Setup

Packages

library(pacman)
p_load(psych, lavaan, semPlot)

Functions

CONGO <- function(F1, F2) {
  PHI = sum(F1*F2) / sqrt(sum(F1^2)*sum(F2^2))
  return(PHI)}

CRITR <- function(n, alpha = .05) {
  df <- n - 2; CRITT <- qt(alpha/2, df, lower.tail = F)
  CRITR <- sqrt((CRITT^2)/((CRITT^2) + df ))
  return(CRITR)}

NP <- function(N, S = 2) {
  NP = 1-pnorm(qnorm(1-(N^(-6/5))/S))
  return(NP)}

FITM <- c("chisq", "df", "nPar", "cfi", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "aic", "bic")

Rationale

Some people think there’s more than one general factor of intelligence (g). Concurrent validation by using tests designed by different people administered to the same sample can help to assess whether this is true. Previous work, reviewed below, has not been kind to this hypothesis, and has, in fact, suggested that there is quite strong support for an apparently reflective g.

Two increasingly prominent formative (otherwise known as emergent) theories of intelligence - Mutualism (van der Maas et al., 2006) and Process Overlap Theory (POT; Kovacs & Conway, 2016) - lead to the expectation that this effort (especially for tests with very different content) will lead to a limited correspondence between g factors from different batteries. The former can handle that observation failing by referring to their genetic sampling model; the latter is not even a coherent theory and makes contradictory predictions in its various forms because its inventors seem to be inept when it comes to understanding the correspondence between what they say and what their statements mean for their theory. For example, the structural model of POT predicts both the ability to model executive function as a separate factor and its inextricability from within all other tasks; likewise, it predicts a finding predicated on a lack of power and, often enough, misspecifications that generated Heywood and ultra-Heywood cases (i.e., Gf = g). Many batteries, like the ASVAB, producing a g factor identical to those produced by more “fluid” batteries would thus present a problem for POT. POT is also simply ridiculous in that it predicts phenomena that do not occur, like far transfer (Detterman, 1993; Sala et al., 2019; Mutualism does not have this problem as it borrows from the Ising/Erdos-Renyi models; proof that Mutualism works with this can be found in models of mutualistic coupling which explicitly deal with self-feedback, e.g., Kievit et al., 2017; Kiev,t Hofman & Nation, 2019), and explains real phenomena like the Flynn effect as psychometrically different than what they are (i.e., invariant and showing ability transfer, and also, linked to the differentiation-dedifferentiation effect which, frankly, probably does not exist, does not psychometrically resemble the Flynn effect, and cannot explain the relatively equal rise across age groups), in addition to, without some extensive theoretical modification, opposing the existence of findings like common pathway models fitting better than independent pathway models in decent cognitive batteries (Shikishima et al., 2009; Panizzon et al., 2014). If a bifactor common pathway model fits best (and barring a theory-irrelevant statistical advantage for such a model, which may be unexpected, unlike for the phenotypic model), POT as developed presently is falsified. Advocates of POT (i.e., Kovacs) often make contradictory statements within their papers (his recent commentary on the mitochondrial theory of intelligence features advocacy for POT and a common pathway model!) or say ridiculous things (supporting Lang & Kell’s conclusions from their “more than g” work when their analysis consists of extracting factors composed largely of g variance and then seeing if those can take away from g in a regression); sometimes they (i.e., Conway) make claims that contradict what they can check with data that is (and has been) immediately available to them. An example of this latter phenomena comes from, for example, here: http://archive.vn/r9wl5. At that link, Conway commented on a study by Engelhardt and colleagues (2016) where they found a correlation of r = 0.71 between a full-scale IQ score derived from four tests and the common executive function (EF) factor from a good battery designed to test that, and r = 0.91 between the g factor from those same four tests and that same common EF factor (this is explicable by measurement error and dimensionality). He says “I think those estimates (e.g., r =.91) are inflated a bit (not a lot). The overall EF measure was *mostly* EF, but also working memory and processing speed. Important to keep in mind if you plan to model EF & g”. The correlation matrix for that study was included in the paper, so his idea was testable, and yet he did not test it. So I did. My initial investigation into this battery is linked below; it is trivial to show that the prediction made by Conway is incorrect and that he did not bother to test if it made sense (factor-analytically, it, of course, did not, since it supposes a formative model or a modeling error; perhaps this is another example of not understanding the graphical and mathematical implications of verbal statements). First, I used Engelhardt et al.’s theory-based EF model with its four factors and I modeled g as a higher-order factor over the three speed subtests, the two visuospatial subtests, and the two verbal (or Gf, although factors, of course, have arbitrary names) subtests and I found a correlation of r = 0.98 between the common EF factor and the g factor. By turning the group factor for the visuospatial and verbal subtests into a single group factor, I changed the correlation to 0.99, splitting these again and removing the working memory factor from under common EF, the correlation goes from 0.98 to 1.00; combining those group factors again, it goes up to 1.01. Keeping working memory and dropping inhibition, the corresponding correlations are 0.97 and 0.98. Removing working memory and inhibition, these become 1.00 and 1.00, and keeping them removed and - stupidly and theoretically unacceptably - making g a first-order factor without the speed indicators, the correlation becomes 0.91, and if I keep speed out and just use the two group factors, it becomes 0.98. If I go to an absurd extreme and define g as a first-order factor based on only the four subtests and define common EF similarly as a first-order factor, the correlation becomes 0.88 and if I add the speed indicators under this first-order g it becomes 0.92; removing block design and vocabulary from this strange g, it becomes 0.88, and doing the same with the opposite indicators and keeping block design and vocabulary, it’s also 0.88 (bifactor results with too few subtests for g are not easy to interpret but still produce higher correlations than the lower-order results)! Psychometric sampling error forbids taking these lower-order EF/g results seriously and, of course, a smaller g can be colored to become quite specific, although, apparently, not much (Major et al. 2011 have supported this, as have Johnson et al., 2008 and Salthouse, 2014; a coauthor of Kovacs’ has also told me that he does not understand the difference between exploratory and confirmatory factor analysis as it pertains to the subject of assessing factorial resemblance, specifically misinterpreting the results of Major et al.). POT objections should simply not be taken seriously as they are often in contradiction to available data, without a mathematical and empirical basis, and nonsensical and contradictory between the numerous different implied versions of POT. Therefore, here, I will ignore any POT considerations that entail, for example, conceptualizing a reflective model as producing strongly formative results (more likely than not contradicted, as in the above case, by testing, and thus worthless to believe and harmful to take seriously), or taking seriously findings from prior models that had (ultra-)Heywood cases, generally bizarre (mis)specification, or extremely low power (e.g., the model of study 1 in Colom et al., 2004, although, note, Roberto seems to know the WM-g correlation is not one or that close to it anymore based on some indications from his blog; see also Matzke, Dolan & Molenaar, 2010 and remarks in Major, Johnson & Deary, 2012, e.g., p. 545).

Analysis

This is divided into three parts. The first involves analyses of psychometric test relationships. Two earlier analyses can be found at https://rpubs.com/JLLJ/NJDH and https://rpubs.com/JLLJ/FRE20, one featuring two psychometric tests and the other featuring a psychometric test and an EF test (described above). The second part features the analyses from Lasker (in review), where I analyzed the correspondence the g from elementary cognitive task batteries and psychometric batteries (the definition of an elementary cognitive task is debated; in whatever case, the g factors from the former batteries are at least non-cultural and not at all expected, based on a naieve formative view emphasizing test content, to be like the g from typical psychometric batteries). The third meta-analyzes these and other results. If I am missing studies, please contact me; if you have relevant batteries to test this hypothesis, do the same. Analysis of the correspondence between g factors will proceed in the typical fashion [describe like Floyd, why higher-order hood, bifactor for dimensionality, etc.].

For the meta-analysis, I will use the estimated relationships between the g factors at baseline without modification and round values greater than one downwards to 0.999 to avoid claims of an overfitting effect (since this will tend to both improve fit and reduce the relationships between the g factors). The results are all very similar regardless of the end models I use since the factor relationships are high regardless. [In meta section, qualification about sample size effects, smaller with less, SE * g, etc.]

Intra-Psychometric

Stone (1992) n = 115

Stone (1992) performed a joint confirmatory factor analysis of the Wechsler Intelligence Scale for Children - Revised (WISC-R) and the Differential Ability Scales (DAS), the American version of the British Ability Scales (BAS). By providing his correlation matrix, he has allowed us to test if this battery - which was built to go beyond g for diagnostic purposes - produces the same g as a ‘gold-standard’ g.

lowerSTONE <-'
1                                                                               
0.63    1                                                                           
0.51    0.46    1                                                                       
0.74    0.72    0.5 1                                                                   
0.61    0.62    0.43    0.71    1                                                               
0.35    0.38    0.43    0.45    0.36    1                                                           
0.32    0.34    0.24    0.41    0.28    0.23    1                                                       
0.35    0.27    0.29    0.33    0.27    0.19    0.29    1                                                   
0.35    0.36    0.34    0.38    0.29    0.29    0.46    0.31    1                                               
0.34    0.33    0.25    0.36    0.2 0.19    0.33    0.3 0.53    1                                           
0.09    0.07    0.19    0.16    0.15    0.18    -0.04   0.13    0.12    0.18    1                                       
0.04    0.04    0.24    0.12    0   0.25    0.21    -0.02   0.22    0.06    0.31    1                                   
0.7 0.67    0.5 0.8 0.57    0.39    0.28    0.25    0.27    0.31    0.23    0.01    1                               
0.63    0.74    0.52    0.77    0.57    0.41    0.36    0.23    0.32    0.27    0.13    0   0.76    1                           
0.5 0.55    0.6 0.59    0.48    0.41    0.29    0.24    0.41    0.34    0.25    0.24    0.57    0.54    1                       
0.45    0.51    0.53    0.56    0.44    0.42    0.37    0.19    0.45    0.44    0.19    0.23    0.44    0.58    0.68    1                   
0.33    0.3 0.35    0.43    0.28    0.35    0.43    0.27    0.75    0.52    0.16    0.2 0.32    0.33    0.41    0.51    1               
0.28    0.29    0.29    0.33    0.23    0.32    0.42    0.2 0.51    0.4 0.11    0.37    0.19    0.27    0.31    0.43    0.52    1           
0.36    0.36    0.42    0.43    0.34    0.69    0.31    0.16    0.32    0.3 0.15    0.2 0.43    0.33    0.48    0.47    0.43    0.28    1       
0.41    0.41    0.26    0.48    0.34    0.16    0.26    0.25    0.3 0.31    0.05    0.13    0.33    0.37    0.33    0.34    0.29    0.29    0.2 1   
0.09    0.11    0.33    0.14    0.17    0.22    -0.04   0.15    0.2 0.23    0.44    0.02    0.09    0.15    0.23    0.26    0.31    0.09    0.22    0.11    1'

lowerSTONEWI <- '
1                                           
0.63    1                                       
0.51    0.46    1                                   
0.74    0.72    0.5 1                               
0.61    0.62    0.43    0.71    1                           
0.35    0.38    0.43    0.45    0.36    1                       
0.32    0.34    0.24    0.41    0.28    0.23    1                   
0.35    0.27    0.29    0.33    0.27    0.19    0.29    1               
0.35    0.36    0.34    0.38    0.29    0.29    0.46    0.31    1           
0.34    0.33    0.25    0.36    0.2 0.19    0.33    0.3 0.53    1       
0.09    0.07    0.19    0.16    0.15    0.18    -0.04   0.13    0.12    0.18    1   
0.04    0.04    0.24    0.12    0   0.25    0.21    -0.02   0.22    0.06    0.31    1'

lowerSTONEDAS <- '
1                               
0.76    1                           
0.57    0.54    1                       
0.44    0.58    0.68    1                   
0.32    0.33    0.41    0.51    1               
0.19    0.27    0.31    0.43    0.52    1           
0.43    0.33    0.48    0.47    0.43    0.28    1       
0.33    0.37    0.33    0.34    0.29    0.29    0.2 1   
0.09    0.15    0.23    0.26    0.31    0.09    0.22    0.11    1'

nSTONE <- 115

STONE.cor = getCov(lowerSTONE, names = c("INFO", "SIMW", "ARITH", "VOCAB", "COMP", "DIGS", "PICC", "PICA", "BLOK", "OBJA", "CODI", "MAZE", "WRDD", "SIMD", "SEQR", "MATR", "PATC", "RECD", "RECI", "RECO", "SPIN"))
STONEWI.cor = getCov(lowerSTONEWI, names = c("INFO", "SIMW", "ARITH", "VOCAB", "COMP", "DIGS", "PICC", "PICA", "BLOK", "OBJA", "CODI", "MAZE"))
STONEDAS.cor = getCov(lowerSTONEDAS, names = c("WRDD", "SIMD", "SEQR", "MATR", "PATC", "RECD", "RECI", "RECO", "SPIN"))
Parallel Analysis
fa.parallel(STONE.cor, n.obs = nSTONE)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
fa.parallel(STONEWI.cor, n.obs = nSTONE)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
fa.parallel(STONEDAS.cor, n.obs = nSTONE)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
Exploratory Factor Analyses
FATOT <- fa(STONE.cor, n.obs = nSTONE, nfactors = 3)
## Loading required namespace: GPArotation
FAWI <- fa(STONEWI.cor, n.obs = nSTONE, nfactors = 3)
FADAS <- fa(STONEDAS.cor, n.obs = nSTONE, nfactors = 2)

print(FATOT$loadings, cutoff = 0.25)
## 
## Loadings:
##       MR1    MR2    MR3   
## INFO   0.795              
## SIMW   0.820              
## ARITH  0.408         0.399
## VOCAB  0.880              
## COMP   0.725              
## DIGS                 0.443
## PICC          0.568       
## PICA          0.257       
## BLOK          0.847       
## OBJA          0.570       
## CODI                 0.546
## MAZE          0.279  0.326
## WRDD   0.878              
## SIMD   0.856              
## SEQR   0.456         0.364
## MATR   0.338  0.328  0.290
## PATC          0.790       
## RECD          0.667       
## RECI                 0.414
## RECO   0.370  0.261       
## SPIN                 0.515
## 
##                  MR1   MR2   MR3
## SS loadings    4.994 2.855 1.497
## Proportion Var 0.238 0.136 0.071
## Cumulative Var 0.238 0.374 0.445
print(FAWI$loadings, cutoff = 0.3)
## 
## Loadings:
##       MR1    MR3    MR2   
## INFO   0.773              
## SIMW   0.756              
## ARITH  0.545              
## VOCAB  0.885              
## COMP   0.838              
## DIGS   0.454              
## PICC          0.475       
## PICA          0.339       
## BLOK          0.801       
## OBJA          0.667       
## CODI                 0.338
## MAZE                 0.850
## 
##                  MR1   MR3   MR2
## SS loadings    3.235 1.450 0.992
## Proportion Var 0.270 0.121 0.083
## Cumulative Var 0.270 0.390 0.473
print(FADAS$loadings, cutoff = 0.25)
## 
## Loadings:
##      MR2    MR1   
## WRDD         0.912
## SIMD         0.810
## SEQR  0.402  0.462
## MATR  0.596  0.302
## PATC  0.820       
## RECD  0.625       
## RECI  0.441       
## RECO  0.266       
## SPIN  0.357       
## 
##                 MR2   MR1
## SS loadings    1.98 1.916
## Proportion Var 0.22 0.213
## Cumulative Var 0.22 0.433

A model with two group factors such as the suggested one for the DAS will be unidentified on its own without more constraints but the terminal values will be basically unaffected. In the combined model, there will not be an identification issue with that many factors.

Confirmatory Factor Analyses
STWI.model <- '
VIQ =~ INFO + SIMW + ARITH + VOCAB + COMP + DIGS
PIQ =~ PICC + PICA + BLOK + OBJA
FD =~ CODI + MAZE

gWI =~ VIQ + PIQ + FD'

STWI.fit <- cfa(STWI.model, sample.cov = STONE.cor, sample.nobs = nSTONE, std.lv = T)

STDA.model <- '
VIQ =~ WRDD + SIMD + SEQR + MATR + RECO
PIQ =~ SEQR + MATR + PATC + RECD + RECI + RECO + SPIN

gDAS =~ VIQ + PIQ'

STDA.fit <- suppressWarnings(cfa(STDA.model, sample.cov = STONE.cor, sample.nobs = nSTONE, std.lv = T))

round(cbind("Stone WISC" = fitMeasures(STWI.fit, FITM),
            "Stone DAS" = fitMeasures(STDA.fit, FITM)),3)
##                Stone WISC Stone DAS
## chisq              56.123    44.766
## df                 51.000    22.000
## npar               27.000    23.000
## cfi                 0.989     0.939
## rmsea               0.030     0.095
## rmsea.ci.lower      0.000     0.054
## rmsea.ci.upper      0.069     0.135
## aic              3485.386  2607.293
## bic              3559.500  2670.426

Based on a bifactor version of the same group factor structure (resultingly negative factor loadings were and are in all cases involving bifactor models, reflected; this does not change results much compared to a Schmid-Leiman transformation which leaves all loadings positive, though it does not protect them from becoming minute; cross-loadings were half-weighted with the corresponding group factor defined as the one with the higher loading), individually, these batteries produced estimated g saturations of \(\omega_h\) = 0.77 and 0.73, accompanied by estimates of aggregate \(\omega_t\) of 0.88 and 0.86, H values for g of 0.89 each, ECVs of 0.68 and 0.73, total variance explained of 0.33 and 0.36, and PUCs of 0.67 and 0.50, for the WISC-R and DAS respectively. Despite the intention to construct it with a lack of emphasis on g, the DAS appears to be at least as “general” as the WISC-R. The verbal, performance, and freedom from distractability factors in the WISC-R had H values of 0.18, 0.61, and 0.60, \(\omega_h/\omega_t\) of 0.04/0.88, 0.40/0.73, and 0.50/0.55, and explained 4, 17, and 12% of the common variance (2, 8, and 6% of the total variance). The verbal and performance factors in the DAS had H values of 0.34 and 0.56, \(\omega_h/\omega_t\) of 0.13/0.92 and 0.25/0.70, and explained 9 and 18% of the common variance (4 and 9% of the total variance). Channeling Benson et al. (2018), the WISC-R and DAS should be interpreted as measures of g.

round(cbind("Unrelated g's" = fitMeasures(STTONO.fit, FITM),
            "Related g's" = fitMeasures(STTOFR.fit, FITM)), 3)
##                Unrelated g's Related g's
## chisq                573.779     386.037
## df                   181.000     180.000
## npar                  50.000      51.000
## cfi                    0.674       0.829
## rmsea                  0.137       0.100
## rmsea.ci.lower         0.125       0.086
## rmsea.ci.upper         0.150       0.113
## aic                 6092.679    5906.937
## bic                 6229.926    6046.928

The model where the g factors are allowed to freely relate leads to a correlation of r = 1.244 and, hence, requires modification. Unfortunately, nothing I did could reasonably bring this correlation down from being >1. I settled on a model with identical VIQ and PIQ factors and the four unique residual covariances shown below. It was unnecessary to add additional ones to reduce the g factor correlation and the fit became imminently acceptable (CFI > 0.95, RMSEA < 0.06) so I stopped with them to avoid overfitting. Identical g factors were tenable and the fit in the residual covariances model yielded a correlation of r = 0.973 (95% CI: 0.922 - 1.025). Refitted as a bifactor model with the same group factors (the different PIQ and VIQ factors were merged because they were identical) and a singular g, the H value for g was 0.95, \(\omega_h/\omega_t\) was 0.81/0.94, and ECV was 0.66 (34% of the total variance). The verbal, performance, and freedom from distractability factors had H values of 0.86, 0.74, and 0.60, \(\omega_h/\omega_t\) of 0.10/0.95, 0.36/0.83, 0.50/0.54, and ECVs of 11, 16, and 7% (6, 9, and 3% of the total variance).

STTOFI.model <- '
WIVIQ =~ INFO + SIMW + ARITH + VOCAB + COMP + DIGS
WIPIQ =~ PICC + PICA + BLOK + OBJA
WIFD =~ CODI + MAZE

gWI =~ WIVIQ + WIPIQ + WIFD

DSVIQ =~ WRDD + SIMD + SEQR + MATR + RECO
DSPIQ =~ SEQR + MATR + PATC + RECD + RECI + RECO + SPIN

gDAS =~ DSVIQ + DSPIQ

gWI ~~ 1*gDAS

WIVIQ ~~ 1*DSVIQ 
WIPIQ ~~ 1*DSPIQ

ARITH ~~ SEQR
DIGS ~~ RECI 
BLOK ~~ PATC 
CODI ~~ SPIN'

STTOFI.fit <- cfa(STTOFI.model, sample.cov = STONE.cor, sample.nobs = nSTONE, std.lv = T, check.gradient = F, control = list(rel.tol = 1e-4))

round(cbind("Unrelated g's" = fitMeasures(STTONO.fit, FITM),
            "Related g's" = fitMeasures(STTOFR.fit, FITM),
            "Group Factors" = fitMeasures(STTOGF.fit, FITM),
            "Residual Covs" = fitMeasures(STTORC.fit, FITM),
            "Identical g's" = fitMeasures(STTOFI.fit, FITM)), 3)
##                Unrelated g's Related g's Group Factors Residual Covs
## chisq                573.779     386.037       325.234       232.076
## df                   181.000     180.000       180.000       176.000
## npar                  50.000      51.000        51.000        55.000
## cfi                    0.674       0.829         0.879         0.953
## rmsea                  0.137       0.100         0.084         0.053
## rmsea.ci.lower         0.125       0.086         0.069         0.032
## rmsea.ci.upper         0.150       0.113         0.098         0.070
## aic                 6092.679    5906.937      5846.134      5760.975
## bic                 6229.926    6046.928      5986.125      5911.947
##                Identical g's
## chisq                237.194
## df                   177.000
## npar                  54.000
## cfi                    0.950
## rmsea                  0.054
## rmsea.ci.lower         0.034
## rmsea.ci.upper         0.072
## aic                 5764.094
## bic                 5912.321
Comparison of Separate and Together Model Bifactor Loadings
WISCRTOG <- c(0.762, 0.775, 0.599, 0.892, 0.704, 0.484, 0.399, 0.278, 0.418, 0.424, 0.188, 0.127)
DASTOG <- c(0.808, 0.835, 0.697, 0.89, 0.466, 0.467, 0.379, 0.49, 0.196)
WISCRSEPG <- c(0.764, 0.73, 0.743, 0.84, 0.694, 0.55, 0.418, 0.396, 0.464, 0.393, 0.201, 0.19)
DASSEPG <- c(0.833, 0.785, 0.721, 0.849, 0.369, 0.387, 0.303, 0.491, 0.172)
WISCRTOS <- c(0.235, 0.21, 0.034, 0.247, 0.195, 0.061, 0.402, 0.265, 0.698, 0.5, 0.749, 0.404)
DASTOS <- c(0.307, 0.142, 0.115, 0.924, 0.199, 0.664, 0.506, 0.146, 0.192)
WISCRSEPS <- c(0.244, 0.285, 0.297, 0.394, 0.326, 0.066, 0.383, 0.221, 0.678, 0.508, 0.757, 0.359)
DASSEPS <- c(0.553, 0.191, 0.195, 0.528, 0.209, 0.773, 0.513, 0.311, 0.294)

TOTTOG <- c(0.762, 0.775, 0.599, 0.892, 0.704, 0.484, 0.399, 0.278, 0.418, 0.424, 0.188, 0.127, 0.808, 0.835, 0.697, 0.89, 0.466, 0.467, 0.379, 0.49, 0.196) 
TOTTOS <- c(0.235, 0.21, 0.034, 0.247, 0.195, 0.061, 0.402, 0.265, 0.698, 0.5, 0.749, 0.404, 0.307, 0.142, 0.115, 0.924, 0.199, 0.664, 0.506, 0.146, 0.192) 
TOTSEPG <- c(0.764, 0.73, 0.743, 0.84, 0.694, 0.55, 0.418, 0.396, 0.464, 0.393, 0.201, 0.19, 0.833, 0.785, 0.721, 0.849, 0.369, 0.387, 0.303, 0.491, 0.172) 
TOTSEPS <- c(0.244, 0.285, 0.297, 0.394, 0.326, 0.066, 0.383, 0.221, 0.678, 0.508, 0.757, 0.359, 0.553, 0.191, 0.195, 0.528, 0.209, 0.773, 0.513, 0.311, 0.294)

message(paste("WISC-R g Loadings: Together and Apart? Pearson = ", cor(WISCRTOG, WISCRSEPG), "Spearman = ", cor(WISCRTOG, WISCRSEPG, method = "spearman"), "Tucker = ", CONGO(WISCRTOG, WISCRSEPG)))
## WISC-R g Loadings: Together and Apart? Pearson =  0.969432432843611 Spearman =  0.923076923076923 Tucker =  0.993715214556436
message(paste("WISC-R s Loadings: Together and Apart? Pearson = ", cor(WISCRTOS, WISCRSEPS), "Spearman = ", cor(WISCRTOS, WISCRSEPS, method = "spearman"), "Tucker = ", CONGO(WISCRTOS, WISCRSEPS)))
## WISC-R s Loadings: Together and Apart? Pearson =  0.912631061472039 Spearman =  0.762237762237762 Tucker =  0.971799830240587
message(paste("DAS g Loadings: Together and Apart? Pearson = ", cor(DASTOG, DASSEPG), "Spearman = ", cor(DASTOG, DASSEPG, method = "spearman"), "Tucker = ", CONGO(DASTOG, DASSEPG)))
## DAS g Loadings: Together and Apart? Pearson =  0.985893220082474 Spearman =  0.983333333333333 Tucker =  0.996793761241971
message(paste("DAS s Loadings: Together and Apart? Pearson = ", cor(DASTOS, DASSEPS), "Spearman = ", cor(DASTOS, DASSEPS, method = "spearman"), "Tucker = ", CONGO(DASTOS, DASSEPS)))
## DAS s Loadings: Together and Apart? Pearson =  0.77270025640474 Spearman =  0.833333333333333 Tucker =  0.92174373185606
message(paste("Total g Loadings: Together and Apart? Pearson = ", cor(TOTTOG, TOTSEPG), "Spearman = ", cor(TOTTOG, TOTSEPG, method = "spearman"), "Tucker = ", CONGO(TOTTOG, TOTSEPG)))
## Total g Loadings: Together and Apart? Pearson =  0.964644096368578 Spearman =  0.936363636363636 Tucker =  0.994496974147328
message(paste("Total s Loadings: Together and Apart? Pearson = ", cor(TOTTOS, TOTSEPS), "Spearman = ", cor(TOTTOS, TOTSEPS, method = "spearman"), "Tucker = ", CONGO(TOTTOS, TOTSEPS)))
## Total s Loadings: Together and Apart? Pearson =  0.841343480594916 Spearman =  0.824675324675325 Tucker =  0.947912921560121

The WISC-R and DAS, separately and together, are primarily measures of one and the same g and, furthermore, psychometric sampling has a substantially greater effect on group factor loadings compared to g loadings. Like Thorndike, Jensen, Brody, and various others, it is reasonable to conclude that g - but perhaps not s - loadings are substantially a property of the indicator rather than the set of indicators they are analyzed with. Under POT, there should be no difference between the stability for these types of factors for substantive reasons and based on the mathematically improper verbal descriptions of factor analytic methods by POT theorists. At this point, I will stop mentioning POT because it is clearly not, presently, a viable explanation for important phenomena surrounding g (although, curiously, when it was presented, it was given as an explanation for much less important phenomena!) and the following results are unlikely to change that. Similar to this result, I recently found that the WISC-R and the Kaufman ABC (K-ABC) also produced the same g (linked above). Their dimensionality will be described below.

