Only the overall degree distributions (main & casl) and stats (one-time) will be saved as targets for now.
The attr breakdowns are stored as descriptives.
Targets
# Targets: degdist, npart.yr and meandeg saved in separate list components
## Active degree ----
deg.dists = list(tot = tot.deg,
main = main.deg,
casl = casl.deg,
inst = inst.wk,
xnet = xnet)
descTable <-
tibble(Params = names(deg.dists),
Description = c("Total active degree",
"Main active degree",
"Casl active degree",
"Onetime partners/wk",
"Crossnet tables"),
Method = c(rep("wtd observed stats", 5)),
Levels = c(rep("overall", 5)))
deg.dists <- c(deg.dists, list(descTable = descTable))
## Cumulative partners ----
npart.yr = list(tot = tot.yr,
main = main.yr,
casl = casl.yr,
inst = inst.yr)
descTable <-
tibble(Params = names(npart.yr),
Description = c("Total partners last yr",
"Main partners last yr",
"Casl partners last yr",
"Onetime partners last yr"),
Method = c(rep("wtd observed stats", 4)),
Levels = c(rep("overall", 4)))
npart.yr <- c(npart.yr, list(descTable = descTable))
## Mean degree (created by script) ----
source("Scripts/makeMeanDegTargets.R")
## Combine ----
whamp.net.targets <- c(list(deg.dists = deg.dists),
list(npart.yr = npart.yr),
list(meandeg = meandeg),
list(makefile = "make_WhampNetTargets"),
list(datasource = "WHAMP + ARTnetWA"))
descTable <-
tibble(Params = names(whamp.net.targets),
Description = c("Active Deg Distns",
"Partners last yr",
"Mean Active Degree",
whamp.net.targets$makefile,
whamp.net.targets$datasource),
Method = c(rep("wtd observed stats", 3),
rep(" ", 2)),
Levels = c(rep("overall", 3),
rep(" ", 2)))
whamp.net.targets <- c(whamp.net.targets,
list(descTable = descTable))
saveRDS(whamp.net.targets,
file = here::here("Data", "Targets", "WhampNetTargets.RDS"))
whamp.net.targets$descTable %>%
kable(caption= "Sexual partner targets from WHAMP survey") %>%
kable_styling(full_width=F, position="center",
bootstrap_options = c("striped"))
Sexual partner targets from WHAMP survey
|
Params
|
Description
|
Method
|
Levels
|
|
deg.dists
|
Active Deg Distns
|
wtd observed stats
|
overall
|
|
npart.yr
|
Partners last yr
|
wtd observed stats
|
overall
|
|
meandeg
|
Mean Active Degree
|
wtd observed stats
|
overall
|
|
makefile
|
make_WhampNetTargets
|
|
|
|
datasource
|
WHAMP + ARTnetWA
|
|
|
whamp.net.targets$deg.dists$descTable %>%
kable(caption= "Active degree distributions from WHAMP survey") %>%
kable_styling(full_width=F, position="center",
bootstrap_options = c("striped"))
Active degree distributions from WHAMP survey
|
Params
|
Description
|
Method
|
Levels
|
|
tot
|
Total active degree
|
wtd observed stats
|
overall
|
|
main
|
Main active degree
|
wtd observed stats
|
overall
|
|
casl
|
Casl active degree
|
wtd observed stats
|
overall
|
|
inst
|
Onetime partners/wk
|
wtd observed stats
|
overall
|
|
xnet
|
Crossnet tables
|
wtd observed stats
|
overall
|
whamp.net.targets$npart.yr$descTable %>%
kable(caption= "Partners last yr from WHAMP survey") %>%
kable_styling(full_width=F, position="center",
bootstrap_options = c("striped"))
Partners last yr from WHAMP survey
|
Params
|
Description
|
Method
|
Levels
|
|
tot
|
Total partners last yr
|
wtd observed stats
|
overall
|
|
main
|
Main partners last yr
|
wtd observed stats
|
overall
|
|
casl
|
Casl partners last yr
|
wtd observed stats
|
overall
|
|
inst
|
Onetime partners last yr
|
wtd observed stats
|
overall
|
whamp.net.targets$meandeg$descTable %>%
kable(caption= "Mean degree from WHAMP survey") %>%
kable_styling(full_width=F, position="center",
bootstrap_options = c("striped"))
Mean degree from WHAMP survey
|
Params
|
Description
|
Method
|
|
all
|
Mean degree by ptype
|
wtd observed stats
|
|
age
|
Mean degree by ptype
|
wtd observed stats
|
|
race
|
Mean degree by ptype
|
wtd observed stats
|
|
region
|
Mean degree by ptype
|
wtd observed stats
|
|
agexrace
|
Mean degree by ptype
|
wtd observed stats
|
|
agexregion
|
Mean degree by ptype
|
wtd observed stats
|
|
makefile
|
makeMeanDegTargets
|
|
|
datasource
|
WHAMP + ARTnetWA
|
|
print("Structure of output object:")
## [1] "Structure of output object:"
str(whamp.net.targets)
## List of 6
## $ deg.dists :List of 6
## ..$ tot : tibble [6 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ deg.tot : num [1:6] 0 1 2 3 4 5
## .. ..$ nobs : int [1:6] 250 359 100 74 38 11
## .. ..$ n.wtd : num [1:6] 252.2 349.6 98.1 79.4 39.1 ...
## .. ..$ prop.wtd: num [1:6] 0.3 0.42 0.12 0.1 0.05 0.02
## ..$ main : tibble [4 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ deg.main: num [1:4] 0 1 2 3
## .. ..$ nobs : int [1:4] 609 206 16 1
## .. ..$ n.wtd : num [1:4] 613.9 198.7 18.3 1.1
## .. ..$ prop.wtd: num [1:4] 0.74 0.24 0.02 0
## ..$ casl : tibble [6 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ deg.casl: num [1:6] 0 1 2 3 4 5
## .. ..$ nobs : int [1:6] 398 250 90 63 27 4
## .. ..$ n.wtd : num [1:6] 391.4 250.5 91.3 65 27.6 ...
## .. ..$ prop.wtd: num [1:6] 0.47 0.3 0.11 0.08 0.03 0.01
## ..$ inst : tibble [3 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ count.oo.wk: num [1:3] 0 1 2
## .. ..$ nobs : int [1:3] 788 39 5
## .. ..$ n.wtd : num [1:3] 788.5 38.5 5
## .. ..$ prop.wtd : num [1:3] 0.95 0.05 0.01
## ..$ xnet :List of 3
## .. ..$ xnet.mc: grouped_df [16 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. .. ..$ deg.main: num [1:16] 0 0 0 0 0 0 1 1 1 1 ...
