 0.63 0.00
## SENNA_1_17 0.00 0.01 0.14 0.31 0.54 0.01
## SENNA_1_18 0.01 0.03 0.06 0.19 0.70 0.00
## SENNA_2_5  0.00 0.02 0.26 0.41 0.31 0.00
## SENNA_2_6  0.00 0.04 0.26 0.42 0.26 0.00
## SENNA_2_7  0.00 0.07 0.27 0.37 0.30 0.01
## SENNA_2_8  0.00 0.06 0.33 0.39 0.22 0.00
## SENNA_2_9  0.00 0.03 0.12 0.36 0.50 0.00
psych::alpha(senna_E)
## 
## Reliability analysis   
## Call: psych::alpha(x = senna_E)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.75      0.75    0.77      0.25   3 0.027  3.6 0.63     0.21
## 
##  lower alpha upper     95% confidence boundaries
## 0.69 0.75 0.8 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## SENNA_1_19      0.71      0.71    0.72      0.24 2.5    0.031 0.013  0.21
## SENNA_1_20      0.72      0.72    0.74      0.25 2.6    0.030 0.018  0.20
## SENNA_1_21      0.72      0.73    0.74      0.25 2.7    0.030 0.017  0.21
## SENNA_1_22      0.72      0.72    0.74      0.25 2.6    0.030 0.016  0.22
## SENNA_1_23      0.72      0.73    0.74      0.25 2.7    0.030 0.016  0.21
## SENNA_1_24      0.75      0.76    0.77      0.28 3.1    0.027 0.017  0.24
## SENNA_2_10      0.72      0.72    0.74      0.24 2.6    0.030 0.016  0.20
## SENNA_2_11      0.71      0.72    0.73      0.24 2.5    0.031 0.015  0.20
## SENNA_2_12      0.74      0.75    0.77      0.27 3.0    0.028 0.018  0.22
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean   sd
## SENNA_1_19 200  0.64  0.65  0.63   0.51  4.0 1.02
## SENNA_1_20 200  0.61  0.62  0.54   0.47  3.9 1.11
## SENNA_1_21 200  0.58  0.58  0.51   0.43  3.6 1.09
## SENNA_1_22 200  0.61  0.60  0.55   0.46  3.5 1.14
## SENNA_1_23 199  0.56  0.58  0.52   0.43  4.1 0.96
## SENNA_1_24 200  0.45  0.44  0.30   0.26  3.9 1.16
## SENNA_2_10 200  0.61  0.62  0.57   0.47  3.4 1.07
## SENNA_2_11 200  0.64  0.64  0.60   0.51  3.0 1.10
## SENNA_2_12 200  0.50  0.48  0.36   0.31  3.2 1.22
## 
## Non missing response frequency for each item
##               1    2    3    4    5 miss
## SENNA_1_19 0.03 0.04 0.26 0.28 0.40 0.00
## SENNA_1_20 0.03 0.07 0.26 0.22 0.42 0.00
## SENNA_1_21 0.02 0.12 0.34 0.22 0.30 0.00
## SENNA_1_22 0.06 0.12 0.32 0.28 0.22 0.00
## SENNA_1_23 0.01 0.06 0.20 0.33 0.41 0.01
## SENNA_1_24 0.04 0.06 0.27 0.20 0.42 0.00
## SENNA_2_10 0.04 0.14 0.34 0.29 0.18 0.00
## SENNA_2_11 0.09 0.26 0.36 0.20 0.10 0.00
## SENNA_2_12 0.09 0.21 0.30 0.21 0.19 0.00
psych::alpha(senna_A)
## 
## Reliability analysis   
## Call: psych::alpha(x = senna_A)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.84      0.84    0.85      0.36 5.1 0.017  3.5 0.76     0.34
## 
##  lower alpha upper     95% confidence boundaries
## 0.8 0.84 0.87 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## SENNA_1_25      0.81      0.81    0.82      0.35 4.3    0.020 0.012  0.33
## SENNA_1_26      0.82      0.82    0.82      0.36 4.5    0.019 0.013  0.34
## SENNA_1_27      0.83      0.83    0.84      0.38 4.9    0.018 0.014  0.36
## SENNA_1_28      0.83      0.83    0.84      0.39 5.0    0.018 0.013  0.38
## SENNA_1_29      0.82      0.82    0.83      0.36 4.6    0.019 0.015  0.34
## SENNA_1_30      0.82      0.82    0.82      0.36 4.5    0.019 0.015  0.34
## SENNA_2_13      0.81      0.81    0.82      0.35 4.3    0.020 0.011  0.34
## SENNA_2_14      0.81      0.81    0.81      0.34 4.2    0.021 0.011  0.32
## SENNA_2_15      0.83      0.83    0.83      0.37 4.8    0.018 0.013  0.36
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean  sd
## SENNA_1_25 199  0.73  0.72  0.68   0.62  3.1 1.3
## SENNA_1_26 200  0.69  0.67  0.63   0.57  3.8 1.3
## SENNA_1_27 200  0.59  0.59  0.50   0.46  3.0 1.1
## SENNA_1_28 199  0.54  0.55  0.46   0.41  4.1 1.1
## SENNA_1_29 200  0.65  0.65  0.59   0.53  3.3 1.1
## SENNA_1_30 199  0.65  0.67  0.62   0.55  4.1 1.1
## SENNA_2_13 200  0.72  0.71  0.68   0.62  3.2 1.2
## SENNA_2_14 199  0.76  0.76  0.74   0.68  3.2 1.1
## SENNA_2_15 199  0.60  0.61  0.55   0.48  3.6 1.1
## 
## Non missing response frequency for each item
##               1    2    3    4    5 miss
## SENNA_1_25 0.13 0.19 0.33 0.18 0.18 0.01
## SENNA_1_26 0.08 0.09 0.19 0.27 0.37 0.00
## SENNA_1_27 0.13 0.18 0.38 0.20 0.10 0.00
## SENNA_1_28 0.04 0.07 0.15 0.27 0.48 0.01
## SENNA_1_29 0.06 0.17 0.36 0.22 0.20 0.00
## SENNA_1_30 0.03 0.04 0.24 0.22 0.48 0.01
## SENNA_2_13 0.10 0.16 0.32 0.28 0.14 0.00
## SENNA_2_14 0.08 0.16 0.40 0.21 0.16 0.01
## SENNA_2_15 0.03 0.11 0.30 0.32 0.24 0.01
psych::alpha(senna_N)
## 
## Reliability analysis   
## Call: psych::alpha(x = senna_N)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.74      0.75    0.79      0.25 2.9 0.028  3.7 0.62     0.21
## 
##  lower alpha upper     95% confidence boundaries
## 0.68 0.74 0.79 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## SENNA_1_31      0.72      0.74    0.77      0.26 2.8    0.030 0.026  0.24
## SENNA_1_32      0.74      0.75    0.79      0.27 3.0    0.028 0.025  0.24
## SENNA_1_33      0.72      0.73    0.76      0.25 2.7    0.030 0.023  0.23
## SENNA_1_34      0.71      0.72    0.75      0.24 2.6    0.031 0.027  0.21
## SENNA_1_35      0.71      0.72    0.76      0.24 2.6    0.031 0.027  0.21
## SENNA_1_36      0.72      0.73    0.78      0.26 2.7    0.030 0.032  0.22
## SENNA_2_16      0.69      0.71    0.76      0.23 2.4    0.034 0.030  0.18
## SENNA_2_17      0.69      0.70    0.76      0.23 2.4    0.033 0.027  0.18
## SENNA_2_18      0.70      0.70    0.75      0.23 2.4    0.032 0.024  0.18
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean   sd
## SENNA_1_31 200  0.55  0.50  0.43   0.37  2.6 1.21
## SENNA_1_32 200  0.49  0.44  0.33   0.28  3.7 1.30
## SENNA_1_33 200  0.53  0.55  0.50   0.36  3.7 1.09
## SENNA_1_34 200  0.58  0.58  0.54   0.43  4.3 1.01
## SENNA_1_35 200  0.53  0.59  0.53   0.42  4.3 0.78
## SENNA_1_36 200  0.48  0.52  0.41   0.34  4.6 0.93
## SENNA_2_16 200  0.68  0.65  0.60   0.53  2.8 1.25
## SENNA_2_17 200  0.66  0.67  0.62   0.52  3.2 1.16
## SENNA_2_18 200  0.63  0.67  0.64   0.51  4.1 0.95
## 
## Non missing response frequency for each item
##               1    2    3    4    5 miss
## SENNA_1_31 0.23 0.25 0.26 0.20 0.06    0
## SENNA_1_32 0.10 0.06 0.24 0.22 0.38    0
## SENNA_1_33 0.03 0.11 0.28 0.30 0.28    0
## SENNA_1_34 0.03 0.03 0.17 0.20 0.58    0
## SENNA_1_35 0.00 0.02 0.10 0.41 0.47    0
## SENNA_1_36 0.03 0.04 0.04 0.14 0.76    0
## SENNA_2_16 0.16 0.30 0.23 0.18 0.12    0
## SENNA_2_17 0.04 0.25 0.32 0.20 0.19    0
## SENNA_2_18 0.01 0.05 0.20 0.33 0.42    0