Byrd & Buckhalt (1991) n = 46

lowerBB <- '
1                                                               
0   1                                                           
0.67    0.07    1                                                       
0.39    0.02    0.42    1                                                   
0.35    0.31    0.36    0.31    1                                               
0.45    0.25    0.45    0.51    0.47    1                                           
0.41    0.01    0.67    0.25    0.38    0.4 1                                       
0   0.5 0.04    -0.15   -0.03   0.07    0.13    1                                   
0.52    -0.04   0.73    0.26    0.34    0.38    0.71    0.12    1                               
0.1 -0.33   0.19    0.4 -0.07   0.21    0.27    0.02    0.28    1                           
0.31    0.06    0.32    0.09    0.62    0.36    0.48    0.13    0.51    0.19    1                       
0.34    0.07    0.32    0.21    0.34    0.63    0.44    0.2 0.42    0.24    0.59    1                   
0.42    0.13    0.62    0.36    0.47    0.57    0.6 0.29    0.62    0.3 0.63    0.72    1               
0.34    0.13    0.43    0.37    0.34    0.57    0.51    0.31    0.5 0.43    0.56    0.72    0.85    1           
0.49    0.12    0.44    0.4 0.49    0.7 0.45    0.13    0.35    0.08    0.44    0.61    0.58    0.55    1       
0.27    0.1 0.61    0.23    0.44    0.37    0.56    0.09    0.63    0.2 0.41    0.4 0.58    0.45    0.5 1   
0.29    0.19    0.38    0.41    0.41    0.66    0.46    0.15    0.38    0.37    0.51    0.67    0.84    0.84    0.68    0.48    1'

lowerBBWR <- '
1                   
0   1               
0.67    0.07    1           
0.39    0.02    0.42    1       
0.35    0.31    0.36    0.31    1   
0.45    0.25    0.45    0.51    0.47    1'

lowerBBDS <- '
1                                       
0.13    1                                   
0.71    0.12    1                               
0.27    0.02    0.28    1                           
0.48    0.13    0.51    0.19    1                       
0.44    0.2 0.42    0.24    0.59    1                   
0.6 0.29    0.62    0.3 0.63    0.72    1               
0.51    0.31    0.5 0.43    0.56    0.72    0.85    1           
0.45    0.13    0.35    0.08    0.44    0.61    0.58    0.55    1       
0.56    0.09    0.63    0.2 0.41    0.4 0.58    0.45    0.5 1   
0.46    0.15    0.38    0.37    0.51    0.67    0.84    0.84    0.68    0.48    1'

nBB <- 46

BB.cor = getCov(lowerBB, names = c("SIM", "CODG", "VOC", "DS", "BD", "ARTH", "SIMD", "SOIP", "WDEF", "RDIG", "PATC", "BNUM", "READ", "SPELL", "MATH", "READS", "SPELLS"))

BBWR.cor = getCov(lowerBBWR, names = c("SIM", "CODG", "VOC", "DS", "BD", "ARTH"))

BBDS.cor = getCov(lowerBBDS, names = c("SIMD", "SOIP", "WDEF", "RDIG", "PATC", "BNUM", "READ", "SPELL", "MATH", "READS", "SPELLS"))
Parallel Analysis
fa.parallel(BB.cor, n.obs = nBB)

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
fa.parallel(BBWR.cor, n.obs = nBB)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
fa.parallel(BBDS.cor, n.obs = nBB)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## An ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
Exploratory Factor Analyses
BB <- fa(BB.cor, n.obs = nBB)
BBWR <- fa(BBWR.cor, n.obs = nBB)
BBDS <- fa(BBDS.cor, n.obs = nBB, nfactors = 2)

print(BB$loadings)
## 
## Loadings:
##        MR1  
## SIM    0.554
## CODG   0.142
## VOC    0.691
## DS     0.458
## BD     0.562
## ARTH   0.719
## SIMD   0.700
## SOIP   0.181
## WDEF   0.698
## RDIG   0.323
## PATC   0.649
## BNUM   0.731
## READ   0.908
## SPELL  0.820
## MATH   0.731
## READS  0.655
## SPELLS 0.809
## 
##                  MR1
## SS loadings    7.032
## Proportion Var 0.414
print(BBWR$loadings)
## 
## Loadings:
##      MR1  
## SIM  0.705
## CODG 0.188
## VOC  0.732
## DS   0.591
## BD   0.562
## ARTH 0.726
## 
##                  MR1
## SS loadings    2.262
## Proportion Var 0.377
print(BBDS$loadings, cutoff = 0.2)
## 
## Loadings:
##        MR1    MR2   
## SIMD           0.675
## SOIP    0.264       
## WDEF           0.970
## RDIG    0.270       
## PATC    0.467  0.275
## BNUM    0.787       
## READ    0.795  0.209
## SPELL   0.915       
## MATH    0.632       
## READS   0.215  0.555
## SPELLS  0.985       
## 
##                  MR1   MR2
## SS loadings    3.894 1.858
## Proportion Var 0.354 0.169
## Cumulative Var 0.354 0.523
Confirmatory Factor Analyses
BBWR.model <- '
F1 =~ SIM + VOC + DS
F2 =~ CODG + BD + ARTH
gWR =~ F1 + F2'

BBDS.model <- '
F3 =~ SOIP + RDIG + PATC + BNUM + READ + SPELL + MATH + SPELLS
F4 =~ SIMD + WDEF + READS
gDS =~ F3 + F4'

BBWR.fit <- suppressWarnings(cfa(BBWR.model, sample.cov = BB.cor, sample.nobs = nBB, std.lv = T))
BBDS.fit <- suppressWarnings(cfa(BBDS.model, sample.cov = BB.cor, sample.nobs = nBB, std.lv = T))

round(cbind("BB WISC-R" = fitMeasures(BBWR.fit, FITM),
            "BB DAS and SAT" = fitMeasures(BBDS.fit, FITM)), 3)
##                BB WISC-R BB DAS and SAT
## chisq              9.065         53.961
## df                 7.000         42.000
## npar              14.000         24.000
## cfi                0.967          0.960
## rmsea              0.080          0.079
## rmsea.ci.lower     0.000          0.000
## rmsea.ci.upper     0.209          0.135
## aic              735.880       1172.507
## bic              761.481       1216.394
BBFI.model <- '
F1 =~ SIM + VOC + DS
F2 =~ CODG + BD + ARTH

gWR =~ F1 + F2

F3 =~ SOIP + RDIG + PATC + BNUM + READ + SPELL + MATH + SPELLS
F4 =~ SIMD + WDEF + READS

gDS =~ F3 + F4

gWR ~~ 1*gDS

BD ~~ PATC 
ARTH ~~ BNUM
VOC ~~ READ + SIMD + WDEF + READS
CODG ~~ SOIP + RDIG + READ + SPELL + MATH'

BBFI.fit <- suppressWarnings(cfa(BBFI.model, sample.cov = BB.cor, sample.nobs = nBB, std.lv = T))

round(cbind("No correlation" = fitMeasures(BBNO.fit, FITM),
            "Freely Correlated" = fitMeasures(BBFR.fit, FITM),
            "Residual Covariances" = fitMeasures(BBRC.fit, FITM),
            "Identical" = fitMeasures(BBFI.fit, FITM)), 3)
##                No correlation Freely Correlated Residual Covariances Identical
## chisq                 285.766           244.075              144.574   147.302
## df                    115.000           114.000              103.000   104.000
## npar                   38.000            39.000               50.000    49.000
## cfi                     0.671             0.750                0.920     0.917
## rmsea                   0.180             0.157                0.094     0.095
## rmsea.ci.lower          0.154             0.130                0.054     0.056
## rmsea.ci.upper          0.206             0.185                0.128     0.129
## aic                  1908.386          1868.695             1791.194  1791.922
## bic                  1977.875          1940.012             1882.626  1881.525

The initial correlation is r = 1.048. With some modification, this could be reduced to r = 0.868. This reduction overstates the reality, however, because it makes the theta matrix non-positive definite. Since a model with such an error didn’t even generate a significant \(\chi^2\) change with the g correlation being constrained to one, it’s unlikely a smaller change would cause a proble, and thus, the two g factors can be safely regarded as identical.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do: Have not assessed yet.

Tirre & Field (2002) n = 329 (BAB - CAB)

lowerTFBC <-'
1                                                                                       
0.04    1                                                                                   
0   0.08    1                                                                               
0.41    0.04    -0.07   1                                                                           
0.09    0.33    -0.1    0.02    1                                                                       
0.13    0.19    0.19    0.13    0.06    1                                                                   
0.17    -0.02   -0.11   0.38    0.11    0.05    1                                                               
0.35    0.11    0.12    0.15    0.28    0.36    0.06    1                                                           
0.25    0.12    0.12    0.11    0.34    0.35    0.04    0.65    1                                                       
0.2 0.07    -0.08   0.2 0.13    0.11    0.19    0.22    0.21    1                                                   
0.32    -0.02   -0.04   0.23    0.2 0.2 0.11    0.34    0.41    0.27    1                                               
0.19    0.37    -0.04   0.12    0.4 0.26    0.19    0.26    0.3 0.17    0.12    1                                           
0.07    0.15    -0.04   0.21    0.21    0.26    0.25    0.1 0.14    0.18    0.08    0.29    1                                       
0.23    0.11    0.06    0.2 0.15    0.08    0.07    0.13    0.07    0.07    0.14    0.17    0.06    1                                   
0.25    0.09    -0.04   0.28    0.16    -0.02   0.19    -0.01   -0.04   0.11    0.06    0.1 0.11    0.64    1                               
0   0.33    0.04    0.02    0.56    0.06    -0.02   0.17    0.26    0.15    0.11    0.32    0.23    0.19    0.15    1                           
0.2 0.11    -0.03   0.16    0.21    0.11    0.19    0.31    0.23    0.51    0.26    0.22    0.32    0.16    0.14    0.19    1                       
0.03    0.24    0.09    -0.05   0.47    0.33    -0.14   0.26    0.27    0.05    0.2 0.26    0.17    0.18    0.02    0.45    0.12    1                   
0.12    0.17    -0.05   0.14    0.2 0.1 0.15    0.22    0.19    0.34    0.15    0.22    0.26    0.16    0.13    0.22    0.57    0.18    1               
-0.03   0.08    0.05    0   0.24    0.08    -0.01   0.13    0.09    0.03    0.12    0.12    0.05    0.06    0.07    0.23    0.12    0.24    0.09    1           
0.1 0.03    -0.11   0.27    0.05    0.35    0.34    0.21    0.2 0.14    0.25    0.16    0.44    0.03    0.01    0.09    0.2 0.08    0.19    0.12    1       
-0.03   0.12    0.04    0.13    0.16    0.19    0.17    0.03    0.11    0.08    0.05    0.19    0.41    0.11    0.1 0.25    0.13    0.17    0.14    0.05    0.39    1   
0.06    0.09    0.11    0.17    0.24    0.15    0.04    0.19    0.19    0.16    0.11    0.13    0.19    0.18    0.08    0.29    0.18    0.24    0.23    0.05    0.12    0.14    1'

lowerTFBCB <- '
1                                                           
0.04    1                                                       
0   0.08    1                                                   
0.41    0.04    -0.07   1                                               
0.09    0.33    -0.1    0.02    1                                           
0.13    0.19    0.19    0.13    0.06    1                                       
0.17    -0.02   -0.11   0.38    0.11    0.05    1                                   
0.35    0.11    0.12    0.15    0.28    0.36    0.06    1                               
0.25    0.12    0.12    0.11    0.34    0.35    0.04    0.65    1                           
0.2 0.07    -0.08   0.2 0.13    0.11    0.19    0.22    0.21    1                       
0.32    -0.02   -0.04   0.23    0.2 0.2 0.11    0.34    0.41    0.27    1                   
0.19    0.37    -0.04   0.12    0.4 0.26    0.19    0.26    0.3 0.17    0.12    1               
0.07    0.15    -0.04   0.21    0.21    0.26    0.25    0.1 0.14    0.18    0.08    0.29    1           
0.23    0.11    0.06    0.2 0.15    0.08    0.07    0.13    0.07    0.07    0.14    0.17    0.06    1       
0.25    0.09    -0.04   0.28    0.16    -0.02   0.19    -0.01   -0.04   0.11    0.06    0.1 0.11    0.64    1   
0   0.33    0.04    0.02    0.56    0.06    -0.02   0.17    0.26    0.15    0.11    0.32    0.23    0.19    0.15    1'

lowerTFBCC <- '
1                       
0.12    1                   
0.57    0.18    1               
0.12    0.24    0.09    1           
0.2 0.08    0.19    0.12    1       
0.13    0.17    0.14    0.05    0.39    1   
0.18    0.24    0.23    0.05    0.12    0.14    1'

nTFBC <- 329

TFBC.cor = getCov(lowerTFBC, names = c("CL", "IR", "WA", "WS", "PF", "VO", "IG", "NC", "NR", "AMO", "AU", "AR", "IFO", "FL", "FR", "SA", "AMT", "MA", "MM", "EJ", "IFT", "OR", "RD"))
TFBCB.cor = getCov(lowerTFBCB, names = c("CL", "IR", "WA", "WS", "PF", "VO", "IG", "NC", "NR", "AMO", "AU", "AR", "IFO", "FL", "FR", "SA"))
TFBCC.cor = getCov(lowerTFBCC, names = c("AMT", "MA", "MM", "EJ", "IFT", "OR", "RD"))
Parallel Analysis
fa.parallel(TFBC.cor, n.obs = nTFBC)

## Parallel analysis suggests that the number of factors =  7  and the number of components =  5
fa.parallel(TFBCB.cor, n.obs = nTFBC)

## Parallel analysis suggests that the number of factors =  5  and the number of components =  5
fa.parallel(TFBCC.cor, n.obs = nTFBC)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
Exploratory Factor Analyses
BCT <- fa(TFBC.cor, n.obs = nTFBC, nfactors = 7)
BCB <- fa(TFBCB.cor, n.obs = nTFBC, nfactors = 5)
BCC <- fa(TFBCC.cor, n.obs = nTFBC, nfactors = 3)

print(BCT$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR1    MR6    MR5    MR4    MR3    MR2    MR7   
## CL   0.449                              0.359       
## IR                                             0.511
## WA                                                  
## WS                                      0.392       
## PF          0.853                                   
## VO   0.408                0.321                0.308
## IG                        0.344         0.457       
## NC   0.724                                          
## NR   0.683                                          
## AMO                0.522                            
## AU   0.493                                          
## AR                                             0.465
## IFO                       0.536                     
## FL                               0.801              
## FR                               0.793              
## SA          0.593                                   
## AMT                0.914                            
## MA          0.399                      -0.394       
## MM                 0.611                            
## EJ                                                  
## IFT                       0.783                     
## OR                        0.538                     
## RD                                                  
## 
##                  MR1   MR6   MR5   MR4   MR3   MR2   MR7
## SS loadings    1.820 1.599 1.591 1.552 1.477 0.971 0.758
## Proportion Var 0.079 0.070 0.069 0.067 0.064 0.042 0.033
## Cumulative Var 0.079 0.149 0.218 0.285 0.350 0.392 0.425
print(BCB$loadings, cutoff = 0.2)
## 
## Loadings:
##     MR1    MR3    MR2    MR4    MR5   
## CL   0.405         0.225  0.296       
## IR          0.394                0.334
## WA                       -0.276  0.285
## WS                        0.578       
## PF          0.800                     
## VO   0.270                       0.574
## IG                        0.596       
## NC   0.745                            
## NR   0.752                            
## AMO  0.212                0.300       
## AU   0.535                            
## AR          0.420                0.299
## IFO         0.238         0.374  0.314
## FL                 0.813              
## FR                 0.780              
## SA          0.654                     
## 
##                  MR1   MR3   MR2   MR4   MR5
## SS loadings    1.780 1.567 1.390 1.198 0.772
## Proportion Var 0.111 0.098 0.087 0.075 0.048
## Cumulative Var 0.111 0.209 0.296 0.371 0.419
print(BCC$loadings, cutoff = 0.2)
## 
## Loadings:
##     MR1    MR2    MR3   
## AMT  0.692              
## MA          0.999       
## MM   0.824              
## EJ          0.209       
## IFT                0.928
## OR                 0.398
## RD   0.213              
## 
##                  MR1   MR2   MR3
## SS loadings    1.210 1.093 1.031
## Proportion Var 0.173 0.156 0.147
## Cumulative Var 0.173 0.329 0.476
Confirmatory Factor Analyses
TFBCB.model <- '
PMS =~ CL + VO + NC + NR + AU
SPAR =~ IR + PF + AR + SA
FD =~ FL + FR
Grw =~ WS + IG + AMO + IFO
Grea =~ IR + VO + AR + IFO

gBAB =~ PMS + SPAR + FD + Grw + Grea

CL ~~ WS + NR
AU ~~ AMO
SA ~~ IG'

TFBCC.model <- '
Gsm =~ AMT + MM + RD
Gsp =~ MA + EJ
Gflu =~ IFT + OR

gCAB =~ Gsm + Gsp + Gflu'

TFBCB.fit <- cfa(TFBCB.model, sample.cov = TFBC.cor, sample.nobs = nTFBC, std.lv = T)
TFBCC.fit <- cfa(TFBCC.model, sample.cov = TFBC.cor, sample.nobs = nTFBC, std.lv = T)

round(cbind("Tirre & Field BAB" = fitMeasures(TFBCB.fit, FITM),
            "Tirre & Field CAB" = fitMeasures(TFBCC.fit, FITM)), 3)
##                Tirre & Field BAB Tirre & Field CAB
## chisq                    182.093            22.561
## df                        77.000            11.000
## npar                      43.000            17.000
## cfi                        0.908             0.956
## rmsea                      0.064             0.057
## rmsea.ci.lower             0.052             0.021
## rmsea.ci.upper             0.077             0.090
## aic                    13013.250          6303.236
## bic                    13176.480          6367.769

The initial relationship was an all-too-high r = 1.396 (1.079 in the RC model) so modifications were due. The identity between Grw and Gsm was only added in the final model to remove non-positive definiteness (r = 1.019). The

TFBCFI.model <- '
PMS =~ CL + VO + NC + NR + AU
SPAR =~ IR + PF + AR + SA
FD =~ FL + FR
Grw =~ WS + IG + AMO + IFO
Grea =~ IR + VO + AR + IFO

gBAB =~ PMS + SPAR + FD + Grw + Grea

CL ~~ WS + NR
AU ~~ AMO
SA ~~ IG

Gsm =~ AMT + MM + RD
Gsp =~ MA + EJ
Gflu =~ IFT + OR

gCAB =~ Gsm + Gsp + Gflu

gBAB ~~ 1*gCAB

SPAR ~~ Gsp 
Grw ~~ 1*Gsm + Gsp + Gflu 
Grea ~~ Gflu

AU ~~ IFT 
AR ~~ MA + IFT 
SA ~~ RD + OR
WS ~~ AMT + MM 
IG ~~ AMT + MM + RD + MA 
AMO ~~ AMT
IFO ~~ OR

FL ~~ 0*FL'

TFBCFI.fit <- suppressWarnings(cfa(TFBCFI.model, sample.cov = TFBC.cor, sample.nobs = nTFBC, std.lv = T))

round(cbind("Unrelated g's" = fitMeasures(TFBCNO.fit, FITM),
            "Related g's" = fitMeasures(TFBCFR.fit, FITM),
            "Group Factors" = fitMeasures(TFBCGR.fit, FITM),
            "Residual Covs" = fitMeasures(TFBCRC.fit, FITM),
            "Identical g's" = fitMeasures(TFBCFI.fit, FITM)), 3)
##                Unrelated g's Related g's Group Factors Residual Covs
## chisq                766.767     584.076       450.104       345.741
## df                   193.000     192.000       187.000       175.000
## npar                  60.000      61.000        66.000        78.000
## cfi                    0.691       0.789         0.858         0.908
## rmsea                  0.095       0.079         0.065         0.054
## rmsea.ci.lower         0.088       0.072         0.058         0.046
## rmsea.ci.upper         0.102       0.086         0.073         0.063
## aic                19316.486   19135.795     19011.823     18931.460
## bic                19544.249   19367.355     19262.363     19227.552
##                Identical g's
## chisq                346.517
## df                   177.000
## npar                  76.000
## cfi                    0.909
## rmsea                  0.054
## rmsea.ci.lower         0.045
## rmsea.ci.upper         0.062
## aic                18928.236
## bic                19216.736
TFBCLAT <- list(
  PMS = c("CL", "VO", "NC", "NR", "AU"),
  SPAR = c("IR", "PF", "AR", "SA"),
  FD = c("FL", "FR"),
  Grw = c("WS", "IG", "AMO", "IFO"),
  Grea = c("IR", "VO", "AR", "IFO"),
  Gsm = c("AMT", "MM", "RD"),
  Gsp = c("MA", "EJ"),
  Gflu = c("IFT", "OR"))

semPaths(TFBCFI.fit, "model", "std", title = F, residuals = F, groups = "TFBCLAT", pastel = T, mar = c(2, 1, 3, 1), bifactor = c("gBAB", "gCAB"), layout = "tree2", exoCov = T)
## Warning in if (w <= 0) w <- 1e-07: the condition has length > 1 and only the
## first element will be used

## Warning in if (w <= 0) w <- 1e-07: the condition has length > 1 and only the
## first element will be used

## Warning in if (w <= 0) w <- 1e-07: the condition has length > 1 and only the
## first element will be used

## Warning in if (w <= 0) w <- 1e-07: the condition has length > 1 and only the
## first element will be used

Comparison of Separate and Together Model Bifactor Loadings

FD was removed in the solo model because it caused errors.