## .. .. ..$ deg.casl: num [1:16] 0 1 2 3 4 5 0 1 2 3 ...
## .. .. ..$ nobs : int [1:16] 250 217 66 50 22 4 142 29 19 11 ...
## .. .. ..$ n.wtd : num [1:16] 252.2 216.3 64.9 51.9 22.4 ...
## .. .. ..$ prop.wtd: num [1:16] 0.41 0.35 0.11 0.08 0.04 0.01 0.67 0.14 0.1 0.06 ...
## .. .. ..- attr(*, "groups")= tibble [4 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. .. ..$ deg.main: num [1:4] 0 1 2 3
## .. .. .. ..$ .rows : list<int> [1:4]
## .. .. .. .. ..$ : int [1:6] 1 2 3 4 5 6
## .. .. .. .. ..$ : int [1:5] 7 8 9 10 11
## .. .. .. .. ..$ : int [1:4] 12 13 14 15
## .. .. .. .. ..$ : int 16
## .. .. .. .. ..@ ptype: int(0)
## .. .. .. ..- attr(*, ".drop")= logi TRUE
## .. ..$ xnet.mi: grouped_df [9 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. .. ..$ deg.main : num [1:9] 0 0 0 1 1 1 2 2 3
## .. .. ..$ count.oo.wk: num [1:9] 0 1 2 0 1 2 0 1 1
## .. .. ..$ nobs : int [1:9] 579 26 4 196 9 1 13 3 1
## .. .. ..$ n.wtd : num [1:9] 585.9 24.2 3.8 188 9.5 ...
## .. .. ..$ prop.wtd : num [1:9] 0.95 0.04 0.01 0.95 0.05 0.01 0.8 0.2 1
## .. .. ..- attr(*, "groups")= tibble [4 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. .. ..$ deg.main: num [1:4] 0 1 2 3
## .. .. .. ..$ .rows : list<int> [1:4]
## .. .. .. .. ..$ : int [1:3] 1 2 3
## .. .. .. .. ..$ : int [1:3] 4 5 6
## .. .. .. .. ..$ : int [1:2] 7 8
## .. .. .. .. ..$ : int 9
## .. .. .. .. ..@ ptype: int(0)
## .. .. .. ..- attr(*, ".drop")= logi TRUE
## .. ..$ xnet.ci: grouped_df [15 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. .. ..$ deg.casl : num [1:15] 0 0 1 1 1 2 2 3 3 4 ...
## .. .. ..$ count.oo.wk: num [1:15] 0 1 0 1 2 0 1 0 1 0 ...
## .. .. ..$ nobs : int [1:15] 395 3 236 12 2 76 14 55 8 24 ...
## .. .. ..$ n.wtd : num [1:15] 388.6 2.8 235.9 12.8 1.8 ...
## .. .. ..$ prop.wtd : num [1:15] 0.99 0.01 0.94 0.05 0.01 0.85 0.15 0.89 0.11 0.88 ...
## .. .. ..- attr(*, "groups")= tibble [6 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. .. ..$ deg.casl: num [1:6] 0 1 2 3 4 5
## .. .. .. ..$ .rows : list<int> [1:6]
## .. .. .. .. ..$ : int [1:2] 1 2
## .. .. .. .. ..$ : int [1:3] 3 4 5
## .. .. .. .. ..$ : int [1:2] 6 7
## .. .. .. .. ..$ : int [1:2] 8 9
## .. .. .. .. ..$ : int [1:3] 10 11 12
## .. .. .. .. ..$ : int [1:3] 13 14 15
## .. .. .. .. ..@ ptype: int(0)
## .. .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ descTable: tibble [5 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ Params : chr [1:5] "tot" "main" "casl" "inst" ...
## .. ..$ Description: chr [1:5] "Total active degree" "Main active degree" "Casl active degree" "Onetime partners/wk" ...
## .. ..$ Method : chr [1:5] "wtd observed stats" "wtd observed stats" "wtd observed stats" "wtd observed stats" ...
## .. ..$ Levels : chr [1:5] "overall" "overall" "overall" "overall" ...
## $ npart.yr :List of 5
## ..$ tot : tibble [18 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ snap20 : num [1:18] 0 1 2 3 4 5 6 7 8 9 ...
## .. ..$ nobs : int [1:18] 89 273 88 63 46 41 28 14 23 7 ...
## .. ..$ n.wtd : num [1:18] 86.4 274.5 83.9 65 48 ...
## .. ..$ prop.wtd: num [1:18] 0.1 0.33 0.1 0.08 0.06 0.05 0.03 0.02 0.03 0.01 ...
## ..$ main :'data.frame': 6 obs. of 4 variables:
## .. ..$ mod.main: num [1:6] 0 1 2 3 4 5
## .. ..$ nobs : num [1:6] 584 220 26 1 1 0
## .. ..$ n.wtd : num [1:6] 591.4 210.9 27.9 1.1 0.7 ...
## .. ..$ prop.wtd: num [1:6] 0.71 0.25 0.03 0 0 0
## ..$ casl :'data.frame': 6 obs. of 4 variables:
## .. ..$ mod.casl: num [1:6] 0 1 2 3 4 5
## .. ..$ nobs : int [1:6] 316 256 121 68 57 14
## .. ..$ n.wtd : num [1:6] 308.8 254.6 124 70.8 58.3 ...
## .. ..$ prop.wtd: num [1:6] 0.37 0.31 0.15 0.09 0.07 0.02
## ..$ inst : tibble [21 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ ot20 : num [1:21] 0 1 2 3 4 5 6 7 8 9 ...
## .. ..$ nobs : int [1:21] 382 118 54 57 24 19 18 18 12 10 ...
## .. ..$ n.wtd : num [1:21] 380.8 125.7 50.8 54.9 24 ...
## .. ..$ prop.wtd: num [1:21] 0.46 0.15 0.06 0.07 0.03 0.02 0.02 0.02 0.01 0.01 ...
## ..$ descTable: tibble [4 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ Params : chr [1:4] "tot" "main" "casl" "inst"
## .. ..$ Description: chr [1:4] "Total partners last yr" "Main partners last yr" "Casl partners last yr" "Onetime partners last yr"
