Glaciares en Chile
Tarapacá: Automatización del proceso de extracción de data por glaciar (análisis espacial) y en el tiempo.
Abstract
Éste trabajo contiene elas líneas para extraer el área considerada glaciar en cada límite administrativo entregado en un shp. Se propone una lógica para calcular el porcentaje glaciar. Se añade el código para automatizar la extracción en el tiempo. También avanzamos en torno a la determinación de las matrices de confusión para cada una de las técnicas de ML utilizadas, para mejorar las imágenes: RF, CART y SVM.
library(rgee)
# ee_Initialize("tarredwall@gmail.com", drive = TRUE)
ee_Initialize()
## -- rgee 1.0.9 --------------------------------------- earthengine-api 0.1.263 --
## v email: not_defined
## v Initializing Google Earth Engine:
v Initializing Google Earth Engine: DONE!
##
v Earth Engine user: users/rgee2
## --------------------------------------------------------------------------------
A partir del 15 de febrero de 2018, se debe utilizar la siguiente denominación:
Yo
I Región de Arica y Parinacota. Lunes 24 II Región de Tarapacá. Martes 25 III Región de Antofagasta. Miercoles 26 IV Región de Atacama. Jueves 27 V Región de Coquimbo. Viernes 28 VI Región de Valparaíso. Lunes 31
Victor
VII Región Metropolitana de Santiago. Lunes 24 VIII Región del Libertador General Bernardo O’Higgins. Martes 25 IX Región del Maule. Miercoles 26 X Región del Ñuble. Jueves 27 XI Región del Biobío. Viernes 28 XII Región de La Araucanía. Lunes 31
Abner
XIII Región de Los Ríos. Miercoles 26 XIV Región de Los Lagos. Jueves 27 XV Región de Aysén del General Carlos Ibáñez del Campo. Viernes 28 XVI Región de Magallanes y la Antártica Chilena. Lunes 31
region_tara <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
## Registered S3 method overwritten by 'geojsonsf':
## method from
## print.geojson geojson
tara <- region_tara$geometry()
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(tara)
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(tara)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(first, vizParams, "Landsat 8 image")
Construimos una imagen raster con una columna llamada nd con dos categorías para cada pixel: 0 si es rojo, 1 si es verde
getNDGI <- function(image)
{
image$normalizedDifference(c("B4", "B3")) > 0
}
ndgi <- getNDGI(first)
## Warning: Ops.ee.image.Image will be deprecated in rgee v.1.1.0. Please install
## rgeeExtra (https://github.com/r-earthengine/rgeeExtra). Deeply sorry for the
## inconveniences.
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(ndgi, ndgiParams, "NDGI")
glaciar_tara <- st_read("GlaciaresxRegion/Simple_TARAPACA.shp",
quiet = TRUE) %>%
sf_as_ee()
glaciar_tara <- glaciar_tara$geometry()
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(glaciar_tara, ndgiParams, "NDGI")
ESTA ES LA IMAGEN SOBRE LA QUE EXTRAEREMOS EL PRIMER SET DE MUESTRAS
glaciares_adm_con_ngvi <- ndgi$clip(glaciar_tara)
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(glaciares_adm_con_ngvi, ndgiParams, "NDGI")
Con esto concluimos la primera parte de nuestra generacion de raster para, como siguiente paso, extraer las muestras.
tara_sin_glacia <- tara$difference(glaciar_tara, ee$ErrorMargin(1))
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(tara_sin_glacia, ndgiParams, "NDGI")
ndvi_tarapaca_sin_glaciares <- ndgi$clip(tara_sin_glacia)
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(ndvi_tarapaca_sin_glaciares, ndgiParams, "NDGI")
7.1. pixeles rojos interiores
7.2. pixeles verdes exteriores
Necesitamos intersectar las regiones administrativas glaciares con nuestro raster ndvi y de ahi extraer las muestras de color rojo que simbolizarán los glaciares.
limites_glaciares_con_rasters <- ndgi$clip(glaciar_tara)
Map$setCenter(lon = -68.69644, lat = -19.7581, zoom = 15)
Map$addLayer(limites_glaciares_con_rasters , ndgiParams, "NDGI")
1 Muestreo
# region_arica <- st_read("Regiones_separadas/Region_01.shp", quiet = TRUE)
# region_arica
Los rojos interiores son glaciares, 0 = rojo y son llamados muestras_in_gee_rojas.
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(glaciar_tara),
scale = 100,
tileScale = 16,
geometries = TRUE
)
muestras_in_gee_rojas = muestras_in$filter(ee$Filter$eq('nd', 0))
Map$setCenter(lon = -68.69644, lat = -19.7581, zoom = 15)
Map$addLayer(
eeObject = muestras_in_gee_rojas,
visParams = {},
name = "puntos glaciares"
)
ndvi_tara_sin_glaciares <- ndgi$clip(tara_sin_glacia)
Map$setCenter(lon = -68.69644, lat = -19.7581, zoom = 8)
Map$addLayer(ndvi_tara_sin_glaciares, ndgiParams, "NDGI")
Los verdes exteriores no son glaciares 1 = verde
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(ndvi_tara_sin_glaciares),
scale = 10000,
tileScale = 16,
geometries = TRUE
)
muestras_out_gee_verdes = muestras_in$filter(ee$Filter$eq('nd', 1))
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(
eeObject = muestras_out_gee_verdes,
visParams = {},
name = "puntos no glaciares"
)
III debemos unir muestras y generar el random forest
union_total <- muestras_out_gee_verdes$merge(muestras_in_gee_rojas)
region_arica <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileRandomForest(10)$train(training, label, bands)