BABTOG <- c(0.285, 0.211, 0.405, 0.364, 0.342, 0.166, 0.363, 0.351, 0.358, 0.269, 0.236, 0.335, 0.332, 0.564, 0.436)
CABTOG <- c(0.746, 0.578, 0.438, 0.255, 0.151, 0.321, 0.241)
BABSEPG <- c(0.463, 0.159, 0.356, 0.372, 0.289, 0.113, 0.17, 0.138, 0.161, 0.653, 0.981, 0.36, 0.276, 0.169, 0.188)
CABSEPG <- c(0.422, 0.471, 0.312, 0.848, 0.258, 0.107, 0.184)
BABTOS <- c(0.336, 0.560, 0.664, 0.756, 0.368, 0.439, 0.702, 0.432, 0.618, 0.729, 0.791, 0.338, 0.685, 0.012, 0.531)
CABTOS <- c(0.039, 0.049, 0.109, 0.671, 0.298, 0.639, 0.482)
BABSEPS <- c(0.476, 0.576, 0.841, 0.954, 0.516, 0.491, 0.816, 0.664, 0.647, 0, 0, 0.474, 0.542, 0.362, 0.475)
CABSEPS <- c(0.684, 0.673, 0.159, 0.173, 0.019, 0.824, 0.378)

TOTTOG <- c(0.285, 0.211, 0.405, 0.364, 0.342, 0.166, 0.363, 0.351, 0.358, 0.269, 0.236, 0.335, 0.332, 0.564, 0.436, 0.746, 0.578, 0.438, 0.255, 0.151, 0.321, 0.241) 
TOTTOS <- c(0.336, 0.560, 0.664, 0.756, 0.368, 0.439, 0.702, 0.432, 0.618, 0.729, 0.791, 0.338, 0.685, 0.012, 0.531, 0.039, 0.049, 0.109, 0.671, 0.298, 0.639, 0.482) 
TOTSEPG <- c(0.463, 0.159, 0.356, 0.372, 0.289, 0.113, 0.17, 0.138, 0.161, 0.653, 0.981, 0.36, 0.276, 0.169, 0.188, 0.422, 0.471, 0.312, 0.848, 0.258, 0.107, 0.184) 
TOTSEPS <- c(0.476, 0.576, 0.841, 0.954, 0.516, 0.491, 0.816, 0.664, 0.647, 0, 0, 0.474, 0.542, 0.362, 0.475, 0.684, 0.673, 0.159, 0.173, 0.019, 0.824, 0.378)

message(paste("BAB g Loadings: Together and Apart? Pearson = ", cor(BABTOG, BABSEPG), "Spearman = ", cor(BABTOG, BABSEPG, method = "spearman"), "Tucker = ", CONGO(BABTOG, BABSEPG)))
## BAB g Loadings: Together and Apart? Pearson =  -0.298145580041359 Spearman =  -0.0678571428571429 Tucker =  0.743394743160213
message(paste("BAB s Loadings: Together and Apart? Pearson = ", cor(BABTOS, BABSEPS), "Spearman = ", cor(BABTOS, BABSEPS, method = "spearman"), "Tucker = ", CONGO(BABTOS, BABSEPS)))
## BAB s Loadings: Together and Apart? Pearson =  0.0728293984095413 Spearman =  0.221626540687094 Tucker =  0.848807090159545
message(paste("CAB g Loadings: Together and Apart? Pearson = ", cor(CABTOG, CABSEPG), "Spearman = ", cor(CABTOG, CABSEPG, method = "spearman"), "Tucker = ", CONGO(CABTOG, CABSEPG)))
## CAB g Loadings: Together and Apart? Pearson =  0.137978822612231 Spearman =  0.392857142857143 Tucker =  0.795294195943113
message(paste("CAB s Loadings: Together and Apart? Pearson = ", cor(CABTOS, CABSEPS), "Spearman = ", cor(CABTOS, CABSEPS, method = "spearman"), "Tucker = ", CONGO(CABTOS, CABSEPS)))
## CAB s Loadings: Together and Apart? Pearson =  -0.0842580032684027 Spearman =  -0.107142857142857 Tucker =  0.618918582009755
message(paste("Total g Loadings: Together and Apart? Pearson = ", cor(TOTTOG, TOTSEPG), "Spearman = ", cor(TOTTOG, TOTSEPG, method = "spearman"), "Tucker = ", CONGO(TOTTOG, TOTSEPG)))
## Total g Loadings: Together and Apart? Pearson =  -0.05643711559657 Spearman =  0.10446075663467 Tucker =  0.762285723688433
message(paste("Total s Loadings: Together and Apart? Pearson = ", cor(TOTTOS, TOTSEPS), "Spearman = ", cor(TOTTOS, TOTSEPS, method = "spearman"), "Tucker = ", CONGO(TOTTOS, TOTSEPS)))
## Total s Loadings: Together and Apart? Pearson =  0.0817085431827396 Spearman =  0.111268007825863 Tucker =  0.794119377349439

Despite producing what appeared to be the same g factor, these batteries did not produce consistent loadings. This may be attributed to the method variance of having to adjust the model to fit with a bifactor. With Schmid-Leiman-based loadings, the model did produce the same loading phenomena (i.e., stability) as thew other batteries. This is the likelier correct conclusion because it was difficult to model these batteries with a bifactor g. The other batteries did produce a stable pattern of loadings with the Schmid-Leiman transformation as well, but they were easier to model with a bifactor. Similarly, the Schmid-Leiman solution produced a clearly unidimensional model with minimally interpretable group factors but the bifactor solution (which was sub-optimal) did not clearly do so. The H values for the CAB and BAB g factors were 0.77 and 0.97 and became 0.82 when combined; the \(\omega_h/\omega_t\) were 0.47/0.73, 0.48/0.84, and 0.67/0.86, with ECVs of 0.43, 0.32, and 0.34 (19, 16, and 14% of the total variance). The Grw, Gsp, Gflu, PMS, Grea, Spar, FD, and Gsm factors had H values (solo/together) of 0.63/0.51, 0.03/0.48, 0.70/0.50, 0.93/0.71, 0.44/0.46, 0.79/0.67, 0/0.74, and 0.46/0; \(\omega_h/\omega_t\) of 0.43/0.71 | 0.11/0.74, 0.02/0.52 | 0.38/0.45, 0.54/0.57 | 0.45/0.57, 0.69/0.88 | 0.52/0.74, 0.42/0.47 | 0.43/0.58, 0.73/0.77 | 0.55/0.73, 0/0.82 | 0.70/0.78, and 0.41/0.55 | 0/0. Their ECVs/TVs were 0.30/0.14, 0.01/0.004, 0.26/0.12, 0.29/0.14, 0.08/0.04, 0.24/0.12, 0/0, and 0.09/0.04 in the solo model and 0.07/0.03, 0.06/0.03, 0.07/0.03, 0.14/0.06, 0.07/0.03, 0.14/0.06, 0.13/0.05, and 0/0 in the together model. The more sensible Schmid-Leiman solution was more unidimensional and had factors with better definitions almost across the board, although the group factors were still not, by and large, interpretable. Though it is more appropriate to report the Schmid-Leiman results, for consistency, and because of issues with proportionality constraints/tetrad violations possibly affecting all datasets (something I need to be consistent about dealing with), I report the bifactor results instead. Anyone who wants to can compute the S-L results; it only takes a few minutes. It’s worth stating that the apparent strength of the congruence approach at different levels of model-based factor similarity may indicate the limited utility of congruence coefficients.

  • To-do: Include Schmid-Leiman.

Tirre & Field (2002) n = 346 (BAB - ASVAB)

lowerTFBA <-'
1                                                                                       
0.07    1                                                                                   
0.02    0.12    1                                                                               
0.21    -0.05   0   1                                                                           
0.02    0.33    -0.05   -0.04   1                                                                       
0.1 0.26    0.05    0.14    0.3 1                                                                   
0.19    0.16    -0.06   0.37    0.11    0.29    1                                                               
0.17    0.19    0.06    0.08    0.35    0.3 0.18    1                                                           
0.1 0.33    0.11    0.01    0.5 0.42    0.17    0.55    1                                                       
0.2 0.03    -0.03   0.2 0.06    0.06    0.14    0.17    0.16    1                                                   
0.22    0   0.04    0.18    0.14    0.2 0.19    0.21    0.23    0.33    1                                               
0.05    0.33    0.08    0.09    0.36    0.32    0.14    0.32    0.41    0.13    0.17    1                                           
0.13    0.21    0.04    0.02    0.2 0.26    0.31    0.12    0.24    0.08    0.2 0.17    1                                       
-0.01   0.17    0.11    0.01    0.28    0.54    0.1 0.28    0.38    -0.02   0.14    0.26    0.21    1                                   
0.13    0.25    0.05    0.11    0.45    0.42    0.25    0.53    0.61    0.23    0.33    0.31    0.21    0.37    1                               
-0.06   0.16    0.02    0.01    0.22    0.68    0.11    0.18    0.25    0.02    0.14    0.22    0.19    0.5 0.28    1                           
0.06    0.16    -0.04   0.13    0.12    0.44    0.19    0.15    0.25    0.03    0.12    0.16    0.1 0.36    0.3 0.4 1                       
0.36    0.02    0.01    0.12    -0.02   0.06    0.1 0.28    0.18    0.19    0.13    0.03    -0.03   0.03    0.24    -0.01   0.11    1                   
0.27    -0.04   -0.01   0.19    0   0.09    0.16    0.14    0.05    0.18    0.11    0.06    -0.04   0.03    0.18    0.09    0.14    0.44    1               
0   0.16    0.03    -0.09   0.35    0.25    -0.04   0.07    0.21    -0.04   -0.02   0.13    0.19    0.35    0.28    0.24    0.15    -0.05   -0.06   1           
0.09    0.15    -0.05   0.04    0.39    0.33    0.13    0.59    0.54    0.03    0.17    0.31    0.21    0.35    0.54    0.25    0.18    0.25    0.11    0.1 1       
-0.01   0.23    -0.01   0.02    0.62    0.32    0.07    0.25    0.36    -0.03   0.05    0.28    0.28    0.42    0.47    0.26    0.19    -0.04   -0.02   0.55    0.34    1   
-0.05   0.15    0.05    -0.02   0.38    0.34    0.01    0.2 0.28    -0.09   0.01    0.23    0.19    0.43    0.31    0.32    0.21    -0.05   -0.07   0.59    0.27    0.55    1'

lowerTFBAB <- '
1                                               
0.07    1                                           
0.02    0.12    1                                       
0.21    -0.05   0   1                                   
0.02    0.33    -0.05   -0.04   1                               
0.1 0.26    0.05    0.14    0.3 1                           
0.19    0.16    -0.06   0.37    0.11    0.29    1                       
0.17    0.19    0.06    0.08    0.35    0.3 0.18    1                   
0.1 0.33    0.11    0.01    0.5 0.42    0.17    0.55    1               
0.2 0.03    -0.03   0.2 0.06    0.06    0.14    0.17    0.16    1           
0.22    0   0.04    0.18    0.14    0.2 0.19    0.21    0.23    0.33    1       
0.05    0.33    0.08    0.09    0.36    0.32    0.14    0.32    0.41    0.13    0.17    1   
0.13    0.21    0.04    0.02    0.2 0.26    0.31    0.12    0.24    0.08    0.2 0.17    1'

lowerTFBAA <- '
1                                   
0.37    1                               
0.5 0.28    1                           
0.36    0.3 0.4 1                       
0.03    0.24    -0.01   0.11    1                   
0.03    0.18    0.09    0.14    0.44    1               
0.35    0.28    0.24    0.15    -0.05   -0.06   1           
0.35    0.54    0.25    0.18    0.25    0.11    0.1 1       
0.42    0.47    0.26    0.19    -0.04   -0.02   0.55    0.34    1   
0.43    0.31    0.32    0.21    -0.05   -0.07   0.59    0.27    0.55    1'

nTFBA <- 346

TFBA.cor = getCov(lowerTFBA, names = c("CL", "IR", "WA", "WS", "PF", "VO", "IG", "NC", "NR", "AM", "AU", "ARO", "IF", "GS", "ART", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI"))

TFBAB.cor = getCov(lowerTFBAB, names = c("CL", "IR", "WA", "WS", "PF", "VO", "IG", "NC", "NR", "AM", "AU", "ARO", "IF"))

TFBAA.cor = getCov(lowerTFBAA, names = c("GS", "ART", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI"))
Parallel Analysis
fa.parallel(TFBC.cor, n.obs = nTFBC)

## Parallel analysis suggests that the number of factors =  7  and the number of components =  5
fa.parallel(TFBAB.cor, n.obs = nTFBA)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
fa.parallel(TFBAA.cor, n.obs = nTFBA)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
Exploratory Factor Analyses
BAT <- fa(TFBA.cor, n.obs = nTFBA, nfactors = 7)
BAB <- fa(TFBAB.cor, n.obs = nTFBA, nfactors = 3)
BAA <- fa(TFBAA.cor, n.obs = nTFBA, nfactors = 3)

print(BAT$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR5    MR3    MR1    MR2    MR4    MR7    MR6   
## CL                        0.407                     
## IR                                             0.799
## WA                                                  
## WS                               0.370              
## PF   0.420         0.343                            
## VO          0.765                                   
## IG                               0.890              
## NC                 0.656                            
## NR                 0.547                            
## AM                                      0.542       
## AU                                      0.635       
## ARO                                                 
## IF                                                  
## GS          0.535                                   
## ART                0.437                            
## WK          0.826                                   
## PC          0.492                                   
## NO                        0.782                     
## CS                        0.539                     
## AS   0.805                                          
## MK                 0.801                            
## MC   0.756                                          
## EI   0.644                                          
## 
##                  MR5   MR3   MR1   MR2   MR4   MR7   MR6
## SS loadings    1.957 1.916 1.862 1.192 1.082 0.957 0.922
## Proportion Var 0.085 0.083 0.081 0.052 0.047 0.042 0.040
## Cumulative Var 0.085 0.168 0.249 0.301 0.348 0.390 0.430
print(BAB$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR1    MR2    MR3   
## CL                 0.326
## IR   0.493              
## WA                      
## WS          0.363  0.309
## PF   0.649              
## VO   0.461              
## IG          0.845       
## NC   0.544              
## NR   0.803              
## AM                 0.521
## AU                 0.501
## ARO  0.543              
## IF                      
## 
##                  MR1   MR2   MR3
## SS loadings    2.236 1.046 0.828
## Proportion Var 0.172 0.080 0.064
## Cumulative Var 0.172 0.253 0.316
print(BAA$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR1    MR3    MR2   
## GS          0.537       
## ART  0.410         0.474
## WK          0.802       
## PC          0.521       
## NO                 0.693
## CS                 0.507
## AS   0.700              
## MK                 0.419
## MC   0.805              
## EI   0.690              
## 
##                  MR1   MR3   MR2
## SS loadings    1.972 1.259 1.180
## Proportion Var 0.197 0.126 0.118
## Cumulative Var 0.197 0.323 0.441
Confirmatory Factor Analyses
TFBAB.model <- '
Gf =~ IR + PF + VO + NC + NR + ARO
Grw =~ WS + IG
PMS =~ CL + AM + AU

gBAB =~ Gf + Grw + PMS'

TFASV.model <- '
TECH =~ AS + MC + EI
VERB =~ GS + WK + PC
MATH =~ ART + NO + CS + MK

gASVAB =~ TECH + VERB + MATH

NO ~~ CS'

TFBAB.fit <- cfa(TFBAB.model, sample.cov = TFBA.cor, sample.nobs = nTFBA, std.lv = T)
TFASV.fit <- cfa(TFASV.model, sample.cov = TFBA.cor, sample.nobs = nTFBA, std.lv = T)

round(cbind("Tirre & Field BAB" = fitMeasures(TFBAB.fit, FITM),
            "Tirre & Field ASVAB" = fitMeasures(TFASV.fit, FITM)), 3)
##                Tirre & Field BAB Tirre & Field ASVAB
## chisq                     84.616             104.533
## df                        41.000              31.000
## npar                      25.000              24.000
## cfi                        0.933               0.922
## rmsea                      0.055               0.083
## rmsea.ci.lower             0.039               0.066
## rmsea.ci.upper             0.072               0.101
## aic                    10220.833            8972.412
## bic                    10316.994            9064.727
TFBASVFI.model <- '
Gf =~ IR + PF + VO + NC + NR + ARO
Grw =~ WS + IG
PMS =~ CL + AM + AU

gBAB =~ Gf + Grw + PMS

TECH =~ AS + MC + EI
VERB =~ GS + WK + PC
MATH =~ ART + NO + CS + MK

gASVAB =~ TECH + VERB + MATH

NO ~~ CS

gBAB ~~ 1*gASVAB

IG ~~ 0*IG

PMS ~~ TECH

PF ~~ MC + AS + EI
VO ~~ WK + PC
NC ~~ MK
CL ~~ NO + CS + WK
VO ~~ GS
NR ~~ MK
ARO ~~ ART
AM ~~ MK'

TFBASVFI.fit <- cfa(TFBASVFI.model, sample.cov = TFBA.cor, sample.nobs = nTFBA, std.lv = T)

round(cbind("Unrelated g's" = fitMeasures(TFBASVNO.fit, FITM),
            "Related g's" = fitMeasures(TFBASVFR.fit, FITM),
            "Group Factors" = fitMeasures(TFBASVGR.fit, FITM),
            "Residual Covs" = fitMeasures(TFBASVRC.fit, FITM),
            "Identical g's" = fitMeasures(TFBASVFI.fit, FITM)), 3)
##                Unrelated g's Related g's Group Factors Residual Covs
## chisq               1001.932     729.362       708.874       340.156
## df                   183.000     182.000       182.000       168.000
## npar                  48.000      49.000        49.000        63.000
## cfi                    0.642       0.761         0.770         0.925
## rmsea                  0.114       0.093         0.091         0.054
## rmsea.ci.lower         0.107       0.086         0.084         0.046
## rmsea.ci.upper         0.121       0.100         0.099         0.063
## aic                19196.264   18925.693     18905.205     18564.488
## bic                19380.893   19114.169     19093.681     18806.814
##                Identical g's
## chisq                340.323
## df                   169.000
## npar                  62.000
## cfi                    0.925
## rmsea                  0.054
## rmsea.ci.lower         0.046
## rmsea.ci.upper         0.062
## aic                18562.654
## bic                18801.134

In the model immediately preceding the final one, the r is 0.981.

Comparison of Separate and Together Model Bifactor Loadings
  • Include Later (I’m only uploading this when I am because the study this is currently needed for does not deal with these details)

Tirre & Field (2002) n = 175 (BAB - GATB)

lowerTFBG <-'
1                                                                           
-0.04   1                                                                       
-0.05   0.07    1                                                                   
0.21    0.1 0.11    1                                                               
0.06    0.35    0.09    0.11    1                                                           
0.1 0.4 0.09    0.18    0.37    1                                                       
0.09    0.18    0.02    0.41    0.04    0.31    1                                                   
0.11    0.34    0   0.15    0.56    0.51    0.11    1                                               
0.06    0.35    0.05    0.22    0.56    0.58    0.16    0.65    1                                           
0.14    0.22    0.02    0.21    0.19    0.26    0.13    0.29    0.37    1                                       
0.18    0.06    0.02    0.19    0.25    0.26    0.15    0.41    0.44    0.35    1                                   
0.03    0.34    0.1 0.2 0.48    0.6 0.24    0.51    0.62    0.32    0.32    1                               
0.15    0.25    0.13    0.13    0.24    0.48    0.15    0.33    0.32    0.3 0.24    0.34    1                           
0.34    0.23    0   0.2 0.33    0.34    0.23    0.49    0.41    0.32    0.28    0.37    0.2 1                       
0.11    0.3 0.09    0.07    0.69    0.38    0.09    0.42    0.49    0.13    0.24    0.42    0.32    0.36    1                   
0.47    0.1 -0.07   0.2 0.34    0.06    0.05    0.19    0.23    0.17    0.23    0.16    0.2 0.45    0.47    1               
0.53    0.11    0.05    0.36    0.21    0.21    0.27    0.29    0.29    0.3 0.27    0.24    0.31    0.49    0.34    0.64    1           
0.22    0.08    0   0.45    -0.06   0.12    0.36    0.01    0.05    0.17    0.1 0.15    0.13    0.26    0.04    0.27    0.37    1       
0.16    0.14    0.12    0.16    0.36    0.27    0.06    0.19    0.23    0.22    0.3 0.3 0.26    0.17    0.29    0.31    0.26    0.13    1   
0.12    0.16    0.13    0.27    0.36    0.2 0.19    0.23    0.35    0.26    0.32    0.34    0.25    0.26    0.44    0.37    0.32    0.28    0.49    1'

lowerTFBGB <- '
1                                           
-0.04   1                                       
-0.05   0.07    1                                   
0.21    0.1 0.11    1                               
0.06    0.35    0.09    0.11    1                           
0.1 0.4 0.09    0.18    0.37    1                       
0.09    0.18    0.02    0.41    0.04    0.31    1                   
0.11    0.34    0   0.15    0.56    0.51    0.11    1               
0.06    0.35    0.05    0.22    0.56    0.58    0.16    0.65    1           
0.14    0.22    0.02    0.21    0.19    0.26    0.13    0.29    0.37    1       
0.18    0.06    0.02    0.19    0.25    0.26    0.15    0.41    0.44    0.35    1   
0.03    0.34    0.1 0.2 0.48    0.6 0.24    0.51    0.62    0.32    0.32    1'

lowerTFBGG <- '
1                           
0.2 1                       
0.32    0.36    1                   
0.2 0.45    0.47    1               
0.31    0.49    0.34    0.64    1           
0.13    0.26    0.04    0.27    0.37    1       
0.26    0.17    0.29    0.31    0.26    0.13    1   
0.25    0.26    0.44    0.37    0.32    0.28    0.49    1'

nTFBG <- 175

TFBG.cor = getCov(lowerTFBG, names = c("CL", "IR", "WA", "WS", "PF", "VO", "IG", "NC", "NR", "AM", "AU", "AR", "V", "N", "S", "P", "Q", "K", "F", "M"))

TFBGB.cor = getCov(lowerTFBGB, names = c("CL", "IR", "WA", "WS", "PF", "VO", "IG", "NC", "NR", "AM", "AU", "AR"))

TFBGG.cor = getCov(lowerTFBGG, names = c("V", "N", "S", "P", "Q", "K", "F", "M"))
Parallel Analysis
fa.parallel(TFBG.cor, n.obs = nTFBG)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  3
fa.parallel(TFBGB.cor, n.obs = nTFBG)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
fa.parallel(TFBGG.cor, n.obs = nTFBG)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
Exploratory Factor Analyses
BCG <- fa(TFBG.cor, n.obs = nTFBG, nfactors = 4)
BCGB <- fa(TFBGB.cor, n.obs = nTFBG, nfactors = 3)
BCGG <- fa(TFBGG.cor, n.obs = nTFBG, nfactors = 2)

print(BCG$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR1    MR2    MR4    MR3   
## CL         0.656              
## IR  0.462                     
## WA                            
## WS                       0.536
## PF  0.494         0.362 -0.330
## VO  0.765                     
## IG                       0.528
## NC  0.801                     
## NR  0.781                     
## AM  0.348                     
## AU  0.335                     
## AR  0.681                     
## V   0.383                     
## N   0.436  0.481              
## S   0.360         0.394       
## P          0.817              
## Q          0.726              
## K                        0.579
## F                 0.525       
## M                 0.702       
## 
##                  MR1   MR2   MR4   MR3
## SS loadings    3.545 2.104 1.322 1.322
## Proportion Var 0.177 0.105 0.066 0.066
## Cumulative Var 0.177 0.282 0.349 0.415
print(BCGB$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR1    MR2    MR3   
## CL                0.322
## IR  0.552              
## WA                     
## WS         0.563       
## PF  0.707              
## VO  0.683              
## IG         0.704       
## NC  0.738              
## NR  0.797              
## AM                     
## AU                0.548
## AR  0.725              
## 
##                  MR1   MR2   MR3
## SS loadings    3.121 0.975 0.663
## Proportion Var 0.260 0.081 0.055
## Cumulative Var 0.260 0.341 0.397
print(BCGG$loadings, cutoff = 0.25)
## 
## Loadings:
##   MR1    MR2   
## V         0.297
## N  0.585       
## S         0.446
## P  0.665       
## Q  0.891       
## K  0.369       
## F         0.633
## M         0.770
## 
##                  MR1   MR2
## SS loadings    1.794 1.308
## Proportion Var 0.224 0.163
## Cumulative Var 0.224 0.388
Confirmatory Factor Analyses
TFBGB.model <- '
Gf =~ IR + PF + VO + NC + NR + AR
Gq =~ CL + AM + AU
Gflu =~ WS + IG

gBAB =~ Gf + Gq + Gflu'

TFBGG.model <- '
PIQ =~ N + P + Q + K
VIQ =~ V + S + F + M

gGATB =~ PIQ + VIQ'

TFBGB.fit <- cfa(TFBGB.model, sample.cov = TFBG.cor, sample.nobs = nTFBG, std.lv = T)
TFBGG.fit <- suppressWarnings(cfa(TFBGG.model, sample.cov = TFBG.cor, sample.nobs = nTFBG, std.lv = T))

round(cbind("Tirre & Field BAB" = fitMeasures(TFBGB.fit, FITM),
            "Tirre & Field GATB" = fitMeasures(TFBGG.fit, FITM)), 3)
##                Tirre & Field BAB Tirre & Field GATB
## chisq                     66.003             43.321
## df                        41.000             18.000
## npar                      25.000             18.000
## cfi                        0.953              0.927
## rmsea                      0.059              0.090
## rmsea.ci.lower             0.030              0.056
## rmsea.ci.upper             0.085              0.124
## aic                     4975.885           3670.611
## bic                     5055.005           3727.577
TFBGFI.model <- '
Gf =~ IR + PF + VO + NC + NR + AR
Gq =~ CL + AM + AU
Gflu =~ WS + IG

gBAB =~ Gf + Gq + Gflu

PIQ =~ N + P + Q + K
VIQ =~ V + S + F + M

gGATB =~ PIQ + VIQ

gBAB ~~ 1*gGATB

PF ~~ S + F 
VO ~~ P + V + S
NC ~~ N 
CL ~~ N + P + Q 
WS ~~ K
IG ~~ K'

TFBGFI.fit <- cfa(TFBGFI.model, sample.cov = TFBG.cor, sample.nobs = nTFBG, std.lv = T, check.gradient = F, control = list(rel.tol = 1e-4))

round(cbind("Unrelated g's" = fitMeasures(TFBGNO.fit, FITM),
            "Related g's" = fitMeasures(TFBGFR.fit, FITM),
            "Residual Covs" = fitMeasures(TFBGRC.fit, FITM),
            "Identical g's" = fitMeasures(TFBGFI.fit, FITM)), 3)
##                Unrelated g's Related g's Residual Covs Identical g's
## chisq                523.735     430.062       226.463       230.781
## df                   147.000     146.000       135.000       136.000
## npar                  43.000      44.000        55.000        54.000
## cfi                    0.688       0.765         0.924         0.922
## rmsea                  0.121       0.105         0.062         0.063
## rmsea.ci.lower         0.110       0.094         0.048         0.049
## rmsea.ci.upper         0.132       0.117         0.076         0.077
## aic                 8646.496    8554.823      8373.224      8375.542
## bic                 8782.582    8694.073      8547.288      8546.441

With a scaled critical p value of 0.00102, the change is not significant. It is debatable whether or not these two g’s are identical, but if they are not, then the correlation in the directly preceding model is still r = 0.890. Something curious happens with this sample though. If the GATB’s g is a bifactor, the correlation rises to near-one. I am uncertain why this happens but I will assess if the interpretability indices change significantly for the GATB, perhaps indicating some sort of proportionality constraint issue.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do