## .. ..$ Method : chr [1:4] "wtd observed stats" "wtd observed stats" "wtd observed stats" "wtd observed stats"
## .. ..$ Levels : chr [1:4] "overall" "overall" "overall" "overall"
## $ meandeg :List of 9
## ..$ all : tibble [6 x 9] (S3: tbl_df/tbl/data.frame)
## .. ..$ var : chr [1:6] "deg.main" "deg.casl" "deg.tot" "count.oo.wk" ...
## .. ..$ nobs : int [1:6] 832 832 832 832 832 832
## .. ..$ n.valid : int [1:6] 832 832 832 832 832 832
## .. ..$ n.missing : int [1:6] 0 0 0 0 0 0
## .. ..$ wtd.n : num [1:6] 832 832 832 832 832 832
## .. ..$ wtd.mean : num [1:6] 0.2869 0.9249 1.2118 0.0582 6.6401 ...
## .. ..$ wtd.sd : num [1:6] 0.507 1.143 1.201 0.258 12.562 ...
## .. ..$ wtd.semean: num [1:6] 0.01758 0.03962 0.04164 0.00896 0.4355 ...
## .. ..$ wtd.median: Named num [1:6] 0 1 1 0 2 1
## .. .. ..- attr(*, "names")= chr [1:6] "50%" "50%" "50%" "50%" ...
## ..$ age : tibble [30 x 10] (S3: tbl_df/tbl/data.frame)
## .. ..$ age.grp : num [1:30] 1 1 1 1 1 1 2 2 2 2 ...
## .. ..$ var : chr [1:30] "deg.main" "deg.casl" "deg.tot" "count.oo.wk" ...
## .. ..$ nobs : int [1:30] 126 126 126 126 126 126 252 252 252 252 ...
## .. ..$ n.valid : int [1:30] 126 126 126 126 126 126 252 252 252 252 ...
## .. ..$ n.missing : int [1:30] 0 0 0 0 0 0 0 0 0 0 ...
## .. ..$ wtd.n : num [1:30] 144 144 144 144 144 ...
## .. ..$ wtd.mean : num [1:30] 0.2889 0.3649 0.6538 0.0135 3.5146 ...
## .. ..$ wtd.sd : num [1:30] 0.455 0.727 0.786 0.116 6.221 ...
## .. ..$ wtd.semean: num [1:30] 0.03795 0.0607 0.06555 0.00967 0.51903 ...
## .. ..$ wtd.median: Named num [1:30] 0 0 1 0 1 1 0 0 1 0 ...
## .. .. ..- attr(*, "names")= chr [1:30] "50%" "50%" "50%" "50%" ...
## ..$ race : tibble [18 x 10] (S3: tbl_df/tbl/data.frame)
## .. ..$ race : chr [1:18] "B" "B" "B" "B" ...
## .. ..$ var : chr [1:18] "deg.main" "deg.casl" "deg.tot" "count.oo.wk" ...
## .. ..$ nobs : int [1:18] 30 30 30 30 30 30 94 94 94 94 ...
## .. ..$ n.valid : int [1:18] 30 30 30 30 30 30 94 94 94 94 ...
## .. ..$ n.missing : int [1:18] 0 0 0 0 0 0 0 0 0 0 ...
## .. ..$ wtd.n : num [1:18] 56 56 56 56 56 ...
## .. ..$ wtd.mean : num [1:18] 0.2435 1.4073 1.6508 0.0833 7.7907 ...
## .. ..$ wtd.sd : num [1:18] 0.507 1.626 1.684 0.279 13.172 ...
## .. ..$ wtd.semean: num [1:18] 0.0677 0.2173 0.2249 0.0372 1.7598 ...
## .. ..$ wtd.median: Named num [1:18] 0 1 1 0 4 1 0 1 1 0 ...
## .. .. ..- attr(*, "names")= chr [1:18] "50%" "50%" "50%" "50%" ...
## ..$ region : tibble [18 x 10] (S3: tbl_df/tbl/data.frame)
## .. ..$ region : chr [1:18] "EasternWA" "EasternWA" "EasternWA" "EasternWA" ...
## .. ..$ var : chr [1:18] "deg.main" "deg.casl" "deg.tot" "count.oo.wk" ...
## .. ..$ nobs : int [1:18] 105 105 105 105 105 105 409 409 409 409 ...
## .. ..$ n.valid : int [1:18] 105 105 105 105 105 105 409 409 409 409 ...
## .. ..$ n.missing : int [1:18] 0 0 0 0 0 0 0 0 0 0 ...
## .. ..$ wtd.n : num [1:18] 82.6 82.6 82.6 82.6 82.6 ...
## .. ..$ wtd.mean : num [1:18] 0.3076 0.6878 0.9955 0.0357 4.9941 ...
## .. ..$ wtd.sd : num [1:18] 0.597 0.966 1.07 0.187 7.63 ...
## .. ..$ wtd.semean: num [1:18] 0.0656 0.1063 0.1177 0.0205 0.8396 ...
## .. ..$ wtd.median: Named num [1:18] 0 0 1 0 2 1 0 1 1 0 ...
## .. .. ..- attr(*, "names")= chr [1:18] "50%" "50%" "50%" "50%" ...
## ..$ agexrace : tibble [84 x 11] (S3: tbl_df/tbl/data.frame)
## .. ..$ age.grp : num [1:84] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ race : chr [1:84] "B" "B" "B" "B" ...
## .. ..$ var : chr [1:84] "deg.main" "deg.casl" "deg.tot" "count.oo.wk" ...
## .. ..$ nobs : int [1:84] 1 1 1 1 1 1 24 24 24 24 ...
## .. ..$ n.valid : int [1:84] 1 1 1 1 1 1 24 24 24 24 ...
## .. ..$ n.missing : int [1:84] 0 0 0 0 0 0 0 0 0 0 ...
## .. ..$ wtd.n : num [1:84] 9.03 9.03 9.03 9.03 9.03 ...
## .. ..$ wtd.mean : num [1:84] NA NA NA NA NA ...
## .. ..$ wtd.sd : num [1:84] NA NA NA NA NA ...
## .. ..$ wtd.semean: num [1:84] NA NA NA NA NA ...
## .. ..$ wtd.median: num [1:84] NA NA NA NA NA NA 0 0 1 0 ...
## ..$ agexregion: tibble [90 x 11] (S3: tbl_df/tbl/data.frame)
## .. ..$ age.grp : num [1:90] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ region : chr [1:90] "EasternWA" "EasternWA" "EasternWA" "EasternWA" ...
## .. ..$ var : chr [1:90] "deg.main" "deg.casl" "deg.tot" "count.oo.wk" ...
## .. ..$ nobs : int [1:90] 24 24 24 24 24 24 49 49 49 49 ...
## .. ..$ n.valid : int [1:90] 24 24 24 24 24 24 49 49 49 49 ...
## .. ..$ n.missing : int [1:90] 0 0 0 0 0 0 0 0 0 0 ...
## .. ..$ wtd.n : num [1:90] 19.2 19.2 19.2 19.2 19.2 ...
## .. ..$ wtd.mean : num [1:90] 0.3108 0.1723 0.4831 0.0346 3.9423 ...
## .. ..$ wtd.sd : num [1:90] 0.475 0.388 0.513 0.188 7.662 ...
## .. ..$ wtd.semean: num [1:90] 0.1084 0.0884 0.117 0.0428 1.7465 ...
## .. ..$ wtd.median: Named num [1:90] 0 0 1 0 1 1 0 0 0 0 ...
## .. .. ..- attr(*, "names")= chr [1:90] "50%" "50%" "50%" "50%" ...
## ..$ makefile : chr "makeMeanDegTargets"
## ..$ datasource: chr "WHAMP + ARTnetWA"
## ..$ descTable : tibble [8 x 3] (S3: tbl_df/tbl/data.frame)
## .. ..$ Params : chr [1:8] "all" "age" "race" "region" ...
## .. ..$ Description: chr [1:8] "Mean degree by ptype" "Mean degree by ptype" "Mean degree by ptype" "Mean degree by ptype" ...