# Classify the image with the same bands used for training.
classified_rf <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified_rf, viz_class, name = "classification")
18:29 18:30
Le aplicamos la matriz de confusion:
trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 12 0
##
## [[2]]
## [1] 0 451
18:40 18:43
region_tara <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
tara <- region_tara$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(tara)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileCart(10)$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
18:47 18:50
trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 12 0
##
## [[2]]
## [1] 0 451
18:51 18 53
region_arica <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
classifier = ee$Classifier$libsvm(
kernelType = "RBF",
gamma = 0.5,
cost = 10
)
# Train a CART classifier with default parameters.
trained = classifier$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
No se puede obtener la matriz de confusion para libsvm pues excede limites de memoria
trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 12 0
##
## [[2]]
## [1] 0 451
mask_0 <- read_sf("GlaciaresxRegion/Simple_TARAPACA.shp")
#mask_0
reg_15_2 <- mask_0 %>% dplyr::select(COD_GLA,AREA_Km2)
varia <- reg_15_2 %>%
sf_as_ee()
region_0 <- varia$geometry()
sale_4 <- classified_rf$clip(region_0)
puntos_r <- sale_4$select('classification')$eq(0)
# Reducer$sum() returns a Reducer that computes the (weighted) sum of its inputs.
areas_rojas = puntos_r$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
rojas <- areas_rojas$getInfo()
rojas1 <- as.data.frame(rojas)
# rojas1
puntos_v <- sale_4$select('classification')$eq(1)
areas_verdes = puntos_v$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
verdes <- areas_verdes$getInfo()
verdes1 <- as.data.frame(verdes)
# verdes1
r_v <- rbind(colnames(rojas1),rojas1,verdes1)
r_v <- r_v[1:4,]
r_v <- r_v[-3,]
r_v <- t(r_v)
r_v <- as.data.frame(r_v)
names(r_v)[1] <- "col1"
names(r_v)[2] <- "col2"
names(r_v)[3] <- "col3"
r_v$col4 <- r_v$col3
r_v$col5 <- r_v$col3
# r_v
data1 <- filter(r_v, grepl("features.properties.COD_GLA",col1))
data1 <- as.data.frame(data1[,2])
# data1
data2 <- filter(r_v, grepl("features.properties.sum",col1))
data2 <- as.data.frame(data2[,c(2,3)])
# data2
data3 <- filter(r_v, grepl("features.properties.AREA_Km2",col1))
data3 <- as.data.frame(data3[,c(2,3)])
# data3
data4 <- cbind(data1,data2,data3)
colnames(data4) <- c("codigo_gla", "rojo", "verde", "area_Km2(shp)")
data4
## codigo_gla rojo verde
## features.properties.sum CL101044025 49.2274509803922 0
## features.properties.sum.1 CL101044018 14.4078431372549 98.0901960784314
## features.properties.sum.2 CL101044017 4.89411764705882 121.96862745098
## features.properties.sum.3 CL101044019 0 97.7882352941177
## features.properties.sum.4 CL101044016 1.05098039215686 74.0392156862745
## features.properties.sum.5 CL101044015 0 34.8666666666667
## features.properties.sum.6 CL101044014 8.13333333333333 21.7921568627451
## features.properties.sum.7 CL101044013 0 40.1607843137255
## features.properties.sum.8 CL101044012 0 13.8980392156863
## features.properties.sum.9 CL101044011 1.25882352941176 264.654901960784
## features.properties.sum.10 CL101044010 0 5.82352941176471
## features.properties.sum.11 CL101044007 0 57.3803921568627
## features.properties.sum.12 CL101044008 0.588235294117647 201.054901960784
## features.properties.sum.13 CL101044006 0 221.235294117647
## features.properties.sum.14 CL101042002 0 81.0078431372549
## features.properties.sum.15 CL101042001 2.75294117647059 77.1843137254902
## features.properties.sum.16 CL101042003 0 63.2117647058824
## features.properties.sum.17 CL101042005 3.89411764705882 30.9882352941176
## features.properties.sum.18 CL101042004 0 20.121568627451
## features.properties.sum.19 CL101610012 0 154.098039215686
## features.properties.sum.20 CL101610013 0 110.176470588235
## features.properties.sum.21 CL101610011 0 6.61960784313725
## features.properties.sum.22 CL101610010 0 94.2666666666667
## features.properties.sum.23 CL101610009 0 72.7764705882353
## features.properties.sum.24 CL101610008 0 41.6274509803922
## features.properties.sum.25 CL101610005 0 78.9098039215686
## features.properties.sum.26 CL101610004 0 63.0549019607843
## features.properties.sum.27 CL101610002 0 113.752941176471
## features.properties.sum.28 CL101610003 0 97.6431372549019
## features.properties.sum.29 CL101610001 0 115.494117647059
## features.properties.sum.30 CL101611002 0 159.976470588235
## features.properties.sum.31 CL101720004 0 30.7843137254902
## features.properties.sum.32 CL101720003 0 129
## features.properties.sum.33 CL101720001 0 9.56470588235294
## features.properties.sum.34 CL101720002 0 73.6862745098039
## features.properties.sum.35 CL101720008 0 188.541176470588
## features.properties.sum.36 CL101720005 0 22.3333333333333
## features.properties.sum.37 CL101720006 0 15.2666666666667
## features.properties.sum.38 CL101720009 0 13.2156862745098
## features.properties.sum.39 CL101720007 0 9.65490196078431
## features.properties.sum.40 CL101730001 0 129.050980392157
## features.properties.sum.41 CL101730002 0 35.5254901960784
## features.properties.sum.42 CL101730009 0 21.278431372549
## features.properties.sum.43 CL101730008 0 19.0705882352941
## features.properties.sum.44 CL101730011 0 53.4156862745098
## features.properties.sum.45 CL101730012 0.83921568627451 72.2509803921568
## features.properties.sum.46 CL101730013 0 63.9176470588235