Wothke et al. (1991) n = 230

lowerWKIT <-'
1                                                                                                                                                                                                                           
0.438   1                                                                                                                                                                                                                       
0.55    0.362   1                                                                                                                                                                                                                   
0.326   0.408   0.433   1                                                                                                                                                                                                               
0   0.302   0.043   0.173   1                                                                                                                                                                                                           
0.022   0.239   0.041   0.189   0.632   1                                                                                                                                                                                                       
0.438   0.304   0.222   0.221   -0.133  -0.134  1                                                                                                                                                                                                   
0.384   0.649   0.298   0.377   0.394   0.306   0.083   1                                                                                                                                                                                               
0.471   0.46    0.306   0.235   -0.026  -0.029  0.6 0.331   1                                                                                                                                                                                           
0.564   0.378   0.37    0.216   -0.041  -0.061  0.595   0.264   0.563   1                                                                                                                                                                                       
0.47    0.815   0.464   0.489   0.392   0.242   0.233   0.652   0.365   0.352   1                                                                                                                                                                                   
0.104   0.422   0.183   0.272   0.544   0.525   -0.226  0.383   -0.137  -0.091  0.428   1                                                                                                                                                                               
0.242   0.317   0.422   0.299   0.196   0.156   -0.019  0.36    0.075   0.11    0.239   0.166   1                                                                                                                                                                           
0.214   0.361   0.275   0.278   0.187   0.242   0.039   0.314   0.074   0.087   0.324   0.267   0.266   1                                                                                                                                                                       
0.145   0.404   0.286   0.406   0.281   0.299   -0.229  0.37    -0.067  -0.076  0.265   0.36    0.302   0.295   1                                                                                                                                                                   
0.232   0.432   0.323   0.3 0.264   0.192   0.118   0.411   0.273   0.217   0.347   0.217   0.346   0.187   0.213   1                                                                                                                                                               
0.309   0.323   0.28    0.171   0.073   0.019   0.12    0.218   0.185   0.224   0.29    0.103   0.196   0.208   0.153   0.166   1                                                                                                                                                           
0.578   0.272   0.616   0.353   0.144   0.112   0.164   0.43    0.223   0.418   0.356   0.069   0.348   0.22    0.239   0.275   0.204   1                                                                                                                                                       
0.479   0.628   0.374   0.395   0.301   0.234   0.164   0.531   0.377   0.292   0.632   0.194   0.218   0.109   0.208   0.296   0.211   0.34    1                                                                                                                                                   
-0.061  0.235   0.064   0.214   0.278   0.304   -0.123  0.359   0.017   -0.047  0.178   0.167   0.163   0.064   0.144   0.172   0.129   0.126   0.231   1                                                                                                                                               
0.234   0.467   0.133   0.191   0.123   0.092   0.222   0.33    0.434   0.238   0.425   0.103   0.188   0.058   0.127   0.333   0.124   0.173   0.398   0.13    1                                                                                                                                           
0.061   0.241   0.157   0.269   0.145   0.2 -0.028  0.131   0.061   0.082   0.288   0.234   0.319   0.253   0.148   0.427   0.037   0.185   0.196   0.206   0.114   1                                                                                                                                       
0.109   0.494   0.078   0.304   0.31    0.3 -0.034  0.497   0.229   0.096   0.503   0.32    0.173   0.286   0.336   0.408   0.101   0.245   0.424   0.303   0.392   0.202   1                                                                                                                                   
0.336   0.495   0.213   0.196   0.004   0.065   0.247   0.372   0.515   0.361   0.555   -0.039  0.09    0.045   0.089   0.222   0.123   0.162   0.382   0.102   0.49    0.103   0.354   1                                                                                                                               
-0.079  0.077   0.081   0.061   0.267   0.399   -0.214  0.19    -0.056  -0.127  0.166   0.331   0.134   0.164   0.375   0.175   -0.001  0.022   0.097   0.213   0.136   0.096   0.23    0.015   1                                                                                                                           
0.151   0.326   0.118   0.254   0.177   0.218   0.237   0.343   0.412   0.297   0.41    0.383   0.189   0.296   0.274   0.425   0.143   0.159   0.387   0.19    0.359   0.195   0.362   0.294   0.213   1                                                                                                                       
0.098   0.251   0.23    0.156   0.312   0.228   -0.05   0.36    0.086   0.041   0.274   0.276   0.286   0.268   0.421   0.277   0.109   0.28    0.235   0.218   0.157   0.193   0.402   0.15    0.281   0.179   1                                                                                                                   
0.241   0.257   0.377   0.298   0.282   0.286   -0.014  0.292   0.061   -0.005  0.28    0.294   0.341   0.252   0.287   0.395   0.113   0.321   0.259   0.15    0.21    0.306   0.29    0.144   0.172   0.235   0.424   1                                                                                                               
0.142   0.269   0.14    0.16    0.21    0.204   -0.096  0.349   0.003   -0.08   0.276   0.16    0.117   0.234   0.222   0.145   0.103   0.109   0.201   0.691   0.16    0.234   0.195   0.199   0.145   0.136   0.216   0.182   1                                                                                                           
0.148   0.299   0.131   0.143   0.157   0.255   0.138   0.276   0.278   0.091   0.252   0.163   0.138   0.221   0.154   0.22    0.102   0.196   0.32    0.457   0.27    0.117   0.42    0.351   0.113   0.323   0.117   0.154   0.423   1                                                                                                       
0.391   0.546   0.348   0.337   0.21    0.161   0.122   0.522   0.372   0.293   0.448   0.163   0.294   0.121   0.195   0.41    0.335   0.282   0.491   0.21    0.488   0.18    0.551   0.423   0.088   0.354   0.259   0.276   0.184   0.342   1                                                                                                   
0.33    0.397   0.332   0.217   0.067   0.034   0.401   0.292   0.529   0.444   0.306   -0.007  0.136   0.047   0.04    0.166   0.257   0.259   0.346   0.029   0.463   0.058   0.327   0.502   0.015   0.332   0.13    0.147   0.112   0.296   0.43    1                                                                                               
0.507   0.306   0.676   0.301   -0.122  -0.027  0.101   0.264   0.301   0.281   0.301   0.046   0.449   0.237   0.224   0.286   0.071   0.685   0.243   0.07    0.12    0.096   0.185   0.125   -0.057  0.109   0.193   0.256   0.019   0.019   0.381   0.204   1                                                                                           
0.046   0.081   -0.005  0.108   0.362   0.49    -0.213  0.159   -0.068  -0.13   0.158   0.295   0.139   0.061   0.207   0.076   0.104   0.043   0.238   0.204   0.208   0.116   0.201   0.086   0.464   0.212   0.127   0.123   0.107   0.1 -0.052  -0.032  -0.024  1                                                                                       
0.09    0.038   0.007   0.034   0.197   0.173   0.003   0.097   0.055   0.016   0.193   0.25    0.154   0.12    0.037   0.153   0.058   0.035   0.175   0.158   0.105   0.354   0.093   0.041   0.142   -0.026  0.128   0.231   0.129   0.057   -0.043  -0.023  -0.078  0.129   1                                                                                   
0.274   0.353   0.343   0.264   0.229   0.159   -0.134  0.283   0.05    0.006   0.305   0.243   0.456   0.241   0.466   0.241   0.224   0.434   0.343   0.21    0.172   0.417   0.42    0.073   0.23    0.071   0.453   0.422   0.09    -0.075  0.187   -0.038  0.394   0.155   0.129   1                                                                               
0.236   0.282   0.217   0.232   0.053   0.168   0.238   0.323   0.378   0.228   0.377   0.161   0.16    0.256   0.098   0.43    0.211   0.054   0.306   0.046   0.445   0.073   0.167   0.345   0.001   0.376   0.022   0.134   0.025   0.266   0.173   0.341   0.129   0.193   0.048   0.111   1                                                                           
0.183   0.213   0.048   0.016   0.161   0.228   0.058   0.026   0.145   0.066   0.248   0.142   0.116   0.094   0.059   0.201   0.14    0.099   0.187   0.041   0.335   0.07    0.178   0.223   0.127   0.288   0.098   0.144   0.014   0.086   0.195   0.281   0.051   0.143   0.108   0.05    0.262   1                                                                       
0.262   0.296   0.149   0.128   0.082   0.138   0.295   0.164   0.335   0.328   0.252   0.097   0.373   0.033   0.161   0.437   0.067   0.158   0.293   0.059   0.382   0.279   0.243   0.419   0.03    0.163   0.257   0.3 0.046   0.012   0.254   0.213   0.208   0.069   0.196   0.22    0.248   0.25    1                                                                   
0.38    0.547   0.441   0.466   -0.003  0.127   0.154   0.46    0.419   0.286   0.518   0.227   0.314   0.375   0.217   0.37    0.187   0.408   0.491   0.243   0.427   0.194   0.477   0.257   0.029   0.326   0.242   0.265   0.151   0.188   0.406   0.32    0.363   0.111   -0.006  0.307   0.303   0.175   0.233   1                                                               
-0.188  0.189   -0.107  -0.042  0.622   0.499   -0.189  0.288   -0.141  -0.089  0.435   0.788   0.077   0.354   0.39    0.244   0.175   0.086   0.233   0.29    0.062   0.203   0.21    -0.01   0.377   0.241   0.304   0.262   0.147   0.011   0.128   -0.05   0.02    0.449   0.224   0.271   0.097   0.195   0.059   0.117   1                                                           
0.257   0.216   0.269   0.124   0.005   0.093   -0.17   0.128   0.282   0.279   0.164   -0.031  0.17    -0.063  0.194   0.202   0.161   0.19    0.07    0.021   0.288   0.032   0.169   0.352   0.026   0.185   0.004   0.001   0.087   0.23    0.23    0.228   0.277   0.042   -0.072  0.235   0.183   0.133   0.106   0.207   -0.113  1                                                       
0.282   0.313   0.175   0.25    0.301   0.267   0.166   0.319   0.276   0.235   0.36    0.171   0.198   0.129   0.085   0.315   0.171   0.13    0.281   0.116   0.341   0.112   0.362   0.38    0.252   0.416   0.209   0.266   0.15    0.321   0.326   0.315   0.184   0.136   0.016   0.149   0.438   0.239   0.223   0.277   0.158   0.239   1                                                   
0.172   0.137   0.128   0.167   0.298   0.168   -0.032  0.294   0.131   0.138   0.205   0.182   0.353   0.191   0.217   0.357   0.173   0.146   0.115   0.182   0.209   0.469   0.178   0.051   0.129   0.244   0.369   0.517   0.17    0.065   0.097   0.065   0.158   0.14    0.051   0.264   0.201   0.257   0.324   0.202   0.199   0.033   0.243   1                                               
0.335   0.309   0.213   0.233   0.232   0.25    0.122   0.26    0.253   0.155   0.251   0.139   0.267   0.116   0.214   0.254   0.117   0.105   0.23    0.279   0.263   0.147   0.271   0.233   -0.035  0.249   -0.009  0.05    0.242   0.381   0.216   0.273   0.272   0.1 -0.088  0.114   0.287   0.179   0.24    0.308   0.006   0.182   0.23    0.16    1                                           
0.149   0.209   0.156   0.122   0.211   0.132   0.139   0.243   0.109   0.17    0.291   0.252   0.353   0.202   0.232   0.428   0.267   0.128   0.106   0.145   0.24    0.536   0.211   0.136   0.101   0.147   0.303   0.286   0.054   -0.013  0.119   0.084   0.127   0.108   0.169   0.355   0.008   0.252   0.23    0.102   0.178   0.084   0.202   0.363   0.091   1                                       
0.372   0.574   0.402   0.295   0.273   0.291   0.218   0.486   0.422   0.319   0.562   0.248   0.258   0.309   0.233   0.441   0.334   0.324   0.401   0.189   0.329   0.164   0.435   0.378   0.132   0.39    0.225   0.282   0.163   0.249   0.482   0.335   0.448   0.148   -0.113  0.272   0.309   0.321   0.253   0.597   0.166   0.13    0.3 0.229   0.252   0.173   1                                   
0.388   0.554   0.321   0.217   0.075   0.147   0.351   0.482   0.541   0.392   0.418   0.087   0.19    -0.001  0.049   0.297   0.308   0.248   0.412   0.115   0.568   0.159   0.388   0.624   0.069   0.485   0.071   0.168   0.117   0.438   0.481   0.565   0.292   0.099   -0.081  0.22    0.504   0.414   0.313   0.448   -0.005  0.382   0.432   0.171   0.276   0.142   0.419   1                               
-0.031  0.085   -0.005  0.047   0.294   0.197   -0.003  0.08    -0.06   0.098   -0.026  0.155   -0.002  0.026   0.123   -0.059  0.026   -0.086  0.041   -0.029  -0.023  0.094   -0.068  -0.063  0.131   0.068   0.07    0.222   0.112   -0.001  0.043   -0.054  0.047   0.053   0.743   0.178   0.167   -0.018  0.216   -0.014  0.186   0.022   0.112   0.224   -0.091  0.399   0.038   0.029   1                           
0.188   0.388   0.046   0.094   0.318   0.298   0.208   0.369   0.349   0.187   0.376   0.122   0.195   0.072   0.195   0.279   0.22    0.253   0.361   0.141   0.506   0.127   0.371   0.464   0.152   0.414   0.187   0.357   0.088   0.235   0.305   0.483   0.204   0.246   0.141   0.234   0.585   0.247   0.225   0.414   0.123   0.269   0.385   0.224   0.138   0.203   0.273   0.463   0.127   1                       
0.061   0.073   -0.065  -0.104  0.26    0.24    0.169   0.193   0.252   0.099   0.105   0.094   0.064   0.064   0.077   0.199   0.158   0.072   0.242   0.121   0.292   0.115   0.216   0.341   0.209   0.402   0.242   0.301   0.111   0.241   0.21    0.324   0.067   0.18    0.143   0.1 0.355   0.274   0.266   0.206   0.129   0.23    0.331   0.295   0.151   0.191   0.151   0.423   0.173   0.471   1                   
0.111   0.358   0.088   0.132   0.165   0.087   0.138   0.248   0.251   0.106   0.084   0.113   0.133   0.108   0.448   0.069   0.1 0.227   0.15    0.22    0.265   0.036   0.342   0.329   0.142   0.284   0.171   0.284   0.177   0.224   0.278   0.216   0.241   0.13    0.014   0.326   0.184   0.114   0.228   0.252   0.114   0.346   0.216   0.166   0.109   0.11    0.171   0.217   0.008   0.304   0.145   1               
0.09    0.155   0.263   0.202   0.171   0.104   0.038   0.282   0.116   0.126   0.237   0.17    0.378   0.677   0.16    0.003   0.162   0.247   0.305   0.165   0.174   0.216   0.299   0.174   0.087   0.152   0.375   0.273   0.167   0.216   0.257   0.126   0.2 0.114   0.213   0.253   0.194   0.019   0.11    0.228   0.204   0.005   0.009   0.254   0.081   0.232   0.291   0.147   0.067   0.115   0.042   0.159   1           
0.305   0.269   0.32    0.217   0.234   0.146   0.06    0.384   0.302   0.167   0.297   0.223   0.588   0.249   0.263   0.373   0.162   0.333   0.335   0.275   0.217   0.391   0.341   0.226   0.176   0.249   0.524   0.427   0.273   0.174   0.283   0.225   0.34    0.024   0.161   0.527   0.097   0.075   0.35    0.325   0.205   0.005   0.231   0.31    0.099   0.391   0.335   0.197   0.132   0.253   0.144   0.207   0.262   1       
0.029   0.239   0.026   0.163   0.245   0.326   -0.076  0.332   0.07    -0.037  0.274   0.304   0.268   0.327   0.529   0.187   0.209   0.293   0.274   0.237   0.239   0.03    0.39    0.216   0.311   0.259   0.419   0.332   0.216   0.262   0.302   0.23    0.131   0.253   -0.047  0.339   0.181   0.006   0.22    0.325   0.359   0.054   0.259   0.278   0.12    0.203   0.315   0.204   0.048   0.185   0.102   0.33    0.264   0.287   1   
0.238   0.419   0.081   0.066   0.048   0.096   0.178   0.266   0.249   0.162   0.368   0.037   0.107   0.052   0.069   0.172   0.298   0.183   0.238   0.163   0.328   0.076   0.28    0.447   0.017   0.434   0.133   0.184   0.153   0.294   0.372   0.395   0.119   0.176   -0.1    0.266   0.331   0.198   0.145   0.256   0.038   0.184   0.342   0.125   0.132   0.106   0.272   0.459   -0.002  0.359   0.239   0.15    0.083   0.168   0.19    1'

lowerWKITA <- '
1                                   
0.438   1                               
0.55    0.362   1                           
0.326   0.408   0.433   1                       
0   0.302   0.043   0.173   1                   
0.022   0.239   0.041   0.189   0.632   1               
0.438   0.304   0.222   0.221   -0.133  -0.134  1           
0.384   0.649   0.298   0.377   0.394   0.306   0.083   1       
0.471   0.46    0.306   0.235   -0.026  -0.029  0.6 0.331   1   
0.564   0.378   0.37    0.216   -0.041  -0.061  0.595   0.264   0.563   1'

lowerWKITK <- '
1                                                                                                                                                                                   
0.428   1                                                                                                                                                                               
0.239   0.166   1                                                                                                                                                                           
0.324   0.267   0.266   1                                                                                                                                                                       
0.265   0.36    0.302   0.295   1                                                                                                                                                                   
0.347   0.217   0.346   0.187   0.213   1                                                                                                                                                               
0.29    0.103   0.196   0.208   0.153   0.166   1                                                                                                                                                           
0.356   0.069   0.348   0.22    0.239   0.275   0.204   1                                                                                                                                                       
0.632   0.194   0.218   0.109   0.208   0.296   0.211   0.34    1                                                                                                                                                   
0.178   0.167   0.163   0.064   0.144   0.172   0.129   0.126   0.231   1                                                                                                                                               
0.425   0.103   0.188   0.058   0.127   0.333   0.124   0.173   0.398   0.13    1                                                                                                                                           
0.288   0.234   0.319   0.253   0.148   0.427   0.037   0.185   0.196   0.206   0.114   1                                                                                                                                       
0.503   0.32    0.173   0.286   0.336   0.408   0.101   0.245   0.424   0.303   0.392   0.202   1                                                                                                                                   
0.555   -0.039  0.09    0.045   0.089   0.222   0.123   0.162   0.382   0.102   0.49    0.103   0.354   1                                                                                                                               
0.166   0.331   0.134   0.164   0.375   0.175   -0.001  0.022   0.097   0.213   0.136   0.096   0.23    0.015   1                                                                                                                           
0.41    0.383   0.189   0.296   0.274   0.425   0.143   0.159   0.387   0.19    0.359   0.195   0.362   0.294   0.213   1                                                                                                                       
0.274   0.276   0.286   0.268   0.421   0.277   0.109   0.28    0.235   0.218   0.157   0.193   0.402   0.15    0.281   0.179   1                                                                                                                   
0.28    0.294   0.341   0.252   0.287   0.395   0.113   0.321   0.259   0.15    0.21    0.306   0.29    0.144   0.172   0.235   0.424   1                                                                                                               
0.276   0.16    0.117   0.234   0.222   0.145   0.103   0.109   0.201   0.691   0.16    0.234   0.195   0.199   0.145   0.136   0.216   0.182   1                                                                                                           
0.252   0.163   0.138   0.221   0.154   0.22    0.102   0.196   0.32    0.457   0.27    0.117   0.42    0.351   0.113   0.323   0.117   0.154   0.423   1                                                                                                       
0.448   0.163   0.294   0.121   0.195   0.41    0.335   0.282   0.491   0.21    0.488   0.18    0.551   0.423   0.088   0.354   0.259   0.276   0.184   0.342   1                                                                                                   
0.306   -0.007  0.136   0.047   0.04    0.166   0.257   0.259   0.346   0.029   0.463   0.058   0.327   0.502   0.015   0.332   0.13    0.147   0.112   0.296   0.43    1                                                                                               
0.301   0.046   0.449   0.237   0.224   0.286   0.071   0.685   0.243   0.07    0.12    0.096   0.185   0.125   -0.057  0.109   0.193   0.256   0.019   0.019   0.381   0.204   1                                                                                           
0.158   0.295   0.139   0.061   0.207   0.076   0.104   0.043   0.238   0.204   0.208   0.116   0.201   0.086   0.464   0.212   0.127   0.123   0.107   0.1 -0.052  -0.032  -0.024  1                                                                                       
0.193   0.25    0.154   0.12    0.037   0.153   0.058   0.035   0.175   0.158   0.105   0.354   0.093   0.041   0.142   -0.026  0.128   0.231   0.129   0.057   -0.043  -0.023  -0.078  0.129   1                                                                                   
0.305   0.243   0.456   0.241   0.466   0.241   0.224   0.434   0.343   0.21    0.172   0.417   0.42    0.073   0.23    0.071   0.453   0.422   0.09    -0.075  0.187   -0.038  0.394   0.155   0.129   1                                                                               
0.377   0.161   0.16    0.256   0.098   0.43    0.211   0.054   0.306   0.046   0.445   0.073   0.167   0.345   0.001   0.376   0.022   0.134   0.025   0.266   0.173   0.341   0.129   0.193   0.048   0.111   1                                                                           
0.248   0.142   0.116   0.094   0.059   0.201   0.14    0.099   0.187   0.041   0.335   0.07    0.178   0.223   0.127   0.288   0.098   0.144   0.014   0.086   0.195   0.281   0.051   0.143   0.108   0.05    0.262   1                                                                       
0.252   0.097   0.373   0.033   0.161   0.437   0.067   0.158   0.293   0.059   0.382   0.279   0.243   0.419   0.03    0.163   0.257   0.3 0.046   0.012   0.254   0.213   0.208   0.069   0.196   0.22    0.248   0.25    1                                                                   
0.518   0.227   0.314   0.375   0.217   0.37    0.187   0.408   0.491   0.243   0.427   0.194   0.477   0.257   0.029   0.326   0.242   0.265   0.151   0.188   0.406   0.32    0.363   0.111   -0.006  0.307   0.303   0.175   0.233   1                                                               
0.435   0.788   0.077   0.354   0.39    0.244   0.175   0.086   0.233   0.29    0.062   0.203   0.21    -0.01   0.377   0.241   0.304   0.262   0.147   0.011   0.128   -0.05   0.02    0.449   0.224   0.271   0.097   0.195   0.059   0.117   1                                                           
0.164   -0.031  0.17    -0.063  0.194   0.202   0.161   0.19    0.07    0.021   0.288   0.032   0.169   0.352   0.026   0.185   0.004   0.001   0.087   0.23    0.23    0.228   0.277   0.042   -0.072  0.235   0.183   0.133   0.106   0.207   -0.113  1                                                       
0.36    0.171   0.198   0.129   0.085   0.315   0.171   0.13    0.281   0.116   0.341   0.112   0.362   0.38    0.252   0.416   0.209   0.266   0.15    0.321   0.326   0.315   0.184   0.136   0.016   0.149   0.438   0.239   0.223   0.277   0.158   0.239   1                                                   
0.205   0.182   0.353   0.191   0.217   0.357   0.173   0.146   0.115   0.182   0.209   0.469   0.178   0.051   0.129   0.244   0.369   0.517   0.17    0.065   0.097   0.065   0.158   0.14    0.051   0.264   0.201   0.257   0.324   0.202   0.199   0.033   0.243   1                                               
0.251   0.139   0.267   0.116   0.214   0.254   0.117   0.105   0.23    0.279   0.263   0.147   0.271   0.233   -0.035  0.249   -0.009  0.05    0.242   0.381   0.216   0.273   0.272   0.1 -0.088  0.114   0.287   0.179   0.24    0.308   0.006   0.182   0.23    0.16    1                                           
0.291   0.252   0.353   0.202   0.232   0.428   0.267   0.128   0.106   0.145   0.24    0.536   0.211   0.136   0.101   0.147   0.303   0.286   0.054   -0.013  0.119   0.084   0.127   0.108   0.169   0.355   0.008   0.252   0.23    0.102   0.178   0.084   0.202   0.363   0.091   1                                       
0.562   0.248   0.258   0.309   0.233   0.441   0.334   0.324   0.401   0.189   0.329   0.164   0.435   0.378   0.132   0.39    0.225   0.282   0.163   0.249   0.482   0.335   0.448   0.148   -0.113  0.272   0.309   0.321   0.253   0.597   0.166   0.13    0.3 0.229   0.252   0.173   1                                   
0.418   0.087   0.19    -0.001  0.049   0.297   0.308   0.248   0.412   0.115   0.568   0.159   0.388   0.624   0.069   0.485   0.071   0.168   0.117   0.438   0.481   0.565   0.292   0.099   -0.081  0.22    0.504   0.414   0.313   0.448   -0.005  0.382   0.432   0.171   0.276   0.142   0.419   1                               
-0.026  0.155   -0.002  0.026   0.123   -0.059  0.026   -0.086  0.041   -0.029  -0.023  0.094   -0.068  -0.063  0.131   0.068   0.07    0.222   0.112   -0.001  0.043   -0.054  0.047   0.053   0.743   0.178   0.167   -0.018  0.216   -0.014  0.186   0.022   0.112   0.224   -0.091  0.399   0.038   0.029   1                           
0.376   0.122   0.195   0.072   0.195   0.279   0.22    0.253   0.361   0.141   0.506   0.127   0.371   0.464   0.152   0.414   0.187   0.357   0.088   0.235   0.305   0.483   0.204   0.246   0.141   0.234   0.585   0.247   0.225   0.414   0.123   0.269   0.385   0.224   0.138   0.203   0.273   0.463   0.127   1                       
0.105   0.094   0.064   0.064   0.077   0.199   0.158   0.072   0.242   0.121   0.292   0.115   0.216   0.341   0.209   0.402   0.242   0.301   0.111   0.241   0.21    0.324   0.067   0.18    0.143   0.1 0.355   0.274   0.266   0.206   0.129   0.23    0.331   0.295   0.151   0.191   0.151   0.423   0.173   0.471   1                   
0.084   0.113   0.133   0.108   0.448   0.069   0.1 0.227   0.15    0.22    0.265   0.036   0.342   0.329   0.142   0.284   0.171   0.284   0.177   0.224   0.278   0.216   0.241   0.13    0.014   0.326   0.184   0.114   0.228   0.252   0.114   0.346   0.216   0.166   0.109   0.11    0.171   0.217   0.008   0.304   0.145   1               
0.237   0.17    0.378   0.677   0.16    0.003   0.162   0.247   0.305   0.165   0.174   0.216   0.299   0.174   0.087   0.152   0.375   0.273   0.167   0.216   0.257   0.126   0.2 0.114   0.213   0.253   0.194   0.019   0.11    0.228   0.204   0.005   0.009   0.254   0.081   0.232   0.291   0.147   0.067   0.115   0.042   0.159   1           
0.297   0.223   0.588   0.249   0.263   0.373   0.162   0.333   0.335   0.275   0.217   0.391   0.341   0.226   0.176   0.249   0.524   0.427   0.273   0.174   0.283   0.225   0.34    0.024   0.161   0.527   0.097   0.075   0.35    0.325   0.205   0.005   0.231   0.31    0.099   0.391   0.335   0.197   0.132   0.253   0.144   0.207   0.262   1       
0.274   0.304   0.268   0.327   0.529   0.187   0.209   0.293   0.274   0.237   0.239   0.03    0.39    0.216   0.311   0.259   0.419   0.332   0.216   0.262   0.302   0.23    0.131   0.253   -0.047  0.339   0.181   0.006   0.22    0.325   0.359   0.054   0.259   0.278   0.12    0.203   0.315   0.204   0.048   0.185   0.102   0.33    0.264   0.287   1   
0.368   0.037   0.107   0.052   0.069   0.172   0.298   0.183   0.238   0.163   0.328   0.076   0.28    0.447   0.017   0.434   0.133   0.184   0.153   0.294   0.372   0.395   0.119   0.176   -0.1    0.266   0.331   0.198   0.145   0.256   0.038   0.184   0.342   0.125   0.132   0.106   0.272   0.459   -0.002  0.359   0.239   0.15    0.083   0.168   0.19    1'

nWKIT <- 230

WKIT.cor = getCov(lowerWKIT, names = c("GS", "AR", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI", "RG1", "N1", "FA2", "MS1", "CV3", "XU3", "RL1", "V2", "RG3", "MA1", "S2", "FI1", "I1", "VZ2", "P1", "SS3", "FW1", "FE1", "MA2", "MV2", "RL2", "XF3", "V1", "P2", "FF1", "FW2", "S1", "I3", "XU1", "IP2", "N3", "CS1", "CF2", "FE2", "MV3", "FI3", "IP1", "VZ3", "FF2", "CF3", "SS1", "CS2", "MS3", "FA1", "CV1", "XF1"))