## .. ..$ Method : chr [1:8] "wtd observed stats" "wtd observed stats" "wtd observed stats" "wtd observed stats" ...
## $ makefile : chr "make_WhampNetTargets"
## $ datasource: chr "WHAMP + ARTnetWA"
## $ descTable : tibble [5 x 4] (S3: tbl_df/tbl/data.frame)
## ..$ Params : chr [1:5] "deg.dists" "npart.yr" "meandeg" "makefile" ...
## ..$ Description: chr [1:5] "Active Deg Distns" "Partners last yr" "Mean Active Degree" "make_WhampNetTargets" ...
## ..$ Method : chr [1:5] "wtd observed stats" "wtd observed stats" "wtd observed stats" " " ...
## ..$ Levels : chr [1:5] "overall" "overall" "overall" " " ...
Descriptives
We save the stratified degree distributions as descriptives due to small cell sizes.
# Descriptives
netstats = list(tot.deg = totdeg,
main.deg = maindeg,
casl.deg = casldeg,
inst.wk = instwk,
tot.yr = totyr,
main.yr = mainyr,
casl.yr = caslyr,
inst.yr = instyr,
makefile = "make_WhampNetTargets.Rmd")
descTable <-
tibble(Params = names(netstats),
Description = c("Total active degree",
"Main active degree",
"Casl active degree",
"Onetime partners/wk",
"Total modules last yr",
"Main in modules last yr",
"Casl in modules last yr",
"Onetime partners last yr",
"source file"),
Method = c(rep("wtd observed stats", 8), " "),
Levels = c(rep("overall, and by age, race, region", 8), " "))
whamp.netstats <- c(netstats, list(descTable = descTable))
saveRDS(whamp.netstats,
file = here::here("Data", "Descriptives",
"WhampNetStats.RDS"))
descTable %>%
kable(caption= "Netstats from WHAMP survey") %>%
kable_styling(full_width=F, position="center",
bootstrap_options = c("striped"))
Netstats from WHAMP survey
|
Params
|
Description
|
Method
|
Levels
|
|
tot.deg
|
Total active degree
|
wtd observed stats
|
overall, and by age, race, region
|
|
main.deg
|
Main active degree
|
wtd observed stats
|
overall, and by age, race, region
|
|
casl.deg
|
Casl active degree
|
wtd observed stats
|
overall, and by age, race, region
|
|
inst.wk
|
Onetime partners/wk
|
wtd observed stats
|
overall, and by age, race, region
|
|
tot.yr
|
Total modules last yr
|
wtd observed stats
|
overall, and by age, race, region
|
|
main.yr
|
Main in modules last yr
|
wtd observed stats
|
overall, and by age, race, region
|
|
casl.yr
|
Casl in modules last yr
|
wtd observed stats
|
overall, and by age, race, region
|
|
inst.yr
|
Onetime partners last yr
|
wtd observed stats
|
overall, and by age, race, region
|
|
makefile
|
source file
|
|
|
print("Structure of output object:")
## [1] "Structure of output object:"
str(whamp.netstats)
## List of 10
## $ tot.deg :List of 4
## ..$ all : tibble [6 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ deg.tot : num [1:6] 0 1 2 3 4 5
## .. ..$ nobs : int [1:6] 250 359 100 74 38 11
## .. ..$ n.wtd : num [1:6] 252.2 349.6 98.1 79.4 39.1 ...
## .. ..$ prop.wtd: num [1:6] 0.3 0.42 0.12 0.1 0.05 0.02
## ..$ age : grouped_df [28 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.tot : num [1:28] 0 0 0 0 0 1 1 1 1 1 ...
## .. ..$ age.grp : num [1:28] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..$ nobs : int [1:28] 54 80 40 40 36 64 107 78 64 46 ...
## .. ..$ n.wtd : num [1:28] 67 64.4 40.2 41.8 38.8 67.7 89.7 77.9 65.5 48.9 ...
## .. ..$ prop.wtd: num [1:28] 0.47 0.3 0.23 0.27 0.26 0.47 0.42 0.44 0.43 0.33 ...
## .. ..- attr(*, "groups")= tibble [5 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ age.grp: num [1:5] 1 2 3 4 5
## .. .. ..$ .rows : list<int> [1:5]
## .. .. .. ..$ : int [1:5] 1 6 11 16 21
## .. .. .. ..$ : int [1:5] 2 7 12 17 22
## .. .. .. ..$ : int [1:6] 3 8 13 18 23 26
## .. .. .. ..$ : int [1:6] 4 9 14 19 24 27
## .. .. .. ..$ : int [1:6] 5 10 15 20 25 28
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ race : grouped_df [18 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.tot : num [1:18] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ race : chr [1:18] "B" "H" "O" "B" ...
## .. ..$ nobs : int [1:18] 9 31 210 7 37 315 4 9 87 6 ...
## .. ..$ n.wtd : num [1:18] 21.9 32.5 197.7 8.3 34.4 ...
## .. ..$ prop.wtd: num [1:18] 0.39 0.35 0.29 0.15 0.37 0.45 0.11 0.09 0.12 0.21 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ race : chr [1:3] "B" "H" "O"
## .. .. ..$ .rows: list<int> [1:3]
## .. .. .. ..$ : int [1:6] 1 4 7 10 13 16
## .. .. .. ..$ : int [1:6] 2 5 8 11 14 17
## .. .. .. ..$ : int [1:6] 3 6 9 12 15 18
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ region: grouped_df [18 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.tot : num [1:18] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ region : chr [1:18] "EasternWA" "King" "WesternWA" "EasternWA" ...
## .. ..$ nobs : int [1:18] 41 107 102 41 181 137 13 62 25 8 ...
## .. ..$ n.wtd : num [1:18] 31.9 135.3 85 31.5 201.4 ...
## .. ..$ prop.wtd: num [1:18] 0.39 0.29 0.31 0.38 0.43 0.42 0.11 0.14 0.08 0.1 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ region: chr [1:3] "EasternWA" "King" "WesternWA"
## .. .. ..$ .rows : list<int> [1:3]
## .. .. .. ..$ : int [1:6] 1 4 7 10 13 16
## .. .. .. ..$ : int [1:6] 2 5 8 11 14 17
## .. .. .. ..$ : int [1:6] 3 6 9 12 15 18
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## $ main.deg :List of 4
## ..$ all : tibble [4 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ deg.main: num [1:4] 0 1 2 3
## .. ..$ nobs : int [1:4] 609 206 16 1
## .. ..$ n.wtd : num [1:4] 613.9 198.7 18.3 1.1
## .. ..$ prop.wtd: num [1:4] 0.74 0.24 0.02 0
## ..$ age : grouped_df [15 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.main: num [1:15] 0 0 0 0 0 1 1 1 1 1 ...