## features.properties.sum.47 CL101730010 0 7.74117647058823
## features.properties.sum.48 CL101730014 0 144.137254901961
## features.properties.sum.49 CL101730016 0 25.1607843137255
## features.properties.sum.50 CL101730017 0 9.94901960784314
## features.properties.sum.51 CL101730015 0 9.06666666666666
## features.properties.sum.52 CL101730018 0 11.5607843137255
## features.properties.sum.53 CL101730004 0 33.2745098039216
## features.properties.sum.54 CL101730003 0 79.1529411764706
## features.properties.sum.55 CL101730006 0 27.6901960784314
## features.properties.sum.56 CL101730007 0 24.5843137254902
## features.properties.sum.57 CL101730005 0 13.2509803921569
## features.properties.sum.58 CL101044001 3.98823529411765 45.4196078431373
## features.properties.sum.59 CL101044002 1.10588235294118 25.9176470588235
## features.properties.sum.60 CL101044003 0.831372549019608 96.3333333333333
## features.properties.sum.61 CL101044004 0 31.4117647058824
## features.properties.sum.62 CL101044009 0 13.6901960784314
## features.properties.sum.63 CL101044005 11.5725490196078 10.5450980392157
## features.properties.sum.64 CL101040008 0 51.1137254901961
## features.properties.sum.65 CL101611001 0 128.905882352941
## features.properties.sum.66 CL101610024 0 53.6862745098039
## features.properties.sum.67 CL101610023 0 256.78431372549
## features.properties.sum.68 CL101610022 0 229.074509803922
## features.properties.sum.69 CL101610021 0 180.870588235294
## features.properties.sum.70 CL101610020 0 106.007843137255
## features.properties.sum.71 CL101610018 0 145.83137254902
## features.properties.sum.72 CL101610017 0 119.317647058824
## features.properties.sum.73 CL101610016 0 63.3176470588235
## features.properties.sum.74 CL101040006 0 53.2901960784314
## features.properties.sum.75 CL101040005 0 55.3372549019608
## features.properties.sum.76 CL101040004 4.65490196078431 8.56862745098039
## features.properties.sum.77 CL101040003 1.01960784313725 6.4156862745098
## features.properties.sum.78 CL101610015 0 9.92156862745098
## features.properties.sum.79 CL101610014 0 59.9921568627451
## features.properties.sum.80 CL101610019 0 253.152941176471
## features.properties.sum.81 CL101040002 0 50.8196078431372
## features.properties.sum.82 CL101040007 7.82352941176471 41.756862745098
## features.properties.sum.83 CL101040001 34.6627450980392 14.8117647058824
## features.properties.sum.84 CL101040009 55.3882352941176 46.2588235294118
## features.properties.sum.85 CL101044024 410.019607843137 0.0549019607843137
## features.properties.sum.86 CL101070001 22.3176470588235 7.57647058823529
## features.properties.sum.87 CL101044020 30.8039215686274 0
## features.properties.sum.88 CL101044022 24.9058823529412 0
## features.properties.sum.89 CL101044021 15.3411764705882 0
## features.properties.sum.90 CL101044023 11.956862745098 0
## area_Km2(shp) NA
## features.properties.sum 0.0397270010711 0.0397270010711
## features.properties.sum.1 0.100876482862 0.100876482862
## features.properties.sum.2 0.109852809052 0.109852809052
## features.properties.sum.3 0.0873709651722 0.0873709651722
## features.properties.sum.4 0.0639482581884 0.0639482581884
## features.properties.sum.5 0.0390825631323 0.0390825631323
## features.properties.sum.6 0.0327605622869 0.0327605622869
## features.properties.sum.7 0.0382199791074 0.0382199791074
## features.properties.sum.8 0.0167628398049 0.0167628398049
## features.properties.sum.9 0.234736140147 0.234736140147
## features.properties.sum.10 0.0123072515574 0.0123072515574
## features.properties.sum.11 0.0490761861993 0.0490761861993
## features.properties.sum.12 0.181770894446 0.181770894446
## features.properties.sum.13 0.187241197168 0.187241197168
## features.properties.sum.14 0.0822324117868 0.0822324117868
## features.properties.sum.15 0.0811335051897 0.0811335051897
## features.properties.sum.16 0.0517317014976 0.0517317014976
## features.properties.sum.17 0.0342342838388 0.0342342838388
## features.properties.sum.18 0.025537434093 0.025537434093
## features.properties.sum.19 0.14556645363 0.14556645363
## features.properties.sum.20 0.0969989514597 0.0969989514597
## features.properties.sum.21 0.0133418051918 0.0133418051918
## features.properties.sum.22 0.0876500187874 0.0876500187874
## features.properties.sum.23 0.0722716222512 0.0722716222512
## features.properties.sum.24 0.0460606415757 0.0460606415757
## features.properties.sum.25 0.0863192881262 0.0863192881262
## features.properties.sum.26 0.0786716671606 0.0786716671606
## features.properties.sum.27 0.0996942476728 0.0996942476728
## features.properties.sum.28 0.0926249593749 0.0926249593749
## features.properties.sum.29 0.107310516435 0.107310516435
## features.properties.sum.30 0.125452215699 0.125452215699
## features.properties.sum.31 0.0370788979097 0.0370788979097
## features.properties.sum.32 0.121432954093 0.121432954093
## features.properties.sum.33 0.0156484103605 0.0156484103605
## features.properties.sum.34 0.0637414139919 0.0637414139919
## features.properties.sum.35 0.163304691787 0.163304691787
## features.properties.sum.36 0.0228456773695 0.0228456773695
## features.properties.sum.37 0.0161851633664 0.0161851633664
## features.properties.sum.38 0.0165129804368 0.0165129804368
## features.properties.sum.39 0.0198858464782 0.0198858464782
## features.properties.sum.40 0.121994691845 0.121994691845
## features.properties.sum.41 0.0391150993622 0.0391150993622
## features.properties.sum.42 0.0305984387632 0.0305984387632
## features.properties.sum.43 0.0225271588162 