WKITA.cor = getCov(lowerWKITA, names = c("GS", "AR", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI"))

WKITK.cor = getCov(lowerWKITK, names = c("RG1", "N1", "FA2", "MS1", "CV3", "XU3", "RL1", "V2", "RG3", "MA1", "S2", "FI1", "I1", "VZ2", "P1", "SS3", "FW1", "FE1", "MA2", "MV2", "RL2", "XF3", "V1", "P2", "FF1", "FW2", "S1", "I3", "XU1", "IP2", "N3", "CS1", "CF2", "FE2", "MV3", "FI3", "IP1", "VZ3", "FF2", "CF3", "SS1", "CS2", "MS3", "FA1", "CV1", "XF1"))
Parallel Analysis
fa.parallel(WKIT.cor, n.obs = nWKIT)
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  9  and the number of components =  6
fa.parallel(WKITA.cor, n.obs = nWKIT)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
fa.parallel(WKITK.cor, n.obs = nWKIT)
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  8  and the number of components =  6
Exploratory Factor Analyses
WKIT <- fa(WKIT.cor, n.obs = nWKIT, nfactors = 9)
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
WKITA <- fa(WKITA.cor, n.obs = nWKIT, nfactors = 4)
WKITK <- fa(WKITK.cor, n.obs = nWKIT, nfactors = 6)
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
print(WKIT$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR9    MR1    MR3    MR2    MR8    MR6    MR5    MR7    MR4   
## GS                 0.644                                          
## AR          0.779                                                 
## WK                 0.830                                          
## PC                 0.353                                          
## NO                        0.586                                   
## CS                        0.660                                   
## AS                       -0.363               -0.353              
## MK          0.460                                                 
## MC   0.438  0.307        -0.320                                   
## EI                 0.310                                          
## RG1         0.771                                                 
## N1                        0.695                                   
## FA2                0.346         0.417                            
## MS1                                                   0.826       
## CV3                       0.311                0.459              
## XU3                              0.633                            
## RL1                                                               
## V2                 0.655                                          
## RG3         0.511                                                 
## MA1                                     0.762                     
## S2   0.500                                                        
## FI1                              0.674                            
## I1          0.387                              0.321              
## VZ2  0.487  0.387                                                 
## P1                        0.413                                   
## SS3  0.486                                                        
## FW1                                            0.421              
## FE1                              0.340                            
## MA2                                     0.752                     
## MV2  0.304                              0.638                     
## RL2         0.419                                                 
## XF3  0.525                                                        
## V1                 0.771                                          
## P2                        0.524                                   
## FF1                                                          0.841
## FW2                0.301                       0.550              
## S1   0.603                                                        
## I3   0.393                                                        
## XU1                              0.437                            
## IP2                                                               
## N3                        0.691                                   
## CS1  0.372         0.365                                          
## CF2  0.473                                                        
## FE2                              0.577                            
## MV3                                     0.338                     
## FI3                              0.571                            
## IP1         0.321                                                 
## VZ3  0.636                                                        
## FF2                                                          0.784
## CF3  0.651                                                        
## SS1  0.669                                                        
## CS2  0.305                                     0.422              
## MS3                                                   0.727       
## FA1                              0.460                            
## CV1                                            0.438              
## XF1  0.408                                                        
## 
##                  MR9   MR1   MR3   MR2   MR8   MR6   MR5   MR7   MR4
## SS loadings    4.404 3.315 3.231 3.104 2.636 2.102 1.969 1.859 1.766
## Proportion Var 0.079 0.059 0.058 0.055 0.047 0.038 0.035 0.033 0.032
## Cumulative Var 0.079 0.138 0.196 0.251 0.298 0.336 0.371 0.404 0.435
print(WKITA$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR1    MR4    MR2    MR3   
## GS  0.413                0.342
## AR         0.580              
## WK                       1.005
## PC                       0.305
## NO                0.744       
## CS                0.829       
## AS  0.881                     
## MK         0.918              
## MC  0.677                     
## EI  0.688                     
## 
##                  MR1   MR4   MR2   MR3
## SS loadings    1.960 1.339 1.275 1.238
## Proportion Var 0.196 0.134 0.128 0.124
## Cumulative Var 0.196 0.330 0.457 0.581
print(WKITK$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR1    MR3    MR2    MR5    MR4    MR6   
## RG1  0.373         0.399               -0.382
## N1                 0.751                     
## FA2         0.610                            
## MS1         0.309  0.366                     
## CV3         0.401  0.367                0.385
## XU3  0.309                                   
## RL1                                          
## V2          0.651                            
## RG3  0.364                                   
## MA1                       0.779              
## S2   0.669                                   
## FI1                              0.514       
## I1   0.307                                   
## VZ2  0.689                                   
## P1                 0.453                0.324
## SS3  0.528                                   
## FW1         0.432                            
## FE1         0.384                0.311       
## MA2                       0.809              
## MV2  0.308                0.628              
## RL2  0.413                                   
## XF3  0.642                                   
## V1          0.728                            
## P2                 0.449                     
## FF1                              0.624       
## FW2         0.676                            
## S1   0.654                                   
## I3   0.455                                   
## XU1  0.357                       0.339       
## IP2  0.318  0.383                            
## N3                 0.895                     
## CS1  0.414                                   
## CF2  0.549                                   
## FE2                              0.397       
## MV3                                          
## FI3                              0.497       
## IP1  0.329  0.356                            
## VZ3  0.823                                   
## FF2                              0.573       
## CF3  0.694                                   
## SS1  0.579                                   
## CS2                                     0.425
## MS3         0.336                            
## FA1         0.555                            
## CV1         0.320  0.343                     
## XF1  0.515                                   
## 
##                  MR1   MR3   MR2   MR5   MR4   MR6
## SS loadings    5.860 3.960 2.871 2.133 2.131 1.269
## Proportion Var 0.127 0.086 0.062 0.046 0.046 0.028
## Cumulative Var 0.127 0.213 0.276 0.322 0.369 0.396

I opted to use the factor structures from the EFA in the study for the CFA of the Kit. Several tests had to be cut due to positive definiteness issues.

Confirmatory Factor Analyses
WKITA.model <- '
PS =~ NO + CS
MA =~ AR + MK
VC =~ WK + PC + GS
TK =~ AS + MC + EI + GS

gASVAB =~ PS + MA + VC + TK'

WKITK.model <- '
Gflu =~ FW1 + FA1 + P1 + FI3 + RL1 + MV2

Gre =~ FE2 + P2 + XU3 + RL2 + RG3 + IP1

Gclo =~ CV1 + CS2 + MV3 + IP1 + IP2

Gfig =~ CV1 + FF1

Glog =~ FI1 + RG1 

gKIT =~ Gflu + Gre + Gclo + Gfig + Glog

FW1 ~~ FA1 + CV1
P1 ~~  CV1
FI3 ~~ MV2 + FE2 + XU3 + FI1
MV2 ~~ MV3
FE2 ~~ RL2 
FE2 ~~ FI1
P2 ~~ RL2 
XU3 ~~ FI1 + RG1
RG3 ~~ RG1
IP1 ~~ FF1 
CV1 ~~ CS2
FF1 ~~ FI1
FW1 ~~ FE2
FA1 ~~ FI1
RL1 ~~ RL2 + FI1
RL2 ~~ FF1'

WKITA.fit <- cfa(WKITA.model, sample.cov = WKIT.cor, sample.nobs = nWKIT, std.lv = T, check.gradient = F, control = list(rel.tol = 1e-4))
WKITK.fit <- cfa(WKITK.model, sample.cov = WKIT.cor, sample.nobs = nWKIT, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4))

round(cbind("Wothke ASVAB" = fitMeasures(WKITA.fit, FITM),
            "Wothke Kit" = fitMeasures(WKITK.fit, FITM)), 3)
##                Wothke ASVAB Wothke Kit
## chisq               107.648    337.142
## df                   30.000    123.000
## npar                 25.000     67.000
## cfi                   0.910      0.841
## rmsea                 0.106      0.087
## rmsea.ci.lower        0.085      0.076
## rmsea.ci.upper        0.128      0.098
## aic                5771.501  11337.450
## bic                5857.453  11567.802
WKITFI.model <- '
PS =~ NO + CS
MA =~ AR + MK
VC =~ WK + PC + GS
TK =~ AS + MC + EI + GS

gASVAB =~ PS + MA + VC + TK

Gflu =~ FW1 + FA1 + P1 + FI3 + RL1 + MV2

Gre =~ FE2 + P2 + XU3 + RL2 + RG3 + IP1

Gclo =~ CV1 + CS2 + MV3 + IP1 + IP2

Gfig =~ CV1 + FF1

Glog =~ FI1 + RG1 

gKIT =~ Gflu + Gre + Gclo + Gfig + Glog

FW1 ~~ FA1 + CV1
P1 ~~  CV1
FI3 ~~ MV2 + FE2 + XU3 + FI1
MV2 ~~ MV3
FE2 ~~ RL2 
FE2 ~~ FI1
P2 ~~ RL2 
XU3 ~~ FI1 + RG1
RG3 ~~ RG1
IP1 ~~ FF1 
CV1 ~~ CS2
FW1 ~~ FE2
FA1 ~~ FI1
RL1 ~~ RL2 + FI1
RL2 ~~ FF1

gASVAB ~~ 1*gKIT

FA1 ~~ MC
FE2 ~~ CV1 + AR
P2 ~~ CS
CV1 ~~ WK
CS2 ~~ AR + CS + RG1
IP2 ~~ NO + PC
FF1 ~~ AR + WK 
FI1 ~~ MK + PC + GS 
RG1 ~~ NO + AR + PC 
P1 ~~ CS
FI3 ~~ AS + AR
FE2 ~~ WK
RG3 ~~ AR
MV3 ~~ GS + FF1
RL1 ~~ AR
RL2 ~~ MC
MK ~~ WK
XU3 ~~ CS2 
RG3 ~~ IP1'

WKITFI.fit <- suppressWarnings(cfa(WKITFI.model, sample.cov = WKIT.cor, sample.nobs = nWKIT, std.lv = T))

round(cbind("Unrelated g's" = fitMeasures(WKITNO.fit, FITM),
            "Related g's" = fitMeasures(WKITFR.fit, FITM),
            "Residual Covs" = fitMeasures(WKITRC.fit, FITM),
            "Identical g's" = fitMeasures(WKITFI.fit, FITM)), 3)
##                Unrelated g's Related g's Residual Covs Identical g's
## chisq               1738.844    1372.144       847.790       856.375
## df                   344.000     343.000       313.000       314.000
## npar                  91.000      92.000       122.000       121.000
## cfi                    0.574       0.686         0.837         0.835
## rmsea                  0.133       0.114         0.086         0.087
## rmsea.ci.lower         0.127       0.108         0.079         0.080
## rmsea.ci.upper         0.139       0.121         0.093         0.094
## aic                17136.668   16771.968     16307.615     16314.200
## bic                17449.533   17088.271     16727.060     16730.207

The initial correlation between the batteries is r = 1.116; in the model immediately preceding the final one, this dropped to 1.057. The reason I did not go further was because it seemed like overfitting to data that was pretty bad for factor modeling. The real n of the dataset is only the sample size for each pairing of Kit tests since this was not a battery administered to all participants in the study. The sampling variance at such a sample size, with such a testing pattern, is thus considerable. That the battery is so strongly unidimensional with that being said is quite surprising. In order to get the relationship between the g factors below one, I have to fit many more residual covariances, improving the fit well beyond conventionally acceptable levels, but the effort is ultimately pointless since the end conclusion is the same: these batteries seem to produce the same g and to be strongly g saturated to similar degrees with or without these modifications.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do (very unidimensional!).

Williamson (1969) n = 200

lowerWIAA <-'
1                                                                       
0.64    1                                                                   
0.08    0.16    1                                                               
0.28    0.33    0.71    1                                                           
0.26    0.3 0.67    0.67    1                                                       
0.38    0.5 0.54    0.61    0.57    1                                                   
0.45    0.49    0.52    0.57    0.66    0.63    1                                               
0.31    0.51    0.35    0.37    0.33    0.56    0.44    1                                           
0.84    0.6 0   0.19    0.19    0.28    0.4 0.31    1                                       
0.58    0.75    0.04    0.21    0.19    0.33    0.4 0.33    0.66    1                                   
0.27    0.38    0.47    0.5 0.48    0.5 0.51    0.39    0.3 0.38    1                               
0.22    0.32    0.65    0.63    0.78    0.54    0.62    0.34    0.27    0.3 0.54    1                           
0.45    0.54    0.43    0.51    0.49    0.58    0.59    0.42    0.47    0.52    0.67    0.57    1                       
0.34    0.32    0.47    0.47    0.47    0.49    0.64    0.4 0.41    0.33    0.53    0.59    0.6 1                   
0.36    0.55    0.34    0.38    0.38    0.5 0.47    0.6 0.38    0.53    0.56    0.43    0.57    0.47    1               
0.32    0.46    -0.1    0.04    0.04    0.13    0.2 0.23    0.41    0.56    0.24    0.15    0.3 0.2 0.28    1           
0.28    0.4 0.01    0.12    0.12    0.17    0.17    0.33    0.35    0.42    0.23    0.17    0.32    0.17    0.33    0.35    1       
0.3 0.22    -0.04   0.05    0.05    0.19    0.14    0.13    0.38    0.24    0.21    0.1 0.27    0.21    0.21    0.3 0.22    1   
0.57    0.48    0.3 0.42    0.42    0.38    0.5 0.31    0.57    0.48    0.45    0.42    0.49    0.43    0.45    0.38    0.26    0.29    1'

lowerWIAAV <- '
1                           
0.64    1                       
0.08    0.16    1                   
0.28    0.33    0.71    1               
0.26    0.3 0.67    0.67    1           
0.38    0.5 0.54    0.61    0.57    1       
0.45    0.49    0.52    0.57    0.66    0.63    1   
0.31    0.51    0.35    0.37    0.33    0.56    0.44    1'

lowerWIAAC <- '
1                                       
0.66    1                                   
0.3 0.38    1                               
0.27    0.3 0.54    1                           
0.47    0.52    0.67    0.57    1                       
0.41    0.33    0.53    0.59    0.6 1                   
0.38    0.53    0.56    0.43    0.57    0.47    1               
0.41    0.56    0.24    0.15    0.3 0.2 0.28    1           
0.35    0.42    0.23    0.17    0.32    0.17    0.33    0.35    1       
0.38    0.24    0.21    0.1 0.27    0.21    0.21    0.3 0.22    1   
0.57    0.48    0.45    0.42    0.49    0.43    0.45    0.38    0.26    0.29    1'

nWIAA <- 200

WIAA.cor = getCov(lowerWIAA, names = c("WK", "AR", "TK", "SI", "AI", "MC", "EI", "SP", "VE", "ARB", "SM", "AIB", "MA", "EIB", "PA", "AC", "ARCB", "CI", "GI"))

WIAAV.cor = getCov(lowerWIAAV, names = c("WK", "AR", "TK", "SI", "AI", "MC", "EI", "SP"))

WIAAC.cor = getCov(lowerWIAAC, names = c("VE", "ARB", "SM", "AIB", "MA", "EIB", "PA", "AC", "ARCB", "CI", "GI"))
Parallel Analysis
fa.parallel(WIAA.cor, n.obs = nWIAA)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
fa.parallel(WIAAV.cor, n.obs = nWIAA)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  2  and the number of components =  2
fa.parallel(WIAAC.cor, n.obs = nWIAA)

## Parallel analysis suggests that the number of factors =  2  and the number of components =  2
Exploratory Factor Analyses
WIA <- fa(WIAA.cor, n.obs = nWIAA, nfactors = 3)
WIAAV <- fa(WIAAV.cor, n.obs = nWIAA, nfactors = 2)
WIAAC <- fa(WIAAC.cor, n.obs = nWIAA, nfactors = 2)

print(WIA$loadings, cutoff = 0.3)
## 
## Loadings:
##      MR1    MR3    MR2   
## WK                  0.863
## AR           0.580  0.324
## TK    0.888              
## SI    0.788              
## AI    0.855              
## MC    0.567  0.306       
## EI    0.644              
## SP           0.605       
## VE                  0.913
## ARB          0.586  0.390
## SM    0.448  0.416       
## AIB   0.770              
## MA    0.417  0.421       
## EIB   0.531              
## PA           0.726       
## AC           0.494       
## ARCB         0.518       
## CI                       
## GI    0.302         0.484
## 
##                  MR1   MR3   MR2
## SS loadings    4.408 2.632 2.397
## Proportion Var 0.232 0.139 0.126
## Cumulative Var 0.232 0.371 0.497
print(WIAAV$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR1    MR2   
## WK         0.704
## AR         0.903
## TK  0.924       
## SI  0.794       
## AI  0.791       
## MC  0.572  0.373
## EI  0.566  0.372
## SP         0.428
## 
##                  MR1   MR2
## SS loadings    2.841 1.812
## Proportion Var 0.355 0.227
## Cumulative Var 0.355 0.582
print(WIAAC$loadings, cutoff = 0.3)
## 
## Loadings:
##      MR1    MR2   
## VE           0.730
## ARB          0.804
## SM    0.766       
## AIB   0.811       
## MA    0.720       
## EIB   0.743       
## PA    0.513       
## AC           0.703
## ARCB         0.498
## CI           0.409
## GI    0.336  0.433
## 
##                  MR1   MR2
## SS loadings    2.710 2.395
## Proportion Var 0.246 0.218
## Cumulative Var 0.246 0.464
Confirmatory Factor Analyses
WIAAC.model <- '
INFO =~ SM + AIB + MA + EIB + PA
Gf =~ VE + ARB + AC + ARCB + CI + GI

gACB =~ INFO + Gf'

WIAAV.model <- '
TECH =~ TK + SI + AI + MC + EI
Gsp =~ WK + AR + SP + MC + EI

gAS =~ TECH + Gsp'

WIAAC.fit <- suppressWarnings(cfa(WIAAC.model, sample.cov = WIAA.cor, sample.nobs = nWIAA, std.lv = T))
WIAAV.fit <- suppressWarnings(cfa(WIAAV.model, sample.cov = WIAA.cor, sample.nobs = nWIAA, std.lv = T))

round(cbind("Williamson ACB" = fitMeasures(WIAAC.fit, FITM),
            "Williamson ASVAB" = fitMeasures(WIAAV.fit, FITM)), 3)
##                Williamson ACB Williamson ASVAB
## chisq                 108.216           68.635
## df                     42.000           16.000
## npar                   24.000           20.000
## cfi                     0.926            0.937
## rmsea                   0.089            0.128
## rmsea.ci.lower          0.068            0.098
## rmsea.ci.upper          0.110            0.160
## aic                  5433.837         3778.607
## bic                  5512.996         3844.573
WIAAFI.model <- '
INFO =~ SM + AIB + MA + EIB + PA
Gf =~ VE + ARB + AC + ARCB + CI + GI

gACB =~ INFO + Gf

TECH =~ TK + SI + AI + MC + EI
Gsp =~ WK + AR + SP + MC + EI

gAS =~ TECH + Gsp

gACB ~~ 1*gAS

TECH ~~ INFO

AI ~~ AIB
EI ~~ EIB
WK ~~ VE
AR ~~ ARB
SP ~~ PA'

WIAAFI.fit <- suppressWarnings(cfa(WIAAFI.model, sample.cov = WIAA.cor, sample.nobs = nWIAA, std.lv = T, check.gradient = F))

round(cbind("Unrelated g's" = fitMeasures(WIAANO.fit, FITM),
            "Related g's" = fitMeasures(WIAAFR.fit, FITM),
            "Group Factors" = fitMeasures(WIAAGR.fit, FITM),
            "Residual Covs" = fitMeasures(WIAARC.fit, FITM),
            "Identical g's" = fitMeasures(WIAAFI.fit, FITM)), 3)
##                Unrelated g's Related g's Group Factors Residual Covs
## chisq                938.278     710.407       579.261       347.484
## df                   146.000     145.000       144.000       139.000
## npar                  44.000      45.000        46.000        51.000
## cfi                    0.671       0.765         0.819         0.913
## rmsea                  0.165       0.140         0.123         0.087
## rmsea.ci.lower         0.155       0.129         0.113         0.075
## rmsea.ci.upper         0.175       0.150         0.133         0.098
## aic                 9212.472    8986.601      8857.455      8635.678
## bic                 9357.598    9135.025      9009.177      8803.892
##                Identical g's
## chisq                368.355
## df                   140.000
## npar                  50.000
## cfi                    0.905
## rmsea                  0.090
## rmsea.ci.lower         0.079
## rmsea.ci.upper         0.102
## aic                 8654.550
## bic                 8819.466

The initial r is 1.209; allowing group factor and residual covariances reduces this to r = 0.88. This reduction is curious and may signal a conspicuous flaw: the relationship could be spuriously reduced by covarying conceptually identical tests and factors and attributing common variance to something more specific. But whether this is really a flaw and whether the g’s produced in this next-to-final model and separately produce the same results is something empirical to assess in the next section. If the g similarity is spuriously reduced, there should be relatively limited g factor similarity/congruence at the level of their loadings.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do: Quite unidimensional!