Cohen’s D

library(effsize)

db$Grupo[db$Grupo == 1] <- 'Experimental'
db$Grupo[db$Grupo == 2] <- 'Controle'

cohen.d(db$caas_PREO, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -1.02548 (large)
## 95 percent confidence interval:
##      lower      upper 
## -1.3221293 -0.7288303
cohen.d(db$caas_CONT, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.8225862 (large)
## 95 percent confidence interval:
##     lower     upper 
## -1.113026 -0.532146
cohen.d(db$caas_CURI, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.9360139 (large)
## 95 percent confidence interval:
##      lower      upper 
## -1.2297737 -0.6422541
cohen.d(db$caas_CONF, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.8987067 (large)
## 95 percent confidence interval:
##      lower      upper 
## -1.1913317 -0.6060818
cohen.d(db$caas_COOP, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.7815014 (medium)
## 95 percent confidence interval:
##      lower      upper 
## -1.0708365 -0.4921663
cohen.d(db$senna_O, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.5328435 (medium)
## 95 percent confidence interval:
##      lower      upper 
## -0.8166346 -0.2490524
cohen.d(db$senna_C, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.9696097 (large)
## 95 percent confidence interval:
##      lower      upper 
## -1.2644271 -0.6747924
cohen.d(db$senna_E, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.4278734 (small)
## 95 percent confidence interval:
##      lower      upper 
## -0.7099318 -0.1458150
cohen.d(db$senna_A, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.549847 (medium)
## 95 percent confidence interval:
##      lower      upper 
## -0.8339532 -0.2657407
cohen.d(db$senna_N, db$Grupo)
## 
## Cohen's d
## 
## d estimate: -0.4462616 (small)
## 95 percent confidence interval:
##      lower      upper 
## -0.7285969 -0.1639263