0.0225271588162
## features.properties.sum.44 0.0661863412709 0.0661863412709
## features.properties.sum.45 0.0641183674004 0.0641183674004
## features.properties.sum.46 0.0711972768362 0.0711972768362
## features.properties.sum.47 0.0127425943588 0.0127425943588
## features.properties.sum.48 0.130168840973 0.130168840973
## features.properties.sum.49 0.0425520003997 0.0425520003997
## features.properties.sum.50 0.0157886226892 0.0157886226892
## features.properties.sum.51 0.0155196563794 0.0155196563794
## features.properties.sum.52 0.0181153020415 0.0181153020415
## features.properties.sum.53 0.0346999506794 0.0346999506794
## features.properties.sum.54 0.071272988267 0.071272988267
## features.properties.sum.55 0.0311922006569 0.0311922006569
## features.properties.sum.56 0.0269613307305 0.0269613307305
## features.properties.sum.57 0.0182961256272 0.0182961256272
## features.properties.sum.58 0.0474476041426 0.0474476041426
## features.properties.sum.59 0.030925134966 0.030925134966
## features.properties.sum.60 0.0990839862833 0.0990839862833
## features.properties.sum.61 0.0316396276002 0.0316396276002
## features.properties.sum.62 0.0151640809662 0.0151640809662
## features.properties.sum.63 0.0261707721535 0.0261707721535
## features.properties.sum.64 0.0531454414338 0.0531454414338
## features.properties.sum.65 0.108143702435 0.108143702435
## features.properties.sum.66 0.0585930577914 0.0585930577914
## features.properties.sum.67 0.232784007153 0.232784007153
## features.properties.sum.68 0.189817275455 0.189817275455
## features.properties.sum.69 0.157189625326 0.157189625326
## features.properties.sum.70 0.0937245066846 0.0937245066846
## features.properties.sum.71 0.128313247654 0.128313247654
## features.properties.sum.72 0.11302848218 0.11302848218
## features.properties.sum.73 0.0630994631392 0.0630994631392
## features.properties.sum.74 0.0559590444049 0.0559590444049
## features.properties.sum.75 0.0578071886107 0.0578071886107
## features.properties.sum.76 0.0229483888793 0.0229483888793
## features.properties.sum.77 0.0126627103916 0.0126627103916
## features.properties.sum.78 0.0139952832236 0.0139952832236
## features.properties.sum.79 0.0548194450787 0.0548194450787
## features.properties.sum.80 0.224397707218 0.224397707218
## features.properties.sum.81 0.0476141336392 0.0476141336392
## features.properties.sum.82 0.0443321397721 0.0443321397721
## features.properties.sum.83 0.0490302735314 0.0490302735314
## features.properties.sum.84 0.0920502698629 0.0920502698629
## features.properties.sum.85 0.343230877798 0.343230877798
## features.properties.sum.86 0.0303463589963 0.0303463589963
## features.properties.sum.87 0.0304940656141 0.0304940656141
## features.properties.sum.88 0.0301132769341 0.0301132769341
## features.properties.sum.89 0.0145008622673 0.0145008622673
## features.properties.sum.90 0.0173113872952 0.0173113872952
Podemos obtener todos los glaciares de Chile y podemos obtener sus areas. A travaés de nuestros proceso de clasificación hemos podido determinar cantidades que debiesen ser glaciares en color rojo y cantidades que no son glaciares con valor de 1. Nuestro proceso de analisis nos llevo a la obtencion de estas cantidades cuyas magnitudes desconocemos. Pero lo anterior no es problema. Debemos seguir el siguiente procedimiento:
Calcular el porcentaje de rojo que hay dentro de la relación rojo-verde
Llamemos el porcentaje del punto 1 β.
debemos calcular el porcentaje que β representa en el area_Km2(shp). de cada glaciar.
\[ {\%rojo \over x} = {(rojo +verde) \over 100 } \]
Lo que nos interesa es obtener la superficie glaciar dentro de cada glaciar.
\[ { \%superficie\_roja \over 100} = {\%rojo \over region\_glaciar }\]
data4$porcentaje_rojo <- (100*as.numeric(data4$rojo)) / (as.numeric(data4$rojo) + as.numeric(data4$verde))
data4$porcentaje_area_glaciar <- (data4$porcentaje_rojo * as.numeric(data4$`area_Km2(shp)`)) / 100
data4
## codigo_gla rojo verde
## features.properties.sum CL101044025 49.2274509803922 0
## features.properties.sum.1 CL101044018 14.4078431372549 98.0901960784314
## features.properties.sum.2 CL101044017 4.89411764705882 121.96862745098
## features.properties.sum.3 CL101044019 0 97.7882352941177
## features.properties.sum.4 CL101044016 1.05098039215686 74.0392156862745
## features.properties.sum.5 CL101044015 0 34.8666666666667
## features.properties.sum.6 CL101044014 8.13333333333333 21.7921568627451
## features.properties.sum.7 CL101044013 0 40.1607843137255
## features.properties.sum.8 CL101044012 0 13.8980392156863
## features.properties.sum.9 CL101044011 1.25882352941176 264.654901960784
## features.properties.sum.10 CL101044010 0 5.82352941176471
## features.properties.sum.11 CL101044007 0 57.3803921568627
## features.properties.sum.12 CL101044008 0.588235294117647 201.054901960784
## features.properties.sum.13 CL101044006 0 221.235294117647
## features.properties.sum.14 CL101042002 0 81.0078431372549
## features.properties.sum.15 CL101042001 2.75294117647059 77.1843137254902
## features.properties.sum.16 CL101042003 0 63.2117647058824
## features.properties.sum.17 CL101042005 3.89411764705882 30.9882352941176
## features.properties.sum.18 CL101042004 0 20.121568627451
## features.properties.sum.19 CL101610012 0 154.098039215686
## features.properties.sum.20 CL101610013 0 110.176470588235
## features.properties.sum.21 CL101610011 0 6.61960784313725
## features.properties.sum.22 CL101610010 0 94.2666666666667
## features.properties.sum.23 CL101610009 0 