Kettner (1976) n = 290 (ASVAB - GATB)

lowerPAG <- '
1                                                                               
0.16    1                                                                           
0.06    0.44    1                                                                       
0.4 0.34    0.21    1                                                                   
0.53    0.49    0.2 0.61    1                                                               
0.13    0.16    0.22    0.36    0.29    1                                                           
0.41    0.57    0.25    0.59    0.72    0.31    1                                                       
0.37    0.22    0.16    0.57    0.46    0.45    0.41    1                                                   
0.43    0.35    0.28    0.58    0.65    0.49    0.63    0.62    1                                               
0.41    0.22    0.17    0.65    0.55    0.29    0.52    0.55    0.62    1                                           
0.34    0.2 0.08    0.56    0.46    0.19    0.43    0.44    0.53    0.89    1                                       
0.29    0.15    0.12    0.35    0.36    0.26    0.32    0.45    0.43    0.38    0.38    1                                   
0.32    0.09    0.09    0.3 0.22    0.19    0.17    0.46    0.39    0.32    0.24    0.49    1                               
0.12    0.61    0.41    0.3 0.26    0.2 0.3 0.13    0.26    0.13    0.15    0.03    0.04    1                           
0.24    0.7 0.3 0.34    0.51    0.12    0.55    0.14    0.32    0.21    0.19    0.11    0.07    0.51    1                       
0.24    0.16    0.23    0.41    0.28    0.62    0.22    0.55    0.55    0.38    0.27    0.29    0.42    0.31    0.14    1                   
0.38    0.49    0.28    0.8 0.63    0.33    0.64    0.52    0.61    0.61    0.52    0.39    0.29    0.45    0.45    0.46    1               
0.06    0.45    0.44    0.31    0.23    0.33    0.3 0.27    0.31    0.29    0.25    0.04    0.2 0.6 0.36    0.45    0.37    1           
0.33    0.63    0.28    0.52    0.67    0.25    0.64    0.34    0.51    0.38    0.33    0.29    0.29    0.45    0.73    0.33    0.61    0.39    1       
0.06    0.41    0.38    0.31    0.26    0.34    0.33    0.14    0.28    0.22    0.17    0.23    0.19    0.47    0.36    0.4 0.39    0.48    0.38    1   
0.04    0.39    0.42    0.15    0.1 0.08    0.23    0.03    0.18    0.16    0.16    -0.02   0.04    0.5 0.3 0.12    0.22    0.44    0.25    0.34    1'

lowerPAGA <- '
1                                               
0.16    1                                           
0.06    0.44    1                                       
0.4 0.34    0.21    1                                   
0.53    0.49    0.2 0.61    1                               
0.13    0.16    0.22    0.36    0.29    1                           
0.41    0.57    0.25    0.59    0.72    0.31    1                       
0.37    0.22    0.16    0.57    0.46    0.45    0.41    1                   
0.43    0.35    0.28    0.58    0.65    0.49    0.63    0.62    1               
0.41    0.22    0.17    0.65    0.55    0.29    0.52    0.55    0.62    1           
0.34    0.2 0.08    0.56    0.46    0.19    0.43    0.44    0.53    0.89    1       
0.29    0.15    0.12    0.35    0.36    0.26    0.32    0.45    0.43    0.38    0.38    1   
0.32    0.09    0.09    0.3 0.22    0.19    0.17    0.46    0.39    0.32    0.24    0.49    1'

lowerPAGG <- '
1                           
0.51    1                       
0.31    0.14    1                   
0.45    0.45    0.46    1               
0.6 0.36    0.45    0.37    1           
0.45    0.73    0.33    0.61    0.39    1       
0.47    0.36    0.4 0.39    0.48    0.38    1   
0.5 0.3 0.12    0.22    0.44    0.25    0.34    1'

nPAG <- 290

PAG.cor = getCov(lowerPAG, names = c("GI", "NO", "AD", "WK", "AR", "SP", "MK", "EI", "MC", "GS", "GB", "SI", "AI", "NC", "CO", "DS", "VO", "TM", "AA", "FM", "MM"))

PAGA.cor = getCov(lowerPAGA, names = c("GI", "NO", "AD", "WK", "AR", "SP", "MK", "EI", "MC", "GS", "GB", "SI", "AI"))

PAGG.cor = getCov(lowerPAGG, names = c("NC", "CO", "DS", "VO", "TM", "AA", "FM", "MM"))
Parallel Analysis
fa.parallel(PAG.cor, n.obs = nPAG)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  3
fa.parallel(PAGA.cor, n.obs = nPAG)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  2
fa.parallel(PAGG.cor, n.obs = nPAG)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
Exploratory Factor Analyses
PAG <- fa(PAG.cor, n.obs = nPAG, nfactors = 4)
PAGA <- fa(PAGA.cor, n.obs = nPAG, nfactors = 4)
PAGG <- fa(PAGG.cor, n.obs = nPAG, nfactors = 3)

print(PAG$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR1    MR3    MR4    MR2   
## GI  0.389                     
## NO  0.680                0.382
## AD                       0.475
## WK  0.358         0.397       
## AR  0.774                     
## SP         0.656              
## MK  0.720                     
## EI         0.595              
## MC  0.352  0.462              
## GS                0.957       
## GB                0.941       
## SI         0.389              
## AI         0.505              
## NC                       0.662
## CO  0.803                     
## DS         0.882              
## VO  0.463         0.312       
## TM                       0.670
## AA  0.796                     
## FM                       0.453
## MM                       0.613
## 
##                  MR1   MR3   MR4   MR2
## SS loadings    3.658 2.558 2.341 2.157
## Proportion Var 0.174 0.122 0.111 0.103
## Cumulative Var 0.174 0.296 0.407 0.510
print(PAGA$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR1    MR4    MR3    MR2   
## GI         0.556              
## NO         0.427         0.516
## AD                       0.566
## WK  0.333  0.304              
## AR         0.876              
## SP                0.470       
## MK         0.697              
## EI                0.681       
## MC                0.467       
## GS  0.963                     
## GB  0.935                     
## SI                0.568       
## AI                0.706       
## 
##                  MR1   MR4   MR3   MR2
## SS loadings    1.980 1.924 1.848 0.842
## Proportion Var 0.152 0.148 0.142 0.065
## Cumulative Var 0.152 0.300 0.442 0.507
print(PAGG$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR3    MR1    MR2   
## NC  0.749              
## CO         0.715       
## DS                0.930
## VO         0.489       
## TM  0.678              
## AA         0.968       
## FM  0.453              
## MM  0.702              
## 
##                  MR3   MR1   MR2
## SS loadings    1.778 1.719 1.086
## Proportion Var 0.222 0.215 0.136
## Cumulative Var 0.222 0.437 0.573
Confirmatory Factor Analyses
PAGA.model <- '
Gf =~ WK + GS + GB
Gc =~ GI + NO + AR + MK
TECH =~ SP + EI + MC + SI + AI
Gdet =~ NO + AD

gAS =~ Gf + Gc + TECH + Gdet

AD ~~ 0*AD

GS ~~ GB
EI ~~ MC'

PAGG.model <- '
V =~ NC + TM + FM + MM
N =~ CO + VO + AA
S =~ DS + VO

gGA =~ V + N + S'

PAGG.fit <- cfa(PAGG.model, sample.cov = PAG.cor, sample.nobs = nPAG, std.lv = T)
PAGA.fit <- cfa(PAGA.model, sample.cov = PAG.cor, sample.nobs = nPAG, std.lv = T)

round(cbind("Kettner ASVAB" = fitMeasures(PAGA.fit, FITM),
            "Kettner GATB" = fitMeasures(PAGG.fit, FITM)), 3)
##                Kettner ASVAB Kettner GATB
## chisq                212.588       81.744
## df                    59.000       16.000
## npar                  32.000       20.000
## cfi                    0.924        0.929
## rmsea                  0.095        0.119
## rmsea.ci.lower         0.081        0.094
## rmsea.ci.upper         0.109        0.145
## aic                 8860.602     5745.565
## bic                 8978.039     5818.962
PAGFI.model <- '
Gf =~ WK + GS + GB
Gc =~ GI + NO + AR + MK
TECH =~ SP + EI + MC + SI + AI
Gdet =~ NO + AD

gAS =~ Gf + Gc + TECH + Gdet

GS ~~ GB
EI ~~ MC

V =~ NC + TM + FM + MM
N =~ CO + VO + AA
S =~ DS + VO

gGA =~ V + N + S

gAS ~~ 1*gGA

Gc ~~ N
Gdet ~~ V 

WK ~~ VO
GS ~~ NC
NO ~~ NC + CO
DS ~~ MK + SP + EI
SI ~~ FM
AI ~~ AA'

PAGFI.fit <- cfa(PAGFI.model, sample.cov = PAG.cor, sample.nobs = nPAG, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4))

round(cbind("Unrelated g's" = fitMeasures(PAGNO.fit, FITM),
            "Related g's" = fitMeasures(PAGFR.fit, FITM),
            "Group Factors" = fitMeasures(PAGGR.fit, FITM),
            "Residual Covs" = fitMeasures(PAGRC.fit, FITM),
            "Identical g's" = fitMeasures(PAGFI.fit, FITM)), 3)
##                Unrelated g's Related g's Group Factors Residual Covs
## chisq               1326.717    1016.748       826.616       577.480
## df                   178.000     177.000       175.000       166.000
## npar                  53.000      54.000        56.000        65.000
## cfi                    0.704       0.784         0.832         0.894
## rmsea                  0.149       0.128         0.113         0.092
## rmsea.ci.lower         0.142       0.120         0.106         0.084
## rmsea.ci.upper         0.157       0.136         0.121         0.101
## aic                14604.705   14296.737     14110.605     13879.469
## bic                14799.209   14494.911     14316.118     14118.011
##                Identical g's
## chisq                596.067
## df                   167.000
## npar                  64.000
## cfi                    0.889
## rmsea                  0.094
## rmsea.ci.lower         0.086
## rmsea.ci.upper         0.102
## aic                13896.056
## bic                14130.928

The original r is 0.949 and in the next-to-last model it is 0.929. I could have improved fit somewhat more, but again, risked overfitting without a qualitative change in the result.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do: very unidimensional.

Kettner (1976) n = 290 (ASVAB - DAT)

lowerPAD <- '
1                                                                               
0.33    1                                                                           
0.22    0.51    1                                                                       
0.51    0.35    0.1 1                                                                   
0.43    0.5 0.28    0.46    1                                                               
0.23    0.22    0.22    0.26    0.39    1                                                           
0.49    0.55    0.3 0.59    0.72    0.44    1                                                       
0.44    0.37    0.14    0.55    0.52    0.25    0.57    1                                                   
0.43    0.31    0.27    0.48    0.56    0.6 0.65    0.55    1                                               
0.49    0.42    0.2 0.71    0.46    0.4 0.66    0.55    0.59    1                                           
0.46    0.33    0.18    0.63    0.3 0.37    0.61    0.46    0.52    0.91    1                                       
0.43    0.3 0.21    0.38    0.46    0.41    0.49    0.58    0.55    0.54    0.47    1                                   
0.44    0.18    0.01    0.4 0.41    0.23    0.36    0.66    0.53    0.5 0.44    0.59    1                               
0.49    0.43    0.18    0.74    0.64    0.39    0.68    0.54    0.6 0.69    0.62    0.47    0.38    1                           
0.43    0.54    0.29    0.53    0.78    0.39    0.79    0.53    0.56    0.53    0.46    0.45    0.28    0.72    1                       
0.39    0.38    0.29    0.32    0.57    0.49    0.62    0.37    0.54    0.48    0.47    0.43    0.26    0.58    0.64    1                   
0.14    0.51    0.56    0.1 0.33    0.28    0.35    0.21    0.25    0.22    0.19    0.25    0.05    0.23    0.36    0.32    1               
0.24    0.24    0.15    0.33    0.4 0.37    0.41    0.38    0.61    0.33    0.27    0.41    0.38    0.45    0.39    0.4 0.24    1           
0.32    0.34    0.26    0.41    0.54    0.67    0.59    0.44    0.72    0.47    0.43    0.46    0.41    0.58    0.54    0.38    0.31    0.59    1       
0.35    0.3 0.17    0.57    0.41    0.14    0.45    0.34    0.26    0.29    0.34    0.27    0.21    0.56    0.48    0.25    0.16    0.24    0.27    1   
0.42    0.42    0.28    0.74    0.52    0.25    0.69    0.46    0.5 0.61    0.56    0.4 0.28    0.75    0.62    0.5 0.28    0.39    0.49    0.65    1'

lowerPADA <- '
1                                               
0.33    1                                           
0.22    0.51    1                                       
0.51    0.35    0.1 1                                   
0.43    0.5 0.28    0.46    1                               
0.23    0.22    0.22    0.26    0.39    1                           
0.49    0.55    0.3 0.59    0.72    0.44    1                       
0.44    0.37    0.14    0.55    0.52    0.25    0.57    1                   
0.43    0.31    0.27    0.48    0.56    0.6 0.65    0.55    1               
0.49    0.42    0.2 0.71    0.46    0.4 0.66    0.55    0.59    1           
0.46    0.33    0.18    0.63    0.3 0.37    0.61    0.46    0.52    0.91    1       
0.43    0.3 0.21    0.38    0.46    0.41    0.49    0.58    0.55    0.54    0.47    1   
0.44    0.18    0.01    0.4 0.41    0.23    0.36    0.66    0.53    0.5 0.44    0.59    1'

lowerPADD <- '
1                           
0.72    1                       
0.58    0.64    1                   
0.23    0.36    0.32    1               
0.45    0.39    0.4 0.24    1           
0.58    0.54    0.38    0.31    0.59    1       
0.56    0.48    0.25    0.16    0.24    0.27    1   
0.75    0.62    0.5 0.28    0.39    0.49    0.65    1'

PAD.cor = getCov(lowerPAD, names = c("GI", "NO", "AD", "WK", "AR", "SP", "MK", "EI", "MC", "GS", "GB", "SI", "AI", "VR", "NAB", "AA", "CS", "MR", "SR", "SG", "LU"))

PADA.cor = getCov(lowerPADA, names = c("GI", "NO", "AD", "WK", "AR", "SP", "MK", "EI", "MC", "GS", "GB", "SI", "AI"))

PADD.cor = getCov(lowerPADD, names = c("VR", "NAB", "AA", "CS", "MR", "SR", "SG", "LU"))
Parallel Analysis
fa.parallel(PAD.cor, n.obs = nPAG)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  6  and the number of components =  3
fa.parallel(PADA.cor, n.obs = nPAG)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  4  and the number of components =  2
fa.parallel(PADD.cor, n.obs = nPAG)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## An ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
Exploratory Factor Analyses
PAD <- fa(PAD.cor, n.obs = nPAG, nfactors = 6)
PADA <- fa(PADA.cor, n.obs = nPAG, nfactors = 4)
PADD <- fa(PADD.cor, n.obs = nPAG, nfactors = 3)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
print(PAD$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR1    MR3    MR4    MR6    MR5    MR2   
## GI                                           
## NO                                      0.575
## AD                                      0.798
## WK                        0.668              
## AR   0.759                                   
## SP          0.696                            
## MK   0.560                                   
## EI                               0.605       
## MC          0.615                            
## GS                 0.834                     
## GB                 0.890                     
## SI                               0.469       
## AI                               0.903       
## VR   0.339                0.450              
## NAB  0.829                                   
## AA   0.587                                   
## CS                                      0.720
## MR          0.560                            
## SR          0.804                            
## SG                        0.716              
## LU                        0.707              
## 
##                  MR1   MR3   MR4   MR6   MR5   MR2
## SS loadings    2.257 1.986 1.909 1.848 1.664 1.564
## Proportion Var 0.107 0.095 0.091 0.088 0.079 0.074
## Cumulative Var 0.107 0.202 0.293 0.381 0.460 0.535
print(PADA$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR1    MR3    MR2    MR4   
## GI         0.320              
## NO                0.833       
## AD                0.556       
## WK  0.558                     
## AR         0.350  0.491       
## SP                       0.806
## MK                0.457       
## EI         0.719              
## MC         0.303         0.581
## GS  0.883                     
## GB  0.995                     
## SI         0.490              
## AI         0.846              
## 
##                  MR1   MR3   MR2   MR4
## SS loadings    2.262 1.915 1.588 1.201
## Proportion Var 0.174 0.147 0.122 0.092
## Cumulative Var 0.174 0.321 0.444 0.536
print(PADD$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR1    MR2    MR3   
## VR   0.584              
## NAB  0.377         0.457
## AA                 0.919
## CS                      
## MR          0.484       
## SR          1.023       
## SG   0.876              
## LU   0.759              
## 
##                  MR1   MR2   MR3
## SS loadings    1.831 1.381 1.253
## Proportion Var 0.229 0.173 0.157
## Cumulative Var 0.229 0.402 0.558
Confirmatory Factor Analyses
PADA.model <- '
Gf =~ WK + GS + GB
Gmec =~ GI + AR + EI + MC + SI + AI
Gq =~ NO + AD + AR + MK
Gsp =~ SP + MC

gAS =~ Gf + Gmec + Gq + Gsp

WK ~~ GI + EI
GS ~~ GB'

PADD.model <- '
Gsp =~ MR + SR
Gq =~ NAB + AA + CS
Grw =~ SG + LU
Grea =~ VR + LU

gDAT =~ Gsp + Gq + Grw + Grea

VR ~~ 0*VR'

PADA.fit <- cfa(PADA.model, sample.cov = PAD.cor, sample.nobs = nPAG, std.lv = T)
PADD.fit <- cfa(PADD.model, sample.cov = PAD.cor, sample.nobs = nPAG, std.lv = T)

round(cbind("Kettner ASVAB" = fitMeasures(PADA.fit, FITM),
            "Kettner DAT" = fitMeasures(PADD.fit, FITM)), 3)
##                Kettner ASVAB Kettner DAT
## chisq                285.060      59.244
## df                    56.000      16.000
## npar                  35.000      20.000
## cfi                    0.906       0.962
## rmsea                  0.119       0.097
## rmsea.ci.lower         0.105       0.071
## rmsea.ci.upper         0.133       0.123
## aic                 8531.445    5518.912
## bic                 8659.891    5592.309
PADFI.model <- '
ASGf =~ WK + GS + GB
ASGmec =~ GI + EI + MC + SI + AI
ASGq =~ NO + AD + AR + MK
ASGsp =~ SP + MC

gAS =~ ASGf + ASGmec + ASGq + ASGsp

WK ~~ GI + EI
GS ~~ GB

DAGsp =~ MR + SR
DAGq =~ NAB + AA + CS
DAGrw =~ SG + LU
DAGrea =~ VR + LU

gDAT =~ DAGsp + DAGq + DAGrw + DAGrea

gAS ~~ 1*gDAT

ASGf ~~ 1*DAGrea
ASGmec ~~ DAGsp 
ASGsp ~~ 1*DAGsp 
SG ~~ 0*SG

WK ~~ AA + CS + LU
AI ~~ NAB
NO ~~ CS
AD ~~ CS
AR ~~ NAB
MK ~~ LU + VR
SP ~~ MR + AA + LU'

PADFI.fit <- suppressWarnings(cfa(PADFI.model, sample.cov = PAD.cor, sample.nobs = nPAG, std.lv = T))

round(cbind("Unrelated g's" = fitMeasures(PADNO.fit, FITM),
            "Related g's" = fitMeasures(PADFR.fit, FITM),
            "Group Factors" = fitMeasures(PADGR.fit, FITM),
            "Residual Covs" = fitMeasures(PADRC.fit, FITM),
            "Identical g's" = fitMeasures(PADFI.fit, FITM)), 3)
##                Unrelated g's Related g's Group Factors Residual Covs
## chisq               1625.754    1201.628       965.613       672.560
## df                   176.000     175.000       175.000       163.000
## npar                  55.000      56.000        56.000        68.000
## cfi                    0.694       0.783         0.833         0.892
## rmsea                  0.169       0.142         0.125         0.104
## rmsea.ci.lower         0.161       0.135         0.117         0.096
## rmsea.ci.upper         0.176       0.150         0.133         0.112
## aic                14054.031   13631.905     13395.890     13126.837
## bic                14255.875   13837.418     13601.403     13376.389
##                Identical g's
## chisq                681.565
## df                   164.000
## npar                  67.000
## cfi                    0.891
## rmsea                  0.104
## rmsea.ci.lower         0.096
## rmsea.ci.upper         0.112
## aic                13133.842
## bic                13379.724

The starting relationship was r = 1.021. There is a much more coherent factor structure - without the errors the models above yielded, with better fit and with virtually the same g loadings (this is also true for all the datasets) - if both the g and group factors are modeled together. In the next-to-last model, the r was 0.972.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do: unidimensional!

Palmer et al. (1990) n = 387

lowerPAG <- '
1                                                               
0.722   1                                                           
0.801   0.708   1                                                       
0.689   0.672   0.803   1                                                   
0.524   0.627   0.617   0.608   1                                               
0.452   0.515   0.55    0.56    0.701   1                                           
0.637   0.533   0.529   0.423   0.306   0.225   1                                       
0.695   0.827   0.67    0.637   0.617   0.52    0.415   1                                   
0.695   0.684   0.593   0.521   0.408   0.336   0.741   0.6 1                               
0.76    0.658   0.684   0.573   0.421   0.342   0.745   0.585   0.743   1                           
0.526   0.624   0.627   0.625   0.715   0.743   0.261   0.664   0.404   0.422   1                       
0.367   0.571   0.449   0.432   0.621   0.536   0.168   0.583   0.274   0.281   0.607   1                   
0.449   0.456   0.382   0.307   0.277   0.299   0.442   0.429   0.531   0.449   0.376   0.223   1               
0.716   0.656   0.818   0.733   0.608   0.551   0.437   0.675   0.542   0.587   0.677   0.521   0.422   1           
0.367   0.373   0.368   0.406   0.506   0.573   0.207   0.438   0.342   0.313   0.64    0.395   0.473   0.469   1       
0.514   0.68    0.551   0.486   0.575   0.487   0.394   0.627   0.467   0.44    0.555   0.7 0.335   0.574   0.347   1   
0.306   0.346   0.312   0.311   0.453   0.484   0.259   0.326   0.335   0.287   0.538   0.334   0.471   0.429   0.572   0.368   1'

lowerPAGA <- '
1                                   
0.722   1                               
0.801   0.708   1                           
0.689   0.672   0.803   1                       
0.524   0.627   0.617   0.608   1                   
0.452   0.515   0.55    0.56    0.701   1               
0.637   0.533   0.529   0.423   0.306   0.225   1           
0.695   0.827   0.67    0.637   0.617   0.52    0.415   1       
0.695   0.684   0.593   0.521   0.408   0.336   0.741   0.6 1   
0.76    0.658   0.684   0.573   0.421   0.342   0.745   0.585   0.743   1'

lowerPAGG <- '
1                       
0.607   1                   
0.376   0.223   1               
0.677   0.521   0.422   1           
0.64    0.395   0.473   0.469   1       
0.555   0.7 0.335   0.574   0.347   1   
0.538   0.334   0.471   0.429   0.572   0.368   1'

nPAG <- 387

PAG.cor = getCov(lowerPAG, names = c("GS", "AR", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI", "NCM", "CMP", "TDS", "VOC", "TLM", "ARS", "FRM"))

PAGA.cor = getCov(lowerPAGA, names = c("GS", "AR", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI"))

PAGG.cor = getCov(lowerPAGG, names = c("NCM", "CMP", "TDS", "VOC", "TLM", "ARS", "FRM"))
Parallel Analysis
fa.parallel(PAG.cor, n.obs = nPAG)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  4  and the number of components =  2
fa.parallel(PAGA.cor, n.obs = nPAG)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
fa.parallel(PAGG.cor, n.obs = nPAG)

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
Exploratory Factor Analyses
PAG <- fa(PAG.cor, n.obs = nPAG, nfactors = 4)
PAGA <- fa(PAGA.cor, n.obs = nPAG, nfactors = 3)
## Warning in GPFoblq(L, Tmat = Tmat, normalize = normalize, eps = eps, maxit =
## maxit, : convergence not obtained in GPFoblq. 1000 iterations used.
PAGG <- fa(PAGG.cor, n.obs = nPAG, nfactors = 2)

print(PAG$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR1    MR4    MR2    MR3   
## GS   0.579         0.417       
## AR          0.566  0.342       
## WK   0.868                     
## PC   0.823                     
## NO   0.373  0.386              
## CS   0.385                0.456
## AS                 0.763       
## MK          0.506              
## MC                 0.739       
## EI   0.347         0.631       
## NCM  0.400                0.480
## CMP         0.888              
## TDS                0.512  0.490
## VOC  0.623                     
## TLM                       0.780
## ARS         0.809              
## FRM                       0.729
## 
##                  MR1   MR4   MR2   MR3
## SS loadings    2.909 2.313 2.288 1.935
## Proportion Var 0.171 0.136 0.135 0.114
## Cumulative Var 0.171 0.307 0.442 0.556
print(PAGA$loadings, cutoff = 0.3)
## 
## Loadings:
##    MR2    MR1    MR3   
## GS  0.508  0.463       
## AR  0.461         0.526
## WK         0.869       
## PC         0.780       
## NO         0.583  0.398
## CS         0.617  0.315
## AS  0.857              
## MK  0.321         0.527
## MC  0.836              
## EI  0.758              
## 
##                  MR2   MR1   MR3
## SS loadings    2.666 2.413 0.865
## Proportion Var 0.267 0.241 0.086
## Cumulative Var 0.267 0.508 0.594
print(PAGG$loadings, cutoff = 0.3)
## 
## Loadings:
##     MR2    MR1   
## NCM  0.507  0.427
## CMP         0.875
## TDS  0.632       
## VOC  0.375  0.458
## TLM  0.800       
## ARS         0.801
## FRM  0.742       
## 
##                  MR2   MR1
## SS loadings    1.992 1.802
## Proportion Var 0.285 0.257
## Cumulative Var 0.285 0.542
Confirmatory Factor Analyses
PAGA.model <- '
TECH =~ AS + MC + EI
VERB =~ GS + WK + PC
MATH =~ AR + MK
SPEED =~ NO + CS

gAS =~ TECH + VERB + MATH + SPEED'

PAGG.model <- '
V =~ NCM + VOC + TLM
P =~ CMP + ARS
S =~ TDS + TLM + FRM

gGA =~ V + P + S'

PAGG.fit <- cfa(PAGG.model, sample.cov = PAG.cor, sample.nobs = nPAG, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4))
PAGA.fit <- cfa(PAGA.model, sample.cov = PAG.cor, sample.nobs = nPAG, std.lv = T)

round(cbind("Palmer ASVAB" = fitMeasures(PAGG.fit, FITM),
            "Palmer GATB" = fitMeasures(PAGA.fit, FITM)), 3)
##                Palmer ASVAB Palmer GATB
## chisq                60.932     237.018
## df                   10.000      31.000
## npar                 18.000      24.000
## cfi                   0.960       0.938
## rmsea                 0.115       0.131
## rmsea.ci.lower        0.088       0.116
## rmsea.ci.upper        0.143       0.147
## aic                6482.430    7913.813
## bic                6553.682    8008.816
PAGFI.model <- '
TECH =~ AS + MC + EI
VERB =~ GS + WK + PC
MATH =~ AR + MK
SPEED =~ NO + CS

gAS =~ TECH + VERB + MATH + SPEED

V =~ NCM + VOC + TLM
P =~ CMP + ARS
S =~ TDS + TLM + FRM

gGA =~ V + P + S

gAS ~~ 1*gGA

P ~~ MATH + SPEED

GS ~~ NCM 
WK ~~ VOC
NO ~~ TDS
CS ~~ NCM'

PAGFI.fit <- cfa(PAGFI.model, sample.cov = PAG.cor, sample.nobs = nPAG, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4))

round(cbind("Unrelated g's" = fitMeasures(PAGNO.fit, FITM),
            "Related g's" = fitMeasures(PAGFR.fit, FITM),
            "Group Factors" = fitMeasures(PAGGR.fit, FITM),
            "Residual Covs" = fitMeasures(PAGRC.fit, FITM),
            "Identical g's" = fitMeasures(PAGFI.fit, FITM)), 3)
##                Unrelated g's Related g's Group Factors Residual Covs
## chisq               1354.488     891.149       813.774       644.312
## df                   111.000     110.000       108.000       104.000
## npar                  42.000      43.000        45.000        49.000
## cfi                    0.776       0.859         0.873         0.903
## rmsea                  0.170       0.135         0.130         0.116
## rmsea.ci.lower         0.162       0.127         0.122         0.107
## rmsea.ci.upper         0.178       0.144         0.138         0.125
## aic                14399.392   13938.053     13864.678     13703.217
## bic                14565.646   14108.266     14042.808     13897.179
##                Identical g's
## chisq                686.577
## df                   105.000
## npar                  48.000
## cfi                    0.895
## rmsea                  0.120
## rmsea.ci.lower         0.111
## rmsea.ci.upper         0.128
## aic                13743.481
## bic                13933.485

The initial correlation is r = 0.975. In the final model, it was 0.937.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do: quite unidimensional.