## .. ..$ age.grp : num [1:15] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..$ nobs : int [1:15] 86 161 127 121 114 40 86 35 24 21 ...
## .. ..$ n.wtd : num [1:15] 102 132 132 126 122 ...
## .. ..$ prop.wtd: num [1:15] 0.71 0.62 0.75 0.82 0.83 0.29 0.36 0.2 0.16 0.15 ...
## .. ..- attr(*, "groups")= tibble [5 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ age.grp: num [1:5] 1 2 3 4 5
## .. .. ..$ .rows : list<int> [1:5]
## .. .. .. ..$ : int [1:2] 1 6
## .. .. .. ..$ : int [1:3] 2 7 11
## .. .. .. ..$ : int [1:4] 3 8 12 15
## .. .. .. ..$ : int [1:3] 4 9 13
## .. .. .. ..$ : int [1:3] 5 10 14
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ race : grouped_df [10 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.main: num [1:10] 0 0 0 1 1 1 2 2 2 3
## .. ..$ race : chr [1:10] "B" "H" "O" "B" ...
## .. ..$ nobs : int [1:10] 21 70 518 8 18 180 1 6 9 1
## .. ..$ n.wtd : num [1:10] 44.3 71.1 498.5 9.8 14.1 ...
## .. ..$ prop.wtd: num [1:10] 0.79 0.77 0.73 0.18 0.15 0.26 0.03 0.08 0.01 0
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ race : chr [1:3] "B" "H" "O"
## .. .. ..$ .rows: list<int> [1:3]
## .. .. .. ..$ : int [1:3] 1 4 7
## .. .. .. ..$ : int [1:3] 2 5 8
## .. .. .. ..$ : int [1:4] 3 6 9 10
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ region: grouped_df [10 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.main: num [1:10] 0 0 0 1 1 1 2 2 2 3
## .. ..$ region : chr [1:10] "EasternWA" "King" "WesternWA" "EasternWA" ...
## .. ..$ nobs : int [1:10] 81 288 240 19 113 74 5 7 4 1
## .. ..$ n.wtd : num [1:10] 62.9 340.5 210.5 14 121.9 ...
## .. ..$ prop.wtd: num [1:10] 0.76 0.72 0.76 0.17 0.26 0.23 0.07 0.02 0.01 0
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ region: chr [1:3] "EasternWA" "King" "WesternWA"
## .. .. ..$ .rows : list<int> [1:3]
## .. .. .. ..$ : int [1:3] 1 4 7
## .. .. .. ..$ : int [1:4] 2 5 8 10
## .. .. .. ..$ : int [1:3] 3 6 9
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## $ casl.deg :List of 4
## ..$ all : tibble [6 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ deg.casl: num [1:6] 0 1 2 3 4 5
## .. ..$ nobs : int [1:6] 398 250 90 63 27 4
## .. ..$ n.wtd : num [1:6] 391.4 250.5 91.3 65 27.6 ...
## .. ..$ prop.wtd: num [1:6] 0.47 0.3 0.11 0.08 0.03 0.01
## ..$ age : grouped_df [28 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.casl: num [1:28] 0 0 0 0 0 1 1 1 1 1 ...
## .. ..$ age.grp : num [1:28] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..$ nobs : int [1:28] 91 145 64 55 43 28 60 63 54 45 ...
## .. ..$ n.wtd : num [1:28] 105.2 120.2 63.9 56.3 45.9 ...
## .. ..$ prop.wtd: num [1:28] 0.73 0.57 0.36 0.37 0.31 0.21 0.24 0.37 0.37 0.33 ...
## .. ..- attr(*, "groups")= tibble [5 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ age.grp: num [1:5] 1 2 3 4 5
## .. .. ..$ .rows : list<int> [1:5]
## .. .. .. ..$ : int [1:5] 1 6 11 16 21
## .. .. .. ..$ : int [1:5] 2 7 12 17 22
## .. .. .. ..$ : int [1:6] 3 8 13 18 23 26
## .. .. .. ..$ : int [1:6] 4 9 14 19 24 27
## .. .. .. ..$ : int [1:6] 5 10 15 20 25 28
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ race : grouped_df [17 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.casl: num [1:17] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ race : chr [1:17] "B" "H" "O" "B" ...
## .. ..$ nobs : int [1:17] 13 46 339 4 26 220 7 12 71 3 ...
## .. ..$ n.wtd : num [1:17] 26.2 44.4 320.7 5.2 27.9 ...
## .. ..$ prop.wtd: num [1:17] 0.47 0.48 0.47 0.09 0.3 0.32 0.19 0.11 0.1 0.13 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ race : chr [1:3] "B" "H" "O"
## .. .. ..$ .rows: list<int> [1:3]
## .. .. .. ..$ : int [1:6] 1 4 7 10 13 16
## .. .. .. ..$ : int [1:5] 2 5 8 11 14
## .. .. .. ..$ : int [1:6] 3 6 9 12 15 17
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ region: grouped_df [17 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ deg.casl: num [1:17] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ region : chr [1:17] "EasternWA" "King" "WesternWA" "EasternWA" ...
## .. ..$ nobs : int [1:17] 61 182 155 26 132 92 11 55 24 6 ...
## .. ..$ n.wtd : num [1:17] 46.3 215.9 129.1 22.6 148.2 ...
## .. ..$ prop.wtd: num [1:17] 0.56 0.46 0.47 0.27 0.31 0.29 0.1 0.13 0.08 0.06 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ region: chr [1:3] "EasternWA" "King" "WesternWA"
## .. .. ..$ .rows : list<int> [1:3]
## .. .. .. ..$ : int [1:5] 1 4 7 10 15
## .. .. .. ..$ : int [1:6] 2 5 8 11 13 16
## .. .. .. ..$ : int [1:6] 3 6 9 12 14 17
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## $ inst.wk :List of 4
## ..$ all : tibble [3 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ count.oo.wk: num [1:3] 0 1 2
## .. ..$ nobs : int [1:3] 788 39 5
## .. ..$ n.wtd : num [1:3] 788.5 38.5 5
## .. ..$ prop.wtd : num [1:3] 0.95 0.05 0.01
## ..$ age : grouped_df [13 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ count.oo.wk: num [1:13] 0 0 0 0 0 1 1 1 1 1 ...