72.7764705882353
## features.properties.sum.24 CL101610008 0 41.6274509803922
## features.properties.sum.25 CL101610005 0 78.9098039215686
## features.properties.sum.26 CL101610004 0 63.0549019607843
## features.properties.sum.27 CL101610002 0 113.752941176471
## features.properties.sum.28 CL101610003 0 97.6431372549019
## features.properties.sum.29 CL101610001 0 115.494117647059
## features.properties.sum.30 CL101611002 0 159.976470588235
## features.properties.sum.31 CL101720004 0 30.7843137254902
## features.properties.sum.32 CL101720003 0 129
## features.properties.sum.33 CL101720001 0 9.56470588235294
## features.properties.sum.34 CL101720002 0 73.6862745098039
## features.properties.sum.35 CL101720008 0 188.541176470588
## features.properties.sum.36 CL101720005 0 22.3333333333333
## features.properties.sum.37 CL101720006 0 15.2666666666667
## features.properties.sum.38 CL101720009 0 13.2156862745098
## features.properties.sum.39 CL101720007 0 9.65490196078431
## features.properties.sum.40 CL101730001 0 129.050980392157
## features.properties.sum.41 CL101730002 0 35.5254901960784
## features.properties.sum.42 CL101730009 0 21.278431372549
## features.properties.sum.43 CL101730008 0 19.0705882352941
## features.properties.sum.44 CL101730011 0 53.4156862745098
## features.properties.sum.45 CL101730012 0.83921568627451 72.2509803921568
## features.properties.sum.46 CL101730013 0 63.9176470588235
## features.properties.sum.47 CL101730010 0 7.74117647058823
## features.properties.sum.48 CL101730014 0 144.137254901961
## features.properties.sum.49 CL101730016 0 25.1607843137255
## features.properties.sum.50 CL101730017 0 9.94901960784314
## features.properties.sum.51 CL101730015 0 9.06666666666666
## features.properties.sum.52 CL101730018 0 11.5607843137255
## features.properties.sum.53 CL101730004 0 33.2745098039216
## features.properties.sum.54 CL101730003 0 79.1529411764706
## features.properties.sum.55 CL101730006 0 27.6901960784314
## features.properties.sum.56 CL101730007 0 24.5843137254902
## features.properties.sum.57 CL101730005 0 13.2509803921569
## features.properties.sum.58 CL101044001 3.98823529411765 45.4196078431373
## features.properties.sum.59 CL101044002 1.10588235294118 25.9176470588235
## features.properties.sum.60 CL101044003 0.831372549019608 96.3333333333333
## features.properties.sum.61 CL101044004 0 31.4117647058824
## features.properties.sum.62 CL101044009 0 13.6901960784314
## features.properties.sum.63 CL101044005 11.5725490196078 10.5450980392157
## features.properties.sum.64 CL101040008 0 51.1137254901961
## features.properties.sum.65 CL101611001 0 128.905882352941
## features.properties.sum.66 CL101610024 0 53.6862745098039
## features.properties.sum.67 CL101610023 0 256.78431372549
## features.properties.sum.68 CL101610022 0 229.074509803922
## features.properties.sum.69 CL101610021 0 180.870588235294
## features.properties.sum.70 CL101610020 0 106.007843137255
## features.properties.sum.71 CL101610018 0 145.83137254902
## features.properties.sum.72 CL101610017 0 119.317647058824
## features.properties.sum.73 CL101610016 0 63.3176470588235
## features.properties.sum.74 CL101040006 0 53.2901960784314
## features.properties.sum.75 CL101040005 0 55.3372549019608
## features.properties.sum.76 CL101040004 4.65490196078431 8.56862745098039
## features.properties.sum.77 CL101040003 1.01960784313725 6.4156862745098
## features.properties.sum.78 CL101610015 0 9.92156862745098
## features.properties.sum.79 CL101610014 0 59.9921568627451
## features.properties.sum.80 CL101610019 0 253.152941176471
## features.properties.sum.81 CL101040002 0 50.8196078431372
## features.properties.sum.82 CL101040007 7.82352941176471 41.756862745098
## features.properties.sum.83 CL101040001 34.6627450980392 14.8117647058824
## features.properties.sum.84 CL101040009 55.3882352941176 46.2588235294118
## features.properties.sum.85 CL101044024 410.019607843137 0.0549019607843137
## features.properties.sum.86 CL101070001 22.3176470588235 7.57647058823529
## features.properties.sum.87 CL101044020 30.8039215686274 0
## features.properties.sum.88 CL101044022 24.9058823529412 0
## features.properties.sum.89 CL101044021 15.3411764705882 0
## features.properties.sum.90 CL101044023 11.956862745098 0
## area_Km2(shp) NA porcentaje_rojo
## features.properties.sum 0.0397270010711 0.0397270010711 100.0000000
## features.properties.sum.1 0.100876482862 0.100876482862 12.8071949
## features.properties.sum.2 0.109852809052 0.109852809052 3.8578053
## features.properties.sum.3 0.0873709651722 0.0873709651722 0.0000000
## features.properties.sum.4 0.0639482581884 0.0639482581884 1.3996240
## features.properties.sum.5 0.0390825631323 0.0390825631323 0.0000000
## features.properties.sum.6 0.0327605622869 0.0327605622869 27.1786135
## features.properties.sum.7 0.0382199791074 0.0382199791074 0.0000000
## features.properties.sum.8 0.0167628398049 0.0167628398049 0.0000000
## features.properties.sum.9 0.234736140147 0.234736140147 0.4733955
## features.properties.sum.10 0.0123072515574 0.0123072515574 0.0000000
## features.properties.sum.11 0.0490761861993 0.0490761861993 0.0000000
## features.properties.sum.12 0.181770894446 0.181770894446 0.2917210
## features.properties.sum.13 0.187241197168 0.187241197168 0.0000000
## features.properties.sum.14 0.0822324117868 0.0822324117868 0.0000000
## features.properties.sum.15 0.0811335051897 0.0811335051897 3.4438776
## features.properties.sum.16 0.0517317014976 0.0517317014976 0.0000000
## features.properties.sum.17 