(Arguably) Elementary Cognitive Tasks

Deary et al. (1989) n = 119

Different correlations had different n’s in this sample and the correlation between LI and HLI was not computed so I took the average HLI correlation with other IT measures as its correlation; this should be more or less appropriate. This does not really count as a test of “just one g” because it’s an extremely narrow comparison and not even possibly higher-order. Correlations were reflected when necessary (i.e., lower score = higher performance) and an n of 60 was used.

lowerDEARY <- '
1                           
0.25    1                       
0.42    0.31    1                   
0.48    0.46    0.5 1               
0.16    0.02    0.31    0.27    1           
0.23    0.17    0.22    0.32    0.48    1       
0.29    0.31    0.06    0.41    0.39    0.36    1   
0.05    0.27    0.11    0.4 0.24    0.2 0.53    1'

nDEARY <- 119

DEARY.cor = getCov(lowerDEARY, names = c("APM", "Vocab", "AH5A", "AH5B", "VLI", "HLI", "LI", "AI"))

DEARYNO.model <- '
gIT =~ VLI + HLI + LI + AI
gAH =~ APM + Vocab + AH5A + AH5B
gIT ~~ 0*gAH'

DEARYFR.model <- '
gIT =~ VLI + HLI + LI + AI
gAH =~ APM + Vocab + AH5A + AH5B
gIT ~~ gAH'

DEARYFI.model <- '
gIT =~ VLI + HLI + LI + AI
gAH =~ APM + Vocab + AH5A + AH5B
gIT ~~ 1*gAH'

DEARYNO.fit <- cfa(DEARYNO.model, sample.cov = DEARY.cor, sample.nobs = nDEARY, std.lv = T)
DEARYFR.fit <- cfa(DEARYFR.model, sample.cov = DEARY.cor, sample.nobs = nDEARY, std.lv = T)
DEARYFI.fit <- cfa(DEARYFI.model, sample.cov = DEARY.cor, sample.nobs = nDEARY, std.lv = T)

round(cbind("No Correlation" = fitMeasures(DEARYNO.fit, FITM),
            "Freely Correlated" = fitMeasures(DEARYFR.fit, FITM),
            "Identical" = fitMeasures(DEARYFI.fit, FITM)), 3)
##                No Correlation Freely Correlated Identical
## chisq                  90.381            60.745    94.774
## df                     20.000            19.000    20.000
## npar                   16.000            17.000    16.000
## cfi                     0.709             0.828     0.691
## rmsea                   0.172             0.136     0.177
## rmsea.ci.lower          0.137             0.098     0.142
## rmsea.ci.upper          0.209             0.175     0.214
## aic                  2545.943          2518.307  2550.335
## bic                  2590.409          2565.552  2594.801

The correlation between the g’s from the two batteries was r = 0.61. The g loadings were evidently quite consistent when the sets of tests were estimated with one g or two.

gUNI <- c(0.425, 0.461, 0.562, 0.477, 0.537, 0.513, 0.540, 0.816)
gAPART <- c(0.540, 0.523, 0.765, 0.604, 0.551, 0.518, 0.566, 0.892)

CONGO(gUNI, gAPART); cor(gUNI, gAPART); cor(gUNI, gAPART, method = "spearman")
## [1] 0.9946327
## [1] 0.8684188
## [1] 0.7142857

Deary, Head & Egan’s (1989) dataset also yielded an r of 0.247 between the Pitch/IT g and psychometric g, but with an n of 53, two lower-order g factors, and definition by two pitch tests and an auditory inspection time task, it’s doubtful this result means anything for the present hypothesis.

Kranzler & Jensen (1991) n = 101

lowerKRAN01A1 = '
1                                                                                                                                                   
0.1723  1                                                                                                                                               
0.2013  0.5658  1                                                                                                                                           
0.443   0.2399  0.1866  1                                                                                                                                       
0.1352  0.5232  0.4839  0.0981  1                                                                                                                                   
0.1473  0.569   0.5734  0.2664  0.5386  1                                                                                                                               
0.2667  0.3479  0.1839  0.3092  0.2319  0.1274  1                                                                                                                           
0.2792  0.4732  0.502   0.0037  0.3755  0.343   0.2347  1                                                                                                                       
0.4242  0.3239  0.0928  0.3572  0.2237  0.0448  0.3969  0.2608  1                                                                                                                   
0.3057  0.3471  0.241   0.2565  0.3593  0.2008  0.2873  0.3646  0.5019  1                                                                                                               
0.5527  0.3632  0.2539  0.35    0.234   0.2182  0.3525  0.4362  0.5022  0.5054  1                                                                                                           
0.0965  0.1949  0.2083  0.0343  0.0459  0.0615  0.0991  0.3128  0.2209  0.1119  0.1956  1                                                                                                       
0.1318  0.0171  0.1512  0.0883  0.013   0.0573  0.3269  0.0606  0.192   0.1583  0.2144  0.1913  1                                                                                                   
0.0027  0.0548  0.1678  0.0182  0.0012  0.0909  0.1604  0.0197  0.0028  0.0015  0.1062  0.2049  0.4254  1                                                                                               
0.1793  0.255   0.1962  0.0716  0.1444  0.0152  0.0644  0.1755  0.0514  0.0685  0.1708  0.0219  0.2724  0.1694  1                                                                                           
0.0244  0.0872  0.108   0.0455  0.0839  0.0463  0.0061  0.0452  0.0531  0.1073  0.0696  0.0315  0.1295  0.0904  0.199   1                                                                                       
0.1895  0.0361  0.1803  0.2637  0.0765  0.1268  0.2967  0.157   0.1477  0.116   0.2093  0.1861  0.4298  0.157   0.0285  0.0509  1                                                                                   
0.3799  0.067   0.1628  0.2975  0.0542  0.1777  0.1781  0.2959  0.1034  0.114   0.2865  0.1954  0.1869  0.0379  0.0593  0.0458  0.6643  1                                                                               
0.31    0.2744  0.2813  0.1097  0.0811  0.0454  0.167   0.2999  0.2067  0.2363  0.2499  0.1389  0.3742  0.2366  0.7593  0.2684  0.0436  0.0362  1                                                                           
0.1247  0.0812  0.2665  0.1034  0.1457  0.0185  0.3016  0.135   0.1207  0.2135  0.1806  0.2157  0.7386  0.3759  0.2436  0.0824  0.6631  0.3358  0.2638  1                                                                       
0.142   0.2202  0.2734  0.1197  0.2071  0.1584  0.0725  0.3215  0.064   0.1342  0.2008  0.2544  0.2613  0.3983  0.1997  0.0617  0.4256  0.2705  0.2273  0.4931  1                                                                   
0.2514  0.2122  0.2385  0.1964  0.0443  0.0715  0.1002  0.1927  0.1131  0.088   0.2085  0.0513  0.3638  0.1955  0.765   0.232   0.0532  0.068   0.8266  0.3648  0.2228  1                                                               
0.1106  0.0012  0.0831  0.1934  0.1854  0.0824  0.2913  0.0434  0.166   0.1811  0.1114  0.1019  0.3135  0.2373  0.0267  0.0027  0.4659  0.3024  0.078   0.523   0.3001  0.0403  1                                                           
0.2468  0.3169  0.2309  0.1628  0.0257  0.0044  0.1149  0.2491  0.1699  0.2124  0.2996  0.1286  0.1409  0.1598  0.5776  0.2432  0.0465  0.0439  0.7192  0.1128  0.1572  0.6415  0.1064  1                                                       
0.1259  0.0415  0.0533  0.1949  0.1831  0.1542  0.3079  0.0624  0.0966  0.183   0.1125  0.022   0.2382  0.1613  0.0376  0.071   0.5683  0.4446  0.1105  0.5277  0.3806  0.0099  0.6889  0.1853  1                                                   
0.1452  0.0302  0.0029  0.1876  0.031   0.0601  0.1392  0.1423  0.1382  0.2151  0.1992  0.0068  0.1246  0.0449  0.0607  0.0378  0.3141  0.3638  0.0405  0.2499  0.2617  0.0785  0.1924  0.0835  0.4539  1                                               
0.172   0.2564  0.2238  0.0818  0.0053  0.0287  0.0667  0.2275  0.1774  0.1977  0.1593  0.1032  0.0669  0.0387  0.4183  0.1279  0.2575  0.1602  0.5939  0.0514  0.0166  0.4964  0.2572  0.7644  0.4452  0.0562  1                                           
0.1647  0.094   0.0578  0.1219  0.0451  0.0678  0.1662  0.1038  0.2664  0.2222  0.1189  0.1119  0.1424  0.054   0.1994  0.1239  0.1481  0.1343  0.3616  0.0538  0.096   0.2565  0.048   0.4027  0.2737  0.071   0.6307  1                                       
0.1635  0.0691  0.1065  0.2748  0.0908  0.0016  0.3103  0.0008  0.2779  0.2203  0.1541  0.0908  0.423   0.2925  0.0731  0.0733  0.5582  0.3484  0.0783  0.6059  0.3096  0.129   0.6209  0.0506  0.6468  0.2603  0.1055  0.026   1                                   
0.2735  0.2333  0.2371  0.2127  0.0527  0.0201  0.1163  0.2245  0.2251  0.1216  0.1306  0.145   0.2876  0.2134  0.6059  0.1613  0.0626  0.0054  0.6849  0.3067  0.2944  0.6704  0.0447  0.5839  0.0245  0.0637  0.5392  0.3753  0.2358  1                               
0.2808  0.2174  0.1239  0.2136  0.0487  0.0652  0.3838  0.0942  0.2601  0.2237  0.2305  0.2174  0.0909  0.1511  0.112   0.1655  0.3052  0.3273  0.0619  0.2149  0.1014  0.1362  0.3249  0.0322  0.3666  0.1994  0.0625  0.0585  0.5496  0.1357  1                           
0.1708  0.0763  0.149   0.2588  0.1602  0.0337  0.2744  0.0116  0.2942  0.1649  0.1284  0.1343  0.486   0.3749  0.2025  0.0013  0.4683  0.2209  0.1933  0.5901  0.2691  0.2253  0.5533  0.1344  0.466   0.1912  0.0395  0.1331  0.8436  0.3434  0.4221  1                       
0.3059  0.2446  0.2735  0.2366  0.0855  0.0545  0.1837  0.239   0.1877  0.1185  0.1595  0.125   0.3501  0.2493  0.6376  0.1692  0.1645  0.0999  0.6763  0.3992  0.3327  0.6929  0.1446  0.5923  0.0859  0.0805  0.5037  0.3502  0.305   0.9535  0.0673  0.4378  1                   
0.2242  0.0471  0.1528  0.305   0.1167  0.0658  0.3977  0.0387  0.325   0.2754  0.2711  0.1187  0.4506  0.3025  0.1299  0.0434  0.5581  0.3961  0.1401  0.6089  0.3203  0.1941  0.7132  0.2085  0.604   0.2865  0.0061  0.1065  0.7632  0.2227  0.4133  0.693   0.302   1               
0.1684  0.2036  0.2325  0.0639  0.0193  0.0584  0.1593  0.1944  0.1522  0.116   0.1555  0.1749  0.371   0.3036  0.6618  0.1736  0.055   0.0073  0.7376  0.3872  0.2902  0.7362  0.1098  0.6607  0.0161  0.0615  0.5388  0.3265  0.2006  0.8393  0.0828  0.3149  0.8363  0.2633  1           
0.2587  0.1292  0.0898  0.1923  0.0351  0.1501  0.2126  0.0408  0.205   0.1622  0.1098  0.0042  0.1856  0.139   0.0634  0.1412  0.333   0.2979  0.0294  0.3227  0.1637  0.0739  0.4556  0.0589  0.3526  0.2452  0.0571  0.0264  0.5189  0.0195  0.2948  0.3384  0.0082  0.6226  0.0039  1       
0.1397  0.0756  0.2294  0.2717  0.1064  0.0062  0.4096  0.0514  0.223   0.2036  0.1774  0.1838  0.524   0.3385  0.166   0.0561  0.4642  0.3437  0.2263  0.5982  0.3239  0.2533  0.5635  0.2526  0.4482  0.2105  0.0775  0.1154  0.6304  0.2547  0.2852  0.6425  0.3198  0.8667  0.3374  0.4801  1   
0.1624  0.1184  0.17    0.1053  0.0045  0.1423  0.1307  0.0701  0.1812  0.0869  0.074   0.1622  0.4246  0.3113  0.5969  0.1335  0.0199  0.0889  0.672   0.4115  0.25    0.7059  0.1314  0.5571  0.0029  0.0485  0.4747  0.3422  0.2126  0.805   0.1299  0.3504  0.7882  0.2754  0.9144  0.0316  0.3588  1'

KRAN01.cor = getCov(lowerKRAN01A1, names = c("APM", "INFO", "COMP", "ARITH", "SIM", "VOCAB", "DIGIT", "PCOMP", "SPATIAL", "PARRANGE", "OBJASM", "IT", "HORTMDN", "HORTSD", "HOMTMDN", "HOMTSD", "ODRTMDN", "ODRTSD", "ODMTMDN", "H3RTMDN", "H3RTSD", "H3MTMDN", "SDRTMDN", "SDMTMDN", "SARTMDN", "SARTSD", "SAMTMDN", "SAMTSD", "MSRTMDN", "MSMTMDN", "MSMTSD", "MSRTINT", "MSMTINT", "VSTRTMDN", "VSMTMDN", "VSMTSD", "VSRTINT", "VSMTINT"))

gsKRAN01A1 = '
1.0000                                      
0.1723  1.0000                                  
0.2013  0.5658  1.0000                              
0.4430  0.2399  0.1866  1.0000                          
0.1352  0.5232  0.4839  0.0981  1.0000                      
0.1473  0.5690  0.5734  0.2664  0.5386  1.0000                  
0.2667  0.3479  0.1839  0.3092  0.2319  0.1274  1.0000              
0.2792  0.4732  0.5020  0.0037  0.3755  0.3430  0.2347  1.0000          
0.4242  0.3239  0.0928  0.3572  0.2237  0.0448  0.3969  0.2608  1.0000      
0.3057  0.3471  0.2410  0.2565  0.3593  0.2008  0.2873  0.3646  0.5019  1.0000  
0.5527  0.3632  0.2539  0.3500  0.2340  0.2182  0.3525  0.4362  0.5022  0.5054  1.0000'

GSKRAN01.cor = getCov(gsKRAN01A1, names = c("APM", "INFO", "COMP", "ARITH", "SIM", "VOCAB", "DIGIT", "PCOMP", "SPATIAL", "PARRANGE", "OBJASM"))

ectKRAN01A1 = '
1.0000                                                                                                      
0.1913  1.0000                                                                                                  
0.2049  0.4254  1.0000                                                                                              
-0.0219 0.2724  0.1694  1.0000                                                                                          
0.0315  0.1295  -0.0904 0.1990  1.0000                                                                                      
0.1861  0.4298  0.1570  -0.0285 0.0509  1.0000                                                                                  
0.1954  0.1869  -0.0379 0.0593  -0.0458 0.6643  1.0000                                                                              
0.1389  0.3742  0.2366  0.7593  0.2684  -0.0436 -0.0362 1.0000                                                                          
0.2157  0.7386  0.3759  0.2436  0.0824  0.6631  0.3358  0.2638  1.0000                                                                      
0.2544  0.2613  0.3983  0.1997  -0.0617 0.4256  0.2705  0.2273  0.4931  1.0000                                                                  
0.0513  0.3638  0.1955  0.7650  0.2320  0.0532  0.0680  0.8266  0.3648  0.2228  1.0000                                                              
0.1019  0.3135  0.2373  0.0267  -0.0027 0.4659  0.3024  -0.0780 0.5230  0.3001  0.0403  1.0000                                                          
0.1286  0.1409  0.1598  0.5776  0.2432  -0.0465 0.0439  0.7192  0.1128  0.1572  0.6415  -0.1064 1.0000                                                      
0.0220  0.2382  0.1613  -0.0376 -0.0710 0.5683  0.4446  -0.1105 0.5277  0.3806  -0.0099 0.6889  -0.1853 1.0000                                                  
-0.0068 0.1246  -0.0449 0.0607  0.0378  0.3141  0.3638  0.0405  0.2499  0.2617  0.0785  0.1924  0.0835  0.4539  1.0000                                              
0.1032  0.0669  0.0387  0.4183  0.1279  -0.2575 -0.1602 0.5939  -0.0514 -0.0166 0.4964  -0.2572 0.7644  -0.4452 0.0562  1.0000                                          
0.1119  0.1424  0.0540  0.1994  0.1239  -0.1481 -0.1343 0.3616  -0.0538 -0.0960 0.2565  -0.0480 0.4027  -0.2737 0.0710  0.6307  1.0000                                      
0.0908  0.4230  0.2925  0.0731  -0.0733 0.5582  0.3484  0.0783  0.6059  0.3096  0.1290  0.6209  0.0506  0.6468  0.2603  -0.1055 0.0260  1.0000                                  
0.1450  0.2876  0.2134  0.6059  0.1613  0.0626  0.0054  0.6849  0.3067  0.2944  0.6704  0.0447  0.5839  0.0245  0.0637  0.5392  0.3753  0.2358  1.0000                              
0.2174  0.0909  0.1511  -0.1120 -0.1655 0.3052  0.3273  -0.0619 0.2149  0.1014  -0.1362 0.3249  0.0322  0.3666  0.1994  -0.0625 -0.0585 0.5496  -0.1357 1.0000                          
0.1343  0.4860  0.3749  0.2025  0.0013  0.4683  0.2209  0.1933  0.5901  0.2691  0.2253  0.5533  0.1344  0.4660  0.1912  0.0395  0.1331  0.8436  0.3434  0.4221  1.0000                      
0.1250  0.3501  0.2493  0.6376  0.1692  0.1645  0.0999  0.6763  0.3992  0.3327  0.6929  0.1446  0.5923  0.0859  0.0805  0.5037  0.3502  0.3050  0.9535  -0.0673 0.4378  1.0000                  
0.1187  0.4506  0.3025  0.1299  -0.0434 0.5581  0.3961  0.1401  0.6089  0.3203  0.1941  0.7132  0.2085  0.6040  0.2865  -0.0061 0.1065  0.7632  0.2227  0.4133  0.6930  0.3020  1.0000              
0.1749  0.3710  0.3036  0.6618  0.1736  0.0550  -0.0073 0.7376  0.3872  0.2902  0.7362  0.1098  0.6607  0.0161  0.0615  0.5388  0.3265  0.2006  0.8393  -0.0828 0.3149  0.8363  0.2633  1.0000          
-0.0042 0.1856  0.1390  -0.0634 -0.1412 0.3330  0.2979  -0.0294 0.3227  0.1637  0.0739  0.4556  0.0589  0.3526  0.2452  0.0571  0.0264  0.5189  -0.0195 0.2948  0.3384  0.0082  0.6226  0.0039  1.0000      
0.1838  0.5240  0.3385  0.1660  -0.0561 0.4642  0.3437  0.2263  0.5982  0.3239  0.2533  0.5635  0.2526  0.4482  0.2105  0.0775  0.1154  0.6304  0.2547  0.2852  0.6425  0.3198  0.8667  0.3374  0.4801  1.0000  
0.1622  0.4246  0.3113  0.5969  0.1335  0.0199  -0.0889 0.6720  0.4115  0.2500  0.7059  0.1314  0.5571  0.0029  0.0485  0.4747  0.3422  0.2126  0.8050  -0.1299 0.3504  0.7882  0.2754  0.9144  0.0316  0.3588  1.0000'

ECTKRAN01.cor = getCov(ectKRAN01A1, names = c("IT", "HORTMDN", "HORTSD", "HOMTMDN", "HOMTSD", "ODRTMDN", "ODRTSD", "ODMTMDN", "H3RTMDN", "H3RTSD", "H3MTMDN", "SDRTMDN", "SDMTMDN", "SARTMDN", "SARTSD", "SAMTMDN", "SAMTSD", "MSRTMDN", "MSMTMDN", "MSMTSD", "MSRTINT", "MSMTINT", "VSTRTMDN", "VSMTMDN", "VSMTSD", "VSRTINT", "VSMTINT"))

nKRAN <- 101
Parallel Analysis
fa.parallel(KRAN01.cor, n.obs = nKRAN)
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  5  and the number of components =  4
fa.parallel(GSKRAN01.cor, n.obs = nKRAN)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  2  and the number of components =  2
fa.parallel(ECTKRAN01.cor, n.obs = nKRAN)

## Parallel analysis suggests that the number of factors =  2  and the number of components =  2
Exploratory Factor Analyses
KRAN <- fa(KRAN01.cor, n.obs = nKRAN, nfactor = 4)
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done

## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
GSKRAN <- fa(GSKRAN01.cor, n.obs = nKRAN, nfactor = 2)
ECKRAN <- fa(ECTKRAN01.cor, n.obs = nKRAN, nfactor = 2)

print(KRAN$loadings, cutoff = 0.3)
## 
## Loadings:
##          MR2    MR1    MR3    MR4   
## APM                            0.416
## INFO                    0.762       
## COMP                    0.725       
## ARITH                          0.305
## SIM                     0.676       
## VOCAB                   0.691       
## DIGIT     0.371                     
## PCOMP                   0.631       
## SPATIAL                        0.405
## PARRANGE                0.393  0.336
## OBJASM                  0.440  0.376
## IT                                  
## HORTMDN   0.496                     
## HORTSD    0.314               -0.309
## HOMTMDN          0.748              
## HOMTSD                              
## ODRTMDN   0.714                     
## ODRTSD    0.486                     
## ODMTMDN          0.859              
## H3RTMDN   0.723               -0.313
## H3RTSD    0.353                     
## H3MTMDN          0.834              
## SDRTMDN   0.750                     
## SDMTMDN          0.760         0.308
## SARTMDN   0.730                     
## SARTSD    0.362                     
## SAMTMDN          0.641         0.455
## SAMTSD           0.404         0.355
## MSRTMDN   0.888                     
## MSMTMDN          0.872              
## MSMTSD    0.459                     
## MSRTINT   0.748                     
## MSMTINT          0.848              
## VSTRTMDN  0.905                     
## VSMTMDN          0.926              
## VSMTSD    0.560                     
## VSRTINT   0.758                     
## VSMTINT          0.860              
## 
##                  MR2   MR1   MR3   MR4
## SS loadings    6.625 6.594 3.212 1.794
## Proportion Var 0.174 0.174 0.085 0.047
## Cumulative Var 0.174 0.348 0.432 0.480
print(GSKRAN$loadings, cutoff = 0.3)
## 
## Loadings:
##          MR1    MR2   
## APM              0.655
## INFO      0.705       
## COMP      0.782       
## ARITH            0.486
## SIM       0.665       
## VOCAB     0.783       
## DIGIT            0.458
## PCOMP     0.487       
## SPATIAL          0.770
## PARRANGE         0.542
## OBJASM           0.737
## 
##                  MR1   MR2
## SS loadings    2.455 2.389
## Proportion Var 0.223 0.217
## Cumulative Var 0.223 0.440
print(ECKRAN$loadings, cutoff = 0.3)
## 
## Loadings:
##          MR1    MR2   
## IT                    
## HORTMDN   0.308  0.486
## HORTSD           0.319
## HOMTMDN   0.745       
## HOMTSD                
## ODRTMDN          0.751
## ODRTSD           0.526
## ODMTMDN   0.881       
## H3RTMDN          0.738
## H3RTSD           0.434
## H3MTMDN   0.825       
## SDRTMDN          0.762
## SDMTMDN   0.774       
## SARTMDN          0.798
## SARTSD           0.352
## SAMTMDN   0.724       
## SAMTSD    0.462       
## MSRTMDN          0.855
## MSMTMDN   0.858       
## MSMTSD           0.494
## MSRTINT          0.721
## MSMTINT   0.842       
## VSTRTMDN         0.861
## VSMTMDN   0.898       
## VSMTSD           0.543
## VSRTINT          0.730
## VSMTINT   0.843       
## 
##                  MR1   MR2
## SS loadings    6.839 6.512
## Proportion Var 0.253 0.241
## Cumulative Var 0.253 0.494
Confirmatory Factor Analyses
CARKRANECT.model <- '
F1 =~ ODRTMDN + ODRTSD
F2 =~ SDRTMDN + SARTMDN + MSRTMDN + VSTRTMDN
F3 =~ IT + HORTMDN + HORTSD + H3RTMDN + H3RTSD

ECTg =~ F1 + F2 + F3

ODRTMDN ~~ 0*ODRTMDN' 

CARKRANPSY.model <- '
F4 =~ APM + PARRANGE + OBJASM + SPATIAL
F5 =~ VOCAB + INFO + COMP

PSYg =~ F4 + F5

SPATIAL ~~ INFO'

KRANECT.fit <- cfa(CARKRANECT.model, sample.cov = KRAN01.cor, sample.nobs = nKRAN, std.lv = T)
KRANPSY.fit <- suppressWarnings(cfa(CARKRANPSY.model, sample.cov = KRAN01.cor, sample.nobs = nKRAN, std.lv = T))

round(cbind("Kranzler ECTs" = fitMeasures(KRANECT.fit, FITM),
            "Kranzler Psychometric" = fitMeasures(KRANPSY.fit, FITM)), 3)
##                Kranzler ECTs Kranzler Psychometric
## chisq                 76.256                16.507
## df                    42.000                11.000
## npar                  24.000                17.000
## cfi                    0.939                 0.974
## rmsea                  0.090                 0.070
## rmsea.ci.lower         0.057                 0.000
## rmsea.ci.upper         0.122                 0.136
## aic                 2645.822              1814.362
## bic                 2708.585              1858.819
CARKRANFI.model <- '
F1 =~ ODRTMDN + ODRTSD
F2 =~ SDRTMDN + SARTMDN + MSRTMDN + VSTRTMDN
F3 =~ IT + HORTMDN + HORTSD + H3RTMDN + H3RTSD

ECTg =~ F1 + F2 + F3

ODRTMDN ~~ 0*ODRTMDN

F4 =~ APM + PARRANGE + OBJASM + SPATIAL
F5 =~ VOCAB + INFO + COMP

PSYg =~ F4 + F5

SPATIAL ~~ INFO

ECTg ~~ 1*PSYg'

KRANECTFI.fit <- cfa(CARKRANFI.model, sample.cov = KRAN01.cor, sample.nobs = nKRAN, std.lv = T)

round(cbind("No Correlation" = fitMeasures(KRANECTNO.fit, FITM),
            "Freely Correlated" = fitMeasures(KRANECTFR.fit, FITM),
            "Identical g Factors" = fitMeasures(KRANECTFI.fit, FITM)), 3)
##                No Correlation Freely Correlated Identical g Factors
## chisq                 200.994           192.859             202.107
## df                    130.000           129.000             130.000
## npar                   41.000            42.000              41.000
## cfi                     0.912             0.921               0.911
## rmsea                   0.074             0.070               0.074
## rmsea.ci.lower          0.053             0.048               0.053
## rmsea.ci.upper          0.093             0.090               0.093
## aic                  4460.184          4454.049            4461.297
## bic                  4567.404          4563.884            4568.517

The r is 0.368.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do: shockingly unidimensional.