## .. ..$ age.grp : num [1:13] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..$ nobs : int [1:13] 124 234 158 139 133 2 17 9 8 3 ...
## .. ..$ n.wtd : num [1:13] 142 195 165 145 142 ...
## .. ..$ prop.wtd : num [1:13] 0.99 0.92 0.93 0.95 0.96 0.01 0.07 0.06 0.05 0.02 ...
## .. ..- attr(*, "groups")= tibble [5 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ age.grp: num [1:5] 1 2 3 4 5
## .. .. ..$ .rows : list<int> [1:5]
## .. .. .. ..$ : int [1:2] 1 6
## .. .. .. ..$ : int [1:3] 2 7 11
## .. .. .. ..$ : int [1:3] 3 8 12
## .. .. .. ..$ : int [1:2] 4 9
## .. .. .. ..$ : int [1:3] 5 10 13
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ race : grouped_df [7 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ count.oo.wk: num [1:7] 0 0 0 1 1 1 2
## .. ..$ race : chr [1:7] "B" "H" "O" "B" ...
## .. ..$ nobs : int [1:7] 26 89 673 4 5 30 5
## .. ..$ n.wtd : num [1:7] 51.4 87.6 649.6 4.7 5.3 ...
## .. ..$ prop.wtd : num [1:7] 0.92 0.94 0.95 0.08 0.06 0.04 0.01
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ race : chr [1:3] "B" "H" "O"
## .. .. ..$ .rows: list<int> [1:3]
## .. .. .. ..$ : int [1:2] 1 4
## .. .. .. ..$ : int [1:2] 2 5
## .. .. .. ..$ : int [1:3] 3 6 7
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ region: grouped_df [8 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ count.oo.wk: num [1:8] 0 0 0 1 1 1 2 2
## .. ..$ region : chr [1:8] "EasternWA" "King" "WesternWA" "EasternWA" ...
## .. ..$ nobs : int [1:8] 102 383 303 3 24 12 2 3
## .. ..$ n.wtd : num [1:8] 79.6 444.6 264.3 2.9 25.1 ...
## .. ..$ prop.wtd : num [1:8] 0.96 0.94 0.95 0.04 0.05 0.04 0 0.01
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ region: chr [1:3] "EasternWA" "King" "WesternWA"
## .. .. ..$ .rows : list<int> [1:3]
## .. .. .. ..$ : int [1:2] 1 4
## .. .. .. ..$ : int [1:3] 2 5 7
## .. .. .. ..$ : int [1:3] 3 6 8
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## $ tot.yr :List of 4
## ..$ all : tibble [18 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ snap20 : num [1:18] 0 1 2 3 4 5 6 7 8 9 ...
## .. ..$ nobs : int [1:18] 89 273 88 63 46 41 28 14 23 7 ...
## .. ..$ n.wtd : num [1:18] 86.4 274.5 83.9 65 48 ...
## .. ..$ prop.wtd: num [1:18] 0.1 0.33 0.1 0.08 0.06 0.05 0.03 0.02 0.03 0.01 ...
## ..$ age : grouped_df [75 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ snap20 : num [1:75] 0 0 0 0 0 1 1 1 1 1 ...
## .. ..$ age.grp : num [1:75] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..$ nobs : int [1:75] 17 20 19 16 17 48 98 47 44 36 ...
## .. ..$ n.wtd : num [1:75] 17.7 14.8 18.1 17.7 18.2 58.4 82.6 48.5 46.2 38.8 ...
## .. ..$ prop.wtd: num [1:75] 0.12 0.07 0.1 0.12 0.12 0.41 0.39 0.27 0.3 0.26 ...
## .. ..- attr(*, "groups")= tibble [5 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ age.grp: num [1:5] 1 2 3 4 5
## .. .. ..$ .rows : list<int> [1:5]
## .. .. .. ..$ : int [1:14] 1 6 11 16 21 26 31 36 41 46 ...
## .. .. .. ..$ : int [1:15] 2 7 12 17 22 27 32 37 42 47 ...
## .. .. .. ..$ : int [1:17] 3 8 13 18 23 28 33 38 43 48 ...
## .. .. .. ..$ : int [1:15] 4 9 14 19 24 29 34 39 44 53 ...
## .. .. .. ..$ : int [1:14] 5 10 15 20 25 30 35 40 45 49 ...
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ race : grouped_df [43 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ snap20 : num [1:43] 0 0 1 1 1 2 2 2 3 3 ...
## .. ..$ race : chr [1:43] "H" "O" "B" "H" ...
## .. ..$ nobs : int [1:43] 7 82 7 32 234 2 10 76 2 13 ...
## .. ..$ n.wtd : num [1:43] 9.3 77.2 17.1 31.8 225.6 ...
## .. ..$ prop.wtd: num [1:43] 0.1 0.11 0.3 0.34 0.33 0.04 0.09 0.11 0.11 0.13 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ race : chr [1:3] "B" "H" "O"
## .. .. ..$ .rows: list<int> [1:3]
## .. .. .. ..$ : int [1:9] 3 6 9 12 15 22 30 34 41
## .. .. .. ..$ : int [1:16] 1 4 7 10 13 16 18 20 23 25 ...
## .. .. .. ..$ : int [1:18] 2 5 8 11 14 17 19 21 24 26 ...
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ region: grouped_df [48 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ snap20 : num [1:48] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ region : chr [1:48] "EasternWA" "King" "WesternWA" "EasternWA" ...
## .. ..$ nobs : int [1:48] 14 31 44 29 147 97 16 42 30 11 ...
## .. ..$ n.wtd : num [1:48] 10 38.7 37.7 24.4 169.4 ...
## .. ..$ prop.wtd: num [1:48] 0.12 0.08 0.14 0.29 0.36 0.29 0.14 0.1 0.09 0.12 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ region: chr [1:3] "EasternWA" "King" "WesternWA"
## .. .. ..$ .rows : list<int> [1:3]
## .. .. .. ..$ : int [1:15] 1 4 7 10 13 16 19 22 25 30 ...
## .. .. .. ..$ : int [1:16] 2 5 8 11 14 17 20 23 26 28 ...
## .. .. .. ..$ : int [1:17] 3 6 9 12 15 18 21 24 27 29 ...
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## $ main.yr :List of 4
## ..$ all :'data.frame': 6 obs. of 4 variables:
## .. ..$ mod.main: num [1:6] 0 1 2 3 4 5
## .. ..$ nobs : num [1:6] 584 220 26 1 1 0
## .. ..$ n.wtd : num [1:6] 591.4 210.9 27.9 1.1 0.7 ...
## .. ..$ prop.wtd: num [1:6] 0.71 0.25 0.03 0 0 0
## ..$ age : grouped_df [17 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ mod.main: num [1:17] 0 0 0 0 0 1 1 1 1 1 ...