0.0342342838388 0.0342342838388 11.1635750
## features.properties.sum.18 0.025537434093 0.025537434093 0.0000000
## features.properties.sum.19 0.14556645363 0.14556645363 0.0000000
## features.properties.sum.20 0.0969989514597 0.0969989514597 0.0000000
## features.properties.sum.21 0.0133418051918 0.0133418051918 0.0000000
## features.properties.sum.22 0.0876500187874 0.0876500187874 0.0000000
## features.properties.sum.23 0.0722716222512 0.0722716222512 0.0000000
## features.properties.sum.24 0.0460606415757 0.0460606415757 0.0000000
## features.properties.sum.25 0.0863192881262 0.0863192881262 0.0000000
## features.properties.sum.26 0.0786716671606 0.0786716671606 0.0000000
## features.properties.sum.27 0.0996942476728 0.0996942476728 0.0000000
## features.properties.sum.28 0.0926249593749 0.0926249593749 0.0000000
## features.properties.sum.29 0.107310516435 0.107310516435 0.0000000
## features.properties.sum.30 0.125452215699 0.125452215699 0.0000000
## features.properties.sum.31 0.0370788979097 0.0370788979097 0.0000000
## features.properties.sum.32 0.121432954093 0.121432954093 0.0000000
## features.properties.sum.33 0.0156484103605 0.0156484103605 0.0000000
## features.properties.sum.34 0.0637414139919 0.0637414139919 0.0000000
## features.properties.sum.35 0.163304691787 0.163304691787 0.0000000
## features.properties.sum.36 0.0228456773695 0.0228456773695 0.0000000
## features.properties.sum.37 0.0161851633664 0.0161851633664 0.0000000
## features.properties.sum.38 0.0165129804368 0.0165129804368 0.0000000
## features.properties.sum.39 0.0198858464782 0.0198858464782 0.0000000
## features.properties.sum.40 0.121994691845 0.121994691845 0.0000000
## features.properties.sum.41 0.0391150993622 0.0391150993622 0.0000000
## features.properties.sum.42 0.0305984387632 0.0305984387632 0.0000000
## features.properties.sum.43 0.0225271588162 0.0225271588162 0.0000000
## features.properties.sum.44 0.0661863412709 0.0661863412709 0.0000000
## features.properties.sum.45 0.0641183674004 0.0641183674004 1.1481919
## features.properties.sum.46 0.0711972768362 0.0711972768362 0.0000000
## features.properties.sum.47 0.0127425943588 0.0127425943588 0.0000000
## features.properties.sum.48 0.130168840973 0.130168840973 0.0000000
## features.properties.sum.49 0.0425520003997 0.0425520003997 0.0000000
## features.properties.sum.50 0.0157886226892 0.0157886226892 0.0000000
## features.properties.sum.51 0.0155196563794 0.0155196563794 0.0000000
## features.properties.sum.52 0.0181153020415 0.0181153020415 0.0000000
## features.properties.sum.53 0.0346999506794 0.0346999506794 0.0000000
## features.properties.sum.54 0.071272988267 0.071272988267 0.0000000
## features.properties.sum.55 0.0311922006569 0.0311922006569 0.0000000
## features.properties.sum.56 0.0269613307305 0.0269613307305 0.0000000
## features.properties.sum.57 0.0182961256272 0.0182961256272 0.0000000
## features.properties.sum.58 0.0474476041426 0.0474476041426 8.0720692
## features.properties.sum.59 0.030925134966 0.030925134966 4.0922943
## features.properties.sum.60 0.0990839862833 0.0990839862833 0.8556322
## features.properties.sum.61 0.0316396276002 0.0316396276002 0.0000000
## features.properties.sum.62 0.0151640809662 0.0151640809662 0.0000000
## features.properties.sum.63 0.0261707721535 0.0261707721535 52.3226950
## features.properties.sum.64 0.0531454414338 0.0531454414338 0.0000000
## features.properties.sum.65 0.108143702435 0.108143702435 0.0000000
## features.properties.sum.66 0.0585930577914 0.0585930577914 0.0000000
## features.properties.sum.67 0.232784007153 0.232784007153 0.0000000
## features.properties.sum.68 0.189817275455 0.189817275455 0.0000000
## features.properties.sum.69 0.157189625326 0.157189625326 0.0000000
## features.properties.sum.70 0.0937245066846 0.0937245066846 0.0000000
## features.properties.sum.71 0.128313247654 0.128313247654 0.0000000
## features.properties.sum.72 0.11302848218 0.11302848218 0.0000000
## features.properties.sum.73 0.0630994631392 0.0630994631392 0.0000000
## features.properties.sum.74 0.0559590444049 0.0559590444049 0.0000000
## features.properties.sum.75 0.0578071886107 0.0578071886107 0.0000000
## features.properties.sum.76 0.0229483888793 0.0229483888793 35.2016607
## features.properties.sum.77 0.0126627103916 0.0126627103916 13.7130802
## features.properties.sum.78 0.0139952832236 0.0139952832236 0.0000000
## features.properties.sum.79 0.0548194450787 0.0548194450787 0.0000000
## features.properties.sum.80 0.224397707218 0.224397707218 0.0000000
## features.properties.sum.81 0.0476141336392 0.0476141336392 0.0000000
## features.properties.sum.82 0.0443321397721 0.0443321397721 15.7794827
## features.properties.sum.83 0.0490302735314 0.0490302735314 70.0618263
## features.properties.sum.84 0.0920502698629 0.0920502698629 54.4907407
## features.properties.sum.85 0.343230877798 0.343230877798 99.9866117
## features.properties.sum.86 0.0303463589963 0.0303463589963 74.6556474
## features.properties.sum.87 0.0304940656141 0.0304940656141 100.0000000
## features.properties.sum.88 0.0301132769341 0.0301132769341 100.0000000
## features.properties.sum.89 0.0145008622673 0.0145008622673 100.0000000
## features.properties.sum.90 0.0173113872952 0.0173113872952 100.0000000
## porcentaje_area_glaciar
## features.properties.sum 0.0397270011
## features.properties.sum.1 0.0129194478
## features.properties.sum.2 0.0042379074
## features.properties.sum.3 0.0000000000
## features.properties.sum.4 0.0008950352
## features.properties.sum.5 0.0000000000
## features.properties.sum.6 0.0089038666
## features.properties.sum.7 0.0000000000
## features.properties.sum.8 0.0000000000
## features.properties.sum.9 0.0011112303
## features.properties.sum.10 0.0000000000
## features.properties.sum.11 0.0000000000
## features.properties.sum.12 0.0005302638
## features.properties.sum.13 0.0000000000
## features.properties.sum.14 0.0000000000
## features.properties.sum.15 0.0027941386
## features.properties.sum.16 0.0000000000
## features.properties.sum.17 0.0038217700
## features.properties.sum.18 0.0000000000
## features.properties.sum.19 0.0000000000
## features.properties.sum.20 0.0000000000
## features.properties.sum.21 0.0000000000
## features.properties.sum.22 0.0000000000
## features.properties.sum.23 0.0000000000
## features.properties.sum.24 0.0000000000
## features.properties.sum.25 0.0000000000
## features.properties.sum.26 0.0000000000
## features.properties.sum.27 0.0000000000
## features.properties.sum.28 0.0000000000
## features.properties.sum.29 0.0000000000
## features.properties.sum.30 0.0000000000
## features.properties.sum.31 0.0000000000
## features.properties.sum.32 0.0000000000
## features.properties.sum.33 0.0000000000
## features.properties.sum.34 0.0000000000
## features.properties.sum.35 0.0000000000
## features.properties.sum.36 0.0000000000
## features.properties.sum.37 0.0000000000
## features.properties.sum.38 0.0000000000
## features.properties.sum.39 0.0000000000
## features.properties.sum.40 0.0000000000
## features.properties.sum.41 0.0000000000
## features.properties.sum.42 0.0000000000
## features.properties.sum.43 0.0000000000
## features.properties.sum.44 0.0000000000
## features.properties.sum.45 0.0007362019
## features.properties.sum.46 0.0000000000
## features.properties.sum.47 0.0000000000
## features.properties.sum.48 0.0000000000
## features.properties.sum.49 0.0000000000
## features.properties.sum.50 0.0000000000
## features.properties.sum.51 0.0000000000
## features.properties.sum.52 0.0000000000
## features.properties.sum.53 0.0000000000
## features.properties.sum.54 0.0000000000
## features.properties.sum.55 0.0000000000
## features.properties.sum.56 0.0000000000
## features.properties.sum.57 0.0000000000
## features.properties.sum.58 0.0038300034
## features.properties.sum.59 0.0012655475
## features.properties.sum.60 0.0008477945
## features.properties.sum.61 0.0000000000
## features.properties.sum.62 0.0000000000
## features.properties.sum.63 0.0136932533
## features.properties.sum.64 0.0000000000
## features.properties.sum.65 0.0000000000
## features.properties.sum.66 0.0000000000
## features.properties.sum.67 0.0000000000
## features.properties.sum.68 0.0000000000
## features.properties.sum.69 0.0000000000
## features.properties.sum.70 0.0000000000
## features.properties.sum.71 0.0000000000
## features.properties.sum.72 0.0000000000
## features.properties.sum.73 0.0000000000
## features.properties.sum.74 0.0000000000
## features.properties.sum.75 0.0000000000
## features.properties.sum.76 0.0080782140
## features.properties.sum.77 0.0017364476
## features.properties.sum.78 0.0000000000
## features.properties.sum.79 0.0000000000
## features.properties.sum.80 0.0000000000
## features.properties.sum.81 0.0000000000
## features.properties.sum.82 0.0069953823
## features.properties.sum.83 0.0343515051
## features.properties.sum.84 0.0501588739
## features.properties.sum.85 0.3431849251
## features.properties.sum.86 0.0226552708
## features.properties.sum.87 0.0304940656
## features.properties.sum.88 0.0301132769
## features.properties.sum.89 0.0145008623
## features.properties.sum.90 0.0173113873
Logica de la informacion temporal:
region_tara <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
glaciar_tara <- st_read("GlaciaresxRegion/Simple_TARAPACA.shp",
quiet = TRUE) %>%
sf_as_ee()
fn_cart <- function(a,m){
i_cuatrimestre <- switch(m, "01","05","09")
f_cuatrimestre <- switch(m, "04","08","12")
fecha_1 <- paste("20",a,"-",i_cuatrimestre,"-01", sep = "")
fecha_2 <- paste("20",a,"-",f_cuatrimestre,"-01", sep = "")
tara <- region_tara$geometry()
start <- ee$Date(fecha_1)
finish <- ee$Date(fecha_2)
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(tara)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
getNDGI <- function(image)
{
image$normalizedDifference(c("B4", "B3")) > 0
}
ndgi <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
glaciar_tara <- glaciar_tara$geometry()
glaciares_adm_con_ngvi <- ndgi$clip(glaciar_tara)
tara_sin_glacia <- tara$difference(glaciar_tara, ee$ErrorMargin(1))
ndvi_tarapaca_sin_glaciares <- ndgi$clip(tara_sin_glacia)
limites_glaciares_con_rasters <- ndgi$clip(glaciar_tara)
# region_arica <- st_read("Regiones_separadas/Region_01.shp", quiet = TRUE)
# region_arica
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(glaciar_tara),
scale = 100,
tileScale = 16,
geometries = TRUE
)
muestras_in_gee_rojas = muestras_in$filter(ee$Filter$eq('nd', 0))
ndvi_tara_sin_glaciares <- ndgi$clip(tara_sin_glacia)
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(ndvi_tara_sin_glaciares),
scale = 10000,
tileScale = 16,
geometries = TRUE
)
muestras_out_gee_verdes = muestras_in$filter(ee$Filter$eq('nd', 1))
tryCatch(
{
union_total <- muestras_out_gee_verdes$merge(muestras_in_gee_rojas)
region_arica <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date(fecha_1)
finish <- ee$Date(fecha_2)
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileRandomForest(10)$train(training, label, bands)