## .. ..$ age.grp : num [1:17] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..$ nobs : int [1:17] 81 145 127 118 113 39 99 34 27 21 ...
## .. ..$ n.wtd : num [1:17] 96.7 118.3 132.1 123.3 121 ...
## .. ..$ prop.wtd: num [1:17] 0.67 0.56 0.75 0.8 0.83 0.28 0.41 0.2 0.18 0.15 ...
## .. ..- attr(*, "groups")= tibble [5 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ age.grp: num [1:5] 1 2 3 4 5
## .. .. ..$ .rows : list<int> [1:5]
## .. .. .. ..$ : int [1:3] 1 6 11
## .. .. .. ..$ : int [1:4] 2 7 12 17
## .. .. .. ..$ : int [1:4] 3 8 13 16
## .. .. .. ..$ : int [1:3] 4 9 14
## .. .. .. ..$ : int [1:3] 5 10 15
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ race : grouped_df [11 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ mod.main: num [1:11] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ race : chr [1:11] "B" "H" "O" "B" ...
## .. ..$ nobs : int [1:11] 19 67 498 9 21 190 2 6 18 1 ...
## .. ..$ n.wtd : num [1:11] 41.9 68.8 480.7 11.4 16.5 ...
## .. ..$ prop.wtd: num [1:11] 0.75 0.74 0.7 0.2 0.18 0.27 0.05 0.08 0.03 0 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ race : chr [1:3] "B" "H" "O"
## .. .. ..$ .rows: list<int> [1:3]
## .. .. .. ..$ : int [1:3] 1 4 7
## .. .. .. ..$ : int [1:3] 2 5 8
## .. .. .. ..$ : int [1:5] 3 6 9 10 11
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ region: grouped_df [11 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ mod.main: num [1:11] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ region : chr [1:11] "EasternWA" "King" "WesternWA" "EasternWA" ...
## .. ..$ nobs : int [1:11] 76 279 229 21 119 80 7 10 9 1 ...
## .. ..$ n.wtd : num [1:11] 59.1 330.7 201.7 15.7 127.9 ...
## .. ..$ prop.wtd: num [1:11] 0.72 0.7 0.73 0.19 0.27 0.24 0.09 0.03 0.03 0 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ region: chr [1:3] "EasternWA" "King" "WesternWA"
## .. .. ..$ .rows : list<int> [1:3]
## .. .. .. ..$ : int [1:4] 1 4 7 11
## .. .. .. ..$ : int [1:4] 2 5 8 10
## .. .. .. ..$ : int [1:3] 3 6 9
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## $ casl.yr :List of 4
## ..$ all :'data.frame': 6 obs. of 4 variables:
## .. ..$ mod.casl: num [1:6] 0 1 2 3 4 5
## .. ..$ nobs : int [1:6] 316 256 121 68 57 14
## .. ..$ n.wtd : num [1:6] 308.8 254.6 124 70.8 58.3 ...
## .. ..$ prop.wtd: num [1:6] 0.37 0.31 0.15 0.09 0.07 0.02
## ..$ age : grouped_df [29 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ mod.casl: num [1:29] 0 0 0 0 0 1 1 1 1 1 ...
## .. ..$ age.grp : num [1:29] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..$ nobs : int [1:29] 66 123 48 43 36 37 67 60 52 40 ...
## .. ..$ n.wtd : num [1:29] 77.1 102.9 46.3 43.5 39 ...
## .. ..$ prop.wtd: num [1:29] 0.54 0.49 0.26 0.28 0.27 0.28 0.26 0.34 0.37 0.29 ...
## .. ..- attr(*, "groups")= tibble [5 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ age.grp: num [1:5] 1 2 3 4 5
## .. .. ..$ .rows : list<int> [1:5]
## .. .. .. ..$ : int [1:5] 1 6 11 16 21
## .. .. .. ..$ : int [1:6] 2 7 12 17 22 26
## .. .. .. ..$ : int [1:6] 3 8 13 18 23 27
## .. .. .. ..$ : int [1:6] 4 9 14 19 24 28
## .. .. .. ..$ : int [1:6] 5 10 15 20 25 29
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ race : grouped_df [17 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ mod.casl: num [1:17] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ race : chr [1:17] "B" "H" "O" "B" ...
## .. ..$ nobs : int [1:17] 8 35 273 7 30 219 7 17 97 2 ...
## .. ..$ n.wtd : num [1:17] 17.2 34.5 257.1 8.3 29.4 ...
## .. ..$ prop.wtd: num [1:17] 0.31 0.37 0.38 0.15 0.32 0.32 0.17 0.19 0.14 0.17 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ race : chr [1:3] "B" "H" "O"
## .. .. ..$ .rows: list<int> [1:3]
## .. .. .. ..$ : int [1:6] 1 4 7 10 13 16
## .. .. .. ..$ : int [1:5] 2 5 8 11 14
## .. .. .. ..$ : int [1:6] 3 6 9 12 15 17
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ region: grouped_df [18 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ mod.casl: num [1:18] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ region : chr [1:18] "EasternWA" "King" "WesternWA" "EasternWA" ...
## .. ..$ nobs : int [1:18] 44 148 124 28 140 88 15 65 41 8 ...
## .. ..$ n.wtd : num [1:18] 34.6 171.7 102.6 21.5 157.3 ...
## .. ..$ prop.wtd: num [1:18] 0.42 0.36 0.37 0.26 0.33 0.27 0.16 0.16 0.13 0.07 ...
## .. ..- attr(*, "groups")= tibble [3 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ region: chr [1:3] "EasternWA" "King" "WesternWA"
## .. .. ..$ .rows : list<int> [1:3]
## .. .. .. ..$ : int [1:6] 1 4 7 10 13 16
## .. .. .. ..$ : int [1:6] 2 5 8 11 14 17
## .. .. .. ..$ : int [1:6] 3 6 9 12 15 18
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## $ inst.yr :List of 4
## ..$ all : tibble [21 x 4] (S3: tbl_df/tbl/data.frame)
## .. ..$ ot20 : num [1:21] 0 1 2 3 4 5 6 7 8 9 ...
## .. ..$ nobs : int [1:21] 382 118 54 57 24 19 18 18 12 10 ...
## .. ..$ n.wtd : num [1:21] 380.8 125.7 50.8 54.9 24 ...
## .. ..$ prop.wtd: num [1:21] 0.46 0.15 0.06 0.07 0.03 0.02 0.02 0.02 0.01 0.01 ...
## ..$ age : grouped_df [87 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ ot20 : num [1:87] 0 0 0 0 0 1 1 1 1 1 ...
## .. ..$ age.grp : num [1:87] 1 2 3 4 5 1 2 3 4 5 ...
## .. ..$ nobs : int [1:87] 65 116 77 64 60 24 37 23 15 19 ...
## .. ..$ n.wtd : num [1:87] 69.7 96.6 80.9 69.3 64.2 34.4 30.1 27.2 14 20.1 ...
## .. ..$ prop.wtd: num [1:87] 0.18 0.25 0.21 0.18 0.17 0.27 0.24 0.22 0.11 0.16 ...
## .. ..- attr(*, "groups")= tibble [21 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ ot20 : num [1:21] 0 1 2 3 4 5 6 7 8 9 ...
## .. .. ..$ .rows: list<int> [1:21]
## .. .. .. ..$ : int [1:5] 1 2 3 4 5
## .. .. .. ..$ : int [1:5] 6 7 8 9 10
## .. .. .. ..$ : int [1:5] 11 12 13 14 15
## .. .. .. ..$ : int [1:5] 16 17 18 19 20
## .. .. .. ..$ : int [1:4] 21 22 23 24
## .. .. .. ..$ : int [1:5] 25 26 27 28 29
## .. .. .. ..$ : int [1:5] 30 31 32 33 34
## .. .. .. ..$ : int [1:5] 35 36 37 38 39
## .. .. .. ..$ : int [1:5] 40 41 42 43 44
## .. .. .. ..$ : int [1:5] 45 46 47 48 49
## .. .. .. ..$ : int [1:4] 50 51 52 53
## .. .. .. ..$ : int [1:4] 54 55 56 57
## .. .. .. ..$ : int [1:3] 58 59 60
## .. .. .. ..$ : int [1:4] 61 62 63 64
## .. .. .. ..$ : int [1:5] 65 66 67 68 69
## .. .. .. ..$ : int [1:2] 70 71
## .. .. .. ..$ : int 72
## .. .. .. ..$ : int [1:4] 73 74 75 76
## .. .. .. ..$ : int [1:5] 77 78 79 80 81
## .. .. .. ..$ : int 82
## .. .. .. ..$ : int [1:5] 83 84 85 86 87
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ race : grouped_df [45 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ ot20 : num [1:45] 0 0 0 1 1 1 2 2 3 3 ...
## .. ..$ race : chr [1:45] "B" "H" "O" "B" ...
## .. ..$ nobs : int [1:45] 10 40 332 5 15 98 6 48 4 10 ...
## .. ..$ n.wtd : num [1:45] 18.3 40.6 321.9 18.9 15.1 ...
## .. ..$ prop.wtd: num [1:45] 0.05 0.11 0.85 0.15 0.12 0.73 0.1 0.9 0.07 0.18 ...
## .. ..- attr(*, "groups")= tibble [21 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ ot20 : num [1:21] 0 1 2 3 4 5 6 7 8 9 ...
## .. .. ..$ .rows: list<int> [1:21]
## .. .. .. ..$ : int [1:3] 1 2 3
## .. .. .. ..$ : int [1:3] 4 5 6
## .. .. .. ..$ : int [1:2] 7 8
## .. .. .. ..$ : int [1:3] 9 10 11
## .. .. .. ..$ : int [1:3] 12 13 14
## .. .. .. ..$ : int [1:3] 15 16 17
## .. .. .. ..$ : int [1:2] 18 19
## .. .. .. ..$ : int [1:2] 20 21
## .. .. .. ..$ : int [1:3] 22 23 24
## .. .. .. ..$ : int [1:2] 25 26
## .. .. .. ..$ : int [1:2] 27 28
## .. .. .. ..$ : int 29
## .. .. .. ..$ : int [1:2] 30 31
## .. .. .. ..$ : int [1:2] 32 33
## .. .. .. ..$ : int [1:2] 34 35
## .. .. .. ..$ : int [1:2] 36 37
## .. .. .. ..$ : int 38
## .. .. .. ..$ : int 39
## .. .. .. ..$ : int [1:2] 40 41
## .. .. .. ..$ : int 42
## .. .. .. ..$ : int [1:3] 43 44 45
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## ..$ region: grouped_df [54 x 5] (S3: grouped_df/tbl_df/tbl/data.frame)
## .. ..$ ot20 : num [1:54] 0 0 0 1 1 1 2 2 2 3 ...
## .. ..$ region : chr [1:54] "EasternWA" "King" "WesternWA" "EasternWA" ...
## .. ..$ nobs : int [1:54] 49 189 144 16 49 53 5 25 24 12 ...
## .. ..$ n.wtd : num [1:54] 38.1 218 124.7 12.8 65.7 ...
## .. ..$ prop.wtd: num [1:54] 0.1 0.57 0.33 0.1 0.52 0.38 0.07 0.54 0.39 0.18 ...
## .. ..- attr(*, "groups")= tibble [21 x 2] (S3: tbl_df/tbl/data.frame)
## .. .. ..$ ot20 : num [1:21] 0 1 2 3 4 5 6 7 8 9 ...
## .. .. ..$ .rows: list<int> [1:21]
## .. .. .. ..$ : int [1:3] 1 2 3
## .. .. .. ..$ : int [1:3] 4 5 6
## .. .. .. ..$ : int [1:3] 7 8 9
## .. .. .. ..$ : int [1:3] 10 11 12
## .. .. .. ..$ : int [1:3] 13 14 15
## .. .. .. ..$ : int [1:3] 16 17 18
## .. .. .. ..$ : int [1:3] 19 20 21
## .. .. .. ..$ : int [1:3] 22 23 24
## .. .. .. ..$ : int [1:3] 25 26 27
## .. .. .. ..$ : int [1:3] 28 29 30
## .. .. .. ..$ : int [1:3] 31 32 33
## .. .. .. ..$ : int [1:3] 34 35 36
## .. .. .. ..$ : int [1:2] 37 38
## .. .. .. ..$ : int [1:2] 39 40
## .. .. .. ..$ : int [1:3] 41 42 43
## .. .. .. ..$ : int 44
## .. .. .. ..$ : int 45
## .. .. .. ..$ : int [1:3] 46 47 48
## .. .. .. ..$ : int [1:2] 49 50
## .. .. .. ..$ : int 51
## .. .. .. ..$ : int [1:3] 52 53 54
## .. .. .. ..@ ptype: int(0)
## .. .. ..- attr(*, ".drop")= logi TRUE
## $ makefile : chr "make_WhampNetTargets.Rmd"
## $ descTable: tibble [9 x 4] (S3: tbl_df/tbl/data.frame)
## ..$ Params : chr [1:9] "tot.deg" "main.deg" "casl.deg" "inst.wk" ...
## ..$ Description: chr [1:9] "Total active degree" "Main active degree" "Casl active degree" "Onetime partners/wk" ...
## ..$ Method : chr [1:9] "wtd observed stats" "wtd observed stats" "wtd observed stats" "wtd observed stats" ...
## ..$ Levels : chr [1:9] "overall, and by age, race, region" "overall, and by age, race, region" "overall, and by age, race, region" "overall, and by age, race, region" ...