# Classify the image with the same bands used for training.
classified1 <- first$select(bands)$classify(trained)
periodo <- paste(fecha_1," / ",fecha_2," ", sep = "")
print(periodo)
###################################################################
mask_0 <- read_sf("GlaciaresxRegion/Simple_TARAPACA.shp")
reg_15_2 <- mask_0 %>% dplyr::select(COD_GLA,AREA_Km2)
varia <- reg_15_2 %>%
sf_as_ee()
region_0 <- varia$geometry()
sale_4 <- classified1$clip(region_0)
puntos_r <- sale_4$select('classification')$eq(0)
areas_rojas = puntos_r$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
rojas <- areas_rojas$getInfo()
rojas1 <- as.data.frame(rojas)
puntos_v <- sale_4$select('classification')$eq(1)
areas_verdes = puntos_v$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
verdes <- areas_verdes$getInfo()
verdes1 <- as.data.frame(verdes)
###########
r_v <- rbind(colnames(rojas1),rojas1,verdes1)
r_v <- r_v[1:4,]
r_v <- r_v[-3,]
r_v <- t(r_v)
r_v <- as.data.frame(r_v)
names(r_v)[1] <- "col1"
names(r_v)[2] <- "col2"
names(r_v)[3] <- "col3"
r_v$col4 <- r_v$col3
r_v$col5 <- r_v$col3
###########
data1 <- filter(r_v, grepl("features.properties.COD_GLA",col1))
data1 <- as.data.frame(data1[,2])
data2 <- filter(r_v, grepl("features.properties.sum",col1))
data2 <- as.data.frame(data2[,c(2,3)])
data3 <- filter(r_v, grepl("features.properties.AREA_Km2",col1))
data3 <- as.data.frame(data3[,c(2,3)])
data4 <- cbind(data1,data2,data3)
data4 <- data4[,-c(4)]
colnames(data4) <- c("codigo_gla", "rojo", "verde", "area_Km2(shp)")
nombre <- paste("TARAPACA_",fecha_1,"_",fecha_2,".xlsx", sep = "")
data4$porcentaje_rojo <- (100*as.numeric(data4$rojo)) / (as.numeric(data4$rojo) + as.numeric(data4$verde))
data4$porcentaje_area_glaciar <- (data4$porcentaje_rojo * as.numeric(data4$`area_Km2(shp)`)) / 100
data4$fecha <- periodo
write_xlsx(data4,nombre)
# print(data4)
########################################
# box <- ee$Geometry$Rectangle(
# coords = c(-70.28665 , -21.63061, -68.40454 , -18.9369),
# proj = "EPSG:4326",
# geodesic = FALSE
# )
#
# img <- classified1
#
# dem_raster2 <- img %>% ee_as_raster(
# region = box,
# scale = 10,)
#
# writeRaster(dem_raster2,"dem_raster2.tif")
########################################
}, error = function(msg){
print("No hay muestras rojas")
})
write_xlsx(data4,nombre)
}
for (a in 20:20) {
for (m in 1:1) {
fn_cart(a,m)
}
}
## Warning: Ops.ee.image.Image will be deprecated in rgee v.1.1.0. Please install
## rgeeExtra (https://github.com/r-earthengine/rgeeExtra). Deeply sorry for the
## inconveniences.
## [1] "2020-01-01 / 2020-04-01 "
Vamos a exponer la data de dos cuatrimetres, el segundo y el tercero ambos para el año 2018
# segundo_cuatri_18 <- fn_cart(18,2)
# tercer_cuatri_18 <- fn_cart(18,3)
library(readxl)
## Warning: package 'readxl' was built under R version 4.0.5
# a <- read_xlsx("arica_2017-05-01_2017-08-01.xlsx")
# b <- read_xlsx("arica_2019-05-01_2019-08-01.xlsx")
# c <- read_xlsx("arica_2020-05-01_2020-08-01.xlsx")
#
# abc <- rbind(a$codigo_gla,a$porcentaje_area_glaciar,b$porcentaje_area_glaciar,c$porcentaje_area_glaciar)
#
# write_xlsx(abc,"2do_periodo_17_19_20.xlsx")
#
# kbl(abc) %>%
# kable_styling(bootstrap_options = c("striped", "hover")) %>%
# kable_paper() %>%
# scroll_box(width = "100%", height = "300px")
# tercer_cuatri_18 <- fn_cart(18,3)
#
# union <- rbind(segundo_cuatri_18,tercer_cuatri_18)
#
# kbl(union) %>%
# kable_styling(bootstrap_options = c("striped", "hover")) %>%
# kable_paper() %>%
# scroll_box(width = "100%", height = "300px")
#
# write_xlsx(union,"union.xlsx")