Luo, Thompson & Detterman (2003) n = 532

For this, I will be exclusively using the factor structure provided by Luo, Thompson & Detterman (2003)

lowerLPT <- '
1                                                                                       
0.6258  1                                                                                   
0.5242  0.4657  1                                                                               
0.6599  0.6466  0.4821  1                                                                           
0.5744  0.5973  0.4795  0.6906  1                                                                       
0.3701  0.3512  0.3244  0.3953  0.3392  1                                                                   
0.4 0.3927  0.3115  0.4062  0.3947  0.373   1                                                               
0.3845  0.3754  0.3382  0.3915  0.3563  0.5022  0.4907  1                                                           
0.4429  0.4296  0.5027  0.4109  0.4115  0.4462  0.4363  0.6305  1                                                       
0.1974  0.1582  0.3121  0.1659  0.1494  0.1525  0.1551  0.2154  0.2728  1                                                   
0.4254  0.3751  0.4893  0.4004  0.4034  0.2779  0.2599  0.2244  0.3377  0.191   1                                               
0.3371  0.3057  0.3457  0.2988  0.2955  0.3425  0.2511  0.3851  0.4189  0.2356  0.2918  1                                           
0.2663  0.2331  0.3268  0.2287  0.2648  0.163   0.1997  0.2993  0.316   0.2345  0.2864  0.3407  1                                       
0.2992  0.2977  0.3834  0.3048  0.3052  0.2501  0.2035  0.3339  0.4049  0.2367  0.3672  0.4652  0.405   1                                   
0.1996  0.1216  0.1512  0.0785  0.1002  0.0703  0.1055  0.0612  0.1292  0.1669  0.1672  0.119   0.2187  0.0478  1                               
0.2775  0.2281  0.2377  0.2086  0.2264  0.1779  0.1673  0.1818  0.1906  0.2584  0.2561  0.2759  0.2485  0.2062  0.4862  1                           
0.3414  0.2539  0.2521  0.2725  0.2154  0.2489  0.247   0.2808  0.2902  0.2873  0.1988  0.3177  0.3333  0.2156  0.382   0.4973  1                       
0.0779  0.0892  0.1396  0.154   0.0953  0.1192  0.029   0.1181  0.1548  0.1541  0.1163  0.0891  0.0813  0.1601  0.0415  0.1695  0.2154  1                   
0.1675  0.1715  0.1103  0.1378  0.1684  0.1601  0.0311  0.1213  0.1352  0.0663  0.1406  0.1395  0.1266  0.1306  0.0442  0.1762  0.1493  0.0364  1               
0.2307  0.2331  0.243   0.2475  0.2386  0.2966  0.3201  0.3127  0.316   0.179   0.2082  0.3181  0.2335  0.2746  0.0366  0.1837  0.3196  0.2234  0.1446  1           
0.3693  0.3774  0.4338  0.3153  0.3788  0.177   0.1422  0.2175  0.3078  0.2434  0.3846  0.2807  0.2286  0.2848  0.1496  0.2464  0.236   0.1369  0.1589  0.21    1       
0.3218  0.3778  0.451   0.2664  0.3913  0.1535  0.1265  0.213   0.3279  0.2347  0.3726  0.2621  0.247   0.3005  0.1058  0.2117  0.2137  0.1305  0.127   0.2187  0.8739  1   
0.4098  0.4202  0.465   0.3665  0.4089  0.2167  0.1914  0.2754  0.3664  0.243   0.4305  0.293   0.282   0.3109  0.1916  0.282   0.2632  0.1524  0.1922  0.2212  0.885   0.866   1'

nLPT <- 532

LPT.cor = getCov(lowerLPT, names = c("IN", "SI", "AR", "VO", "COMP", "PC", "PA", "OA", "BD", "CO", "DS", "LRPC", "PRPC", "SPPC", "PRRT", "RT", "SD", "TTMT", "TTDT", "TTTH", "LANG", "MATH", "READ"))
Confirmatory Factor Analyses
LPTPSY.model <- '
V =~ IN + SI + VO + COMP
P =~ PC + PA + OA + BD
FD =~ AR + CO + DS

gPSY =~ V + P + FD'

LPTCAT.model <- '
MEM =~ LRPC + PRPC + SPPC
RES =~ PRRT + RT + SD
INS =~ TTMT + TTDT + TTTH

gCAT =~ MEM + RES + INS'

LPTPSY.fit <- cfa(LPTPSY.model, sample.cov = LPT.cor, sample.nobs = nLPT, std.lv = T)
LPTCAT.fit <- cfa(LPTCAT.model, sample.cov = LPT.cor, sample.nobs = nLPT, std.lv = T)

round(cbind("LPT Psychometric" = fitMeasures(LPTPSY.fit, FITM),
            "LPT Elementary" = fitMeasures(LPTCAT.fit, FITM)), 3)
##                LPT Psychometric LPT Elementary
## chisq                   104.087        100.498
## df                       41.000         24.000
## npar                     25.000         21.000
## cfi                       0.974          0.907
## rmsea                     0.054          0.077
## rmsea.ci.lower            0.041          0.062
## rmsea.ci.upper            0.067          0.093
## aic                   14300.043      12858.457
## bic                   14406.959      12948.267
LPTFI.model <- '
V =~ IN + SI + VO + COMP
P =~ PC + PA + OA + BD
FD =~ AR + CO + DS

gPSY =~ V + P + FD

MEM =~ LRPC + PRPC + SPPC
RES =~ PRRT + RT + SD
INS =~ TTMT + TTDT + TTTH

gCAT =~ MEM + RES + INS

gPSY ~~ 1*gCAT'

LPTFI.fit <- cfa(LPTFI.model, sample.cov = LPT.cor, sample.nobs = nLPT, std.lv = T)

round(cbind("No Correlation" = fitMeasures(LPTNO.fit, FITM),
            "Freely Correlated" = fitMeasures(LPTFR.fit, FITM),
            "Identical" = fitMeasures(LPTFI.fit, FITM)), 3)
##                No Correlation Freely Correlated Identical
## chisq                 642.203           384.660   399.314
## df                    164.000           163.000   164.000
## npar                   46.000            47.000    46.000
## cfi                     0.866             0.938     0.934
## rmsea                   0.074             0.051     0.052
## rmsea.ci.lower          0.068             0.044     0.045
## rmsea.ci.upper          0.080             0.057     0.058
## aic                 27158.500         26902.958 26915.612
## bic                 27355.226         27103.960 27112.338

r = 0.870!

Comparison of Separate and Together Model Bifactor Loadings
  • To-do: quite consistent and very unidimensional!

Carey (1992) n = 1,141; Abrahams et al. (1994) n = 9,038; Wolfe et al. (1995) n = 10,963

These use different forms of the ASVAB and, perhaps (it is not stated), the ECAT, and obviously include different non-ASVAB indicators with the ECAT. I will attempt to make the models as close to one another as possible despite the differences in forms and such which may lead to some misfit. The ASVAB models come from the standard one used in the National Longitudinal Survey of Youth 1979 and the ECATs from the EFAs in these studies.

lowerCarey <- '
1                                                                                                       
0.72    1                                                                                                   
0.8 0.71    1                                                                                               
0.69    0.67    0.8 1                                                                                           
0.52    0.63    0.62    0.61    1                                                                                       
0.45    0.52    0.55    0.56    0.7 1                                                                                   
0.64    0.53    0.53    0.42    0.31    0.23    1                                                                               
0.7 0.83    0.67    0.64    0.62    0.52    0.42    1                                                                           
0.7 0.68    0.59    0.52    0.41    0.34    0.74    0.6 1                                                                       
0.76    0.66    0.68    0.57    0.42    0.34    0.75    0.59    0.74    1                                                                   
0.31    0.34    0.33    0.34    0.44    0.48    0.2 0.35    0.29    0.27    1                                                               
0.27    0.29    0.25    0.23    0.29    0.34    0.24    0.28    0.28    0.29    0.27    1                                                           
0.21    0.27    0.28    0.31    0.41    0.41    0.02    0.3 0.14    0.13    0.68    0.26    1                                                       
0.83    0.9 0.91    0.85    0.69    0.6 0.54    0.88    0.68    0.71    0.32    0.29    0.32    1                                                   
0.41    0.56    0.43    0.46    0.44    0.41    0.25    0.54    0.4 0.34    0.31    0.25    0.25    0.55    1                                               
0.6 0.69    0.59    0.56    0.47    0.43    0.44    0.67    0.59    0.54    0.33    0.31    0.23    0.7 0.59    1                                           
0.6 0.64    0.53    0.47    0.4 0.39    0.5 0.62    0.64    0.56    0.29    0.31    0.15    0.64    0.54    0.64    1                                       
0.53    0.57    0.46    0.42    0.36    0.38    0.44    0.56    0.57    0.51    0.31    0.3 0.16    0.56    0.53    0.64    0.66    1                                   
0.53    0.57    0.5 0.42    0.34    0.32    0.52    0.54    0.61    0.53    0.28    0.27    0.17    0.58    0.48    0.62    0.6 0.62    1                               
0.35    0.38    0.35    0.32    0.36    0.37    0.2 0.37    0.36    0.28    0.32    0.25    0.24    0.4 0.39    0.42    0.39    0.43    0.39    1                           
0.4 0.39    0.36    0.31    0.34    0.36    0.3 0.37    0.42    0.35    0.32    0.28    0.21    0.41    0.38    0.43    0.43    0.47    0.43    0.76    1                       
0.18    0.21    0.18    0.22    0.14    0.14    0.15    0.17    0.2 0.17    0.1 0.1 0.07    0.21    0.21    0.25    0.24    0.26    0.24    0.11    0.12    1                   
0.44    0.39    0.4 0.34    0.36    0.36    0.35    0.4 0.42    0.38    0.34    0.29    0.2 0.44    0.32    0.38    0.39    0.42    0.33    0.41    0.42    1   1               
0.39    0.34    0.36    0.3 0.32    0.32    0.3 0.36    0.37    0.34    0.31    0.26    0.19    0.39    0.28    0.34    0.35    0.38    0.3 0.38    0.38    1   1   1           
0.41    0.36    0.37    0.31    0.33    0.33    0.31    0.37    0.38    0.36    0.31    0.27    0.19    0.41    0.29    0.36    0.36    0.39    0.31    0.39    0.4 1   1   1   1       
0.4 0.35    0.36    0.3 0.32    0.32    0.3 0.36    0.37    0.34    0.3 0.26    0.18    0.39    0.28    0.34    0.36    0.38    0.3 0.38    0.39    1   1   1   1   1   
0.17    0.16    0.18    0.16    0.14    0.14    0.2 0.16    0.21    0.17    0.2 0.16    0.08    0.19    0.12    0.14    0.16    0.16    0.15    0.16    0.18    1   1   1   1   1   1'

nCarey <- 1141

CAREY.cor = getCov(lowerCarey, names = c("GS", "AR", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI", "DEX", "FING", "MOT", "AFQT", "SM", "SR", "ID", "AO", "SO", "OT", "TT", "TIACC", "GEOTOT", "GEODEC", "CORR", "TIMEAN", "TIMOV"))

lowerABR <- '
1                                                                       
0.611   1                                                                   
0.72    0.596   1                                                               
0.608   0.574   0.732   1                                                           
0.275   0.47    0.324   0.396   1                                                       
0.249   0.395   0.328   0.386   0.64    1                                                   
0.52    0.4 0.437   0.339   0.047   0.058   1                                               
0.554   0.707   0.497   0.5 0.496   0.408   0.197   1                                           
0.638   0.613   0.547   0.485   0.228   0.221   0.618   0.494   1                                       
0.625   0.487   0.534   0.444   0.145   0.147   0.669   0.37    0.63    1                                   
0.37    0.557   0.342   0.349   0.37    0.348   0.206   0.516   0.427   0.269   1                               
0.369   0.536   0.372   0.375   0.352   0.348   0.17    0.494   0.385   0.241   0.628   1                           
0.496   0.59    0.47    0.438   0.306   0.286   0.307   0.54    0.527   0.383   0.555   0.542   1                       
0.499   0.565   0.427   0.385   0.254   0.253   0.377   0.511   0.57    0.425   0.548   0.497   0.587   1                   
0.469   0.507   0.395   0.354   0.235   0.263   0.386   0.462   0.553   0.422   0.568   0.492   0.568   0.641   1               
0.488   0.537   0.439   0.392   0.225   0.239   0.391   0.482   0.559   0.429   0.504   0.461   0.54    0.572   0.577   1           
0.283   0.291   0.243   0.226   0.206   0.2 0.256   0.254   0.365   0.262   0.374   0.323   0.341   0.373   0.378   0.361   1       
0.343   0.337   0.301   0.264   0.195   0.215   0.322   0.276   0.435   0.325   0.385   0.336   0.366   0.403   0.424   0.402   0.75    1   
0.307   0.257   0.247   0.218   0.18    0.192   0.222   0.221   0.319   0.225   0.291   0.278   0.284   0.32    0.358   0.274   0.362   0.38    1'

nABR <- 9038

ABR.cor = getCov(lowerABR, names = c("GS", "AR", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI", "CT", "SM", "FR", "ID", "AO", "SO", "T1", "T2", "TI"))

lowerWOLF <- '
1                                                                                                                       
0.6111  1                                                                                                                   
0.7201  0.5963  1                                                                                                               
0.6079  0.5743  0.7316  1                                                                                                           
0.2751  0.4703  0.3244  0.3959  1                                                                                                       
0.2487  0.3953  0.3278  0.3859  0.6401  1                                                                                                   
0.5202  0.4004  0.4366  0.3391  0.047   0.0583  1                                                                                               
0.5542  0.7069  0.4968  0.4997  0.4961  0.4078  0.1966  1                                                                                           
0.6377  0.6134  0.5473  0.4852  0.2279  0.2212  0.6181  0.4939  1                                                                                       
0.6245  0.4868  0.5344  0.4445  0.1452  0.1471  0.6692  0.3696  0.6304  1                                                                                   
0.7213  0.6199  0.9508  0.8533  0.3635  0.3609  0.4253  0.5216  0.5542  0.5326  1                                                                               
0.7488  0.8673  0.8455  0.7877  0.4972  0.4448  0.4139  0.8163  0.6436  0.552   0.886   1                                                                           
0.3684  0.5582  0.3409  0.3529  0.3705  0.349   0.2093  0.5163  0.4259  0.2685  0.3624  0.5309  1                                                                       
0.3606  0.5318  0.3682  0.3704  0.3412  0.3387  0.1703  0.4892  0.3854  0.2373  0.3874  0.5272  0.6288  1                                                                   
0.5024  0.5695  0.431   0.3909  0.2601  0.2584  0.3787  0.5174  0.5743  0.4315  0.4401  0.5762  0.553   0.4939  1                                                               
0.4743  0.5142  0.399   0.3611  0.2371  0.2669  0.388   0.4675  0.5559  0.4254  0.4077  0.5261  0.57    0.4885  0.6461  1                                                           
0.2882  0.2956  0.244   0.2272  0.2008  0.1967  0.2589  0.2608  0.3677  0.2659  0.2514  0.3083  0.3787  0.3162  0.3808  0.3801  1                                                       
0.3405  0.3369  0.2967  0.2614  0.191   0.2104  0.323   0.2806  0.4362  0.3233  0.2989  0.3527  0.3889  0.3343  0.4061  0.4276  0.7522  1                                                   
0.5026  0.5945  0.4727  0.4425  0.3073  0.2872  0.3108  0.5457  0.5313  0.3914  0.4854  0.6162  0.5586  0.5422  0.593   0.5768  0.3464  0.3713  1                                               
0.4888  0.5366  0.4392  0.393   0.225   0.238   0.3955  0.4824  0.5622  0.4291  0.448   0.5592  0.5067  0.4584  0.5736  0.5779  0.3668  0.4084  0.5431  1                                           
0.3151  0.2651  0.2537  0.2224  0.1781  0.1917  0.2274  0.23    0.3216  0.2349  0.2563  0.2916  0.2964  0.2807  0.3287  0.3664  0.3631  0.3844  0.2939  0.2815  1                                       
0.4039  0.604   0.3928  0.4007  0.3944  0.3811  0.2104  0.5571  0.4496  0.2803  0.4154  0.5862  0.9032  0.9017  0.5802  0.5866  0.3851  0.4008  0.6099  0.5348  0.3197  1                                   
0.5384  0.5973  0.4575  0.4145  0.2741  0.2894  0.423   0.5429  0.623   0.4723  0.4673  0.6076  0.6189  0.5415  0.9078  0.9066  0.4194  0.4594  0.6448  0.6346  0.383   0.6431  1                               
0.3359  0.3379  0.2889  0.2611  0.2093  0.2175  0.3109  0.2892  0.4296  0.3149  0.294   0.3532  0.4101  0.3475  0.4204  0.4316  0.9356  0.9364  0.3834  0.4142  0.3993  0.4199  0.4695  1                           
0.0506  0.1016  0.059   0.0673  0.0007  0.0094  0.0188  0.1322  0.0809  0.0611  0.0642  0.1084  0.1809  0.0781  0.1581  0.2767  0.1056  0.1109  0.167   0.1563  0.0808  0.1437  0.2394  0.1157  1                       
0.0472  0.0877  0.055   0.0867  0.0532  0.0315  0.0154  0.1427  0.0614  0.0413  0.0704  0.1098  0.1465  0.0584  0.2535  0.103   0.1043  0.0512  0.1646  0.1279  0.0667  0.1137  0.1967  0.083   0.3133  1                   
0.186   0.175   0.1758  0.1536  0.1357  0.1489  0.1692  0.1264  0.1822  0.157   0.1785  0.1889  0.0994  0.1507  0.1239  0.1257  0.075   0.1243  0.1223  0.1387  0.1615  0.1384  0.1375  0.1065  0.2186  0.4455  1               
0.033   0.0013  0.0216  0.004   0.0385  0.0516  0.0699  0.0316  0.0421  0.0256  0.0176  0.0011  0.0559  0.0203  0.0415  0.0707  0.0174  0.0002  0.0401  0.0406  0.1134  0.0199  0.0618  0.0092  0.4782  0.3211  0.295   1           
0.0362  0.083   0.054   0.07    0.0182  0.0243  0.0242  0.127   0.0483  0.0461  0.0609  0.0994  0.0517  0.0427  0.1187  0.0706  0.0562  0.0329  0.1348  0.0738  0.1329  0.0052  0.1044  0.0476  0.4723  0.4605  0.362   0.4314  1       
0.4043  0.4577  0.3399  0.3186  0.2016  0.2229  0.3192  0.4382  0.4794  0.3641  0.3513  0.4693  0.5281  0.4416  0.5718  0.8592  0.3398  0.3776  0.526   0.5205  0.2771  0.5375  0.7882  0.3833  0.4274  0.1737  0.0542  0.1586  0.1691  1   
0.4339  0.4541  0.364   0.3212  0.2169  0.2496  0.3666  0.3949  0.5045  0.3882  0.369   0.4636  0.4834  0.4258  0.575   0.9095  0.334   0.3797  0.4992  0.506   0.3658  0.5039  0.8176  0.3813  0.0878  0.0189  0.1625  0.0196  0.0271  0.5742  1'

nWOLF <- 10963

WOLF.cor = getCov(lowerWOLF, names = c("GS", "AR", "WK", "PC", "NO", "CS", "AS", "MK", "MC", "EI", "VE", "AFQT", "CT", "SM", "ID", "AO", "T1", "T2", "FR", "SO", "TI", "MEM", "SPAT", "TRAC", "AORT", "IDCT", "IDDT", "SORT", "FRRT", "AO1", "AO2"))
Confirmatory Factor Analyses
AS.model <- '
F1 =~ AS + EI + MC
F2 =~ MC + AR + NO + MK
F3 =~ GS + WK + PC 
F4 =~ CS + NO

gAS =~ F1 + F2 + F3 + F4'

ASCS.model <- '
F1 =~ AS + EI + MC
F2 =~ MC + AR + NO + MK
F3 =~ GS + WK + PC 
F4 =~ CS + NO

gAS =~ F1 + F2 + F3 + F4

CS ~~ 0.1*CS' #0.1 constraint leads to more sensible loadings but worse fit than 0 constraint; same below, and constraint is required on Carey in the combined model too

CARAS.fit <- cfa(AS.model, sample.cov = CAREY.cor, sample.nobs = nCarey, std.lv = T)
ABRAS.fit <- cfa(ASCS.model, sample.cov = ABR.cor, sample.nobs = nABR, std.lv = T) 
WOLAS.fit <- cfa(ASCS.model, sample.cov = WOLF.cor, sample.nobs = nWOLF, std.lv = T) 

round(cbind("Carey" = fitMeasures(CARAS.fit, FITM),
            "Abrahams" = fitMeasures(ABRAS.fit, FITM),
            "Identical" = fitMeasures(WOLAS.fit, FITM)), 3)
##                    Carey   Abrahams  Identical
## chisq            625.356   3946.733   4782.911
## df                29.000     30.000     30.000
## npar              26.000     25.000     25.000
## cfi                0.939      0.927      0.927
## rmsea              0.134      0.120      0.120
## rmsea.ci.lower     0.125      0.117      0.117
## rmsea.ci.upper     0.144      0.123      0.123
## aic            23171.452 206485.278 250440.129
## bic            23302.483 206663.007 250622.686
CARCAT.model <- '
F5 =~ SM + SR + ID + AO + SO + TIACC + FING
F6 =~ OT + TT
F7 =~ DEX + MOT

gMO =~ F5 + F6 + F7

DEX ~~ 0.1*DEX'

ABRCAT.model <- '
F5 =~ FR + ID + AO + SO
F6 =~ T1 + T2 + TI
F7 =~ CT + SM

gMO =~ F5 + F6 + F7'

WOLCAT.model <- '
F5 =~ ID + AO + FR + SO
F6 =~ T1 + T2 + TI
F7 =~ IDCT + IDDT + FRRT
F8 =~ AORT + SORT + FRRT
F9 =~ CT + SM

gMO =~ F5 + F6 + F7 + F8 + F9'

CARCAT.fit <- cfa(CARCAT.model, sample.cov = CAREY.cor, sample.nobs = nCarey, std.lv = T)
ABRCAT.fit <- cfa(ABRCAT.model, sample.cov = ABR.cor, sample.nobs = nABR, std.lv = T) 
WOLCAT.fit <- cfa(WOLCAT.model, sample.cov = WOLF.cor, sample.nobs = nWOLF, std.lv = T) 

round(cbind("Carey" = fitMeasures(CARCAT.fit, FITM),
            "Abrahams" = fitMeasures(ABRCAT.fit, FITM),
            "Identical" = fitMeasures(WOLCAT.fit, FITM)), 3)
##                    Carey   Abrahams  Identical
## chisq            134.438    670.029   5375.471
## df                42.000     24.000     71.000
## npar              24.000     21.000     34.000
## cfi                0.983      0.983      0.914
## rmsea              0.044      0.055      0.083
## rmsea.ci.lower     0.036      0.051      0.081
## rmsea.ci.upper     0.052      0.058      0.084
## aic            30323.262 193786.152 378968.149
## bic            30444.214 193935.445 379216.427
CAR.model <- '
F1 =~ AS + EI + MC
F2 =~ MC + AR + NO + MK
F3 =~ GS + WK + PC 
F4 =~ CS + NO

gAS =~ F1 + F2 + F3 + F4

CS ~~ 0.1*CS

F5 =~ SM + SR + ID + AO + SO + TIACC + FING
F6 =~ OT + TT
F7 =~ DEX + MOT

gMO =~ F5 + F6 + F7'

ABR.model <- '
F1 =~ AS + EI + MC
F2 =~ MC + AR + NO + MK
F3 =~ GS + WK + PC 
F4 =~ CS + NO

gAS =~ F1 + F2 + F3 + F4

CS ~~ 0.1*CS

F5 =~ FR + ID + AO + SO
F6 =~ T1 + T2 + TI
F7 =~ CT + SM

gMO =~ F5 + F6 + F7'

WOL.model <- '
F1 =~ AS + EI + MC
F2 =~ MC + AR + NO + MK
F3 =~ GS + WK + PC 
F4 =~ CS + NO

gAS =~ F1 + F2 + F3 + F4

CS ~~ 0.1*CS

F5 =~ ID + AO + FR + SO
F6 =~ T1 + T2 + TI
F7 =~ IDCT + IDDT + FRRT
F8 =~ AORT + SORT + FRRT
F9 =~ CT + SM

gMO =~ F5 + F6 + F7 + F8 + F9'

CAR.fit <- cfa(CAR.model, sample.cov = CAREY.cor, sample.nobs = nCarey, std.lv = T)
ABR.fit <- cfa(ABR.model, sample.cov = ABR.cor, sample.nobs = nABR, std.lv = T) 
WOLABR.fit <- cfa(ABR.model, sample.cov = WOLF.cor, sample.nobs = nWOLF, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4)) 
WOL.fit <- cfa(WOL.model, sample.cov = WOLF.cor, sample.nobs = nWOLF, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4)) 

round(cbind("Carey" = fitMeasures(CAR.fit, FITM),
            "Abrahams" = fitMeasures(ABR.fit, FITM),
            "Wolfe-Abrahams" = fitMeasures(WOLABR.fit, FITM),
            "Wolfe" = fitMeasures(WOL.fit, FITM)), 3)
##                    Carey   Abrahams Wolfe-Abrahams      Wolfe
## chisq           1667.960   8541.177      10398.487  16755.906
## df               180.000    143.000        143.000    240.000
## npar              51.000     47.000         47.000     60.000
## cfi                0.913      0.918          0.918      0.884
## rmsea              0.085      0.081          0.081      0.079
## rmsea.ci.lower     0.081      0.079          0.080      0.078
## rmsea.ci.upper     0.089      0.082          0.082      0.080
## aic            52479.214 393509.444     476765.221 621245.556
## bic            52736.237 393843.576     477108.428 621683.693

The initial correlations were r = 0.890, 0.861, and 0.866 for the Carey, Abrahams et al., and Wolfe et al. datasets respectively. Unlike earlier cases, improving model fit incresaes the g correlations (the same is true for the Luo, Petrill & Thompson (LPT) data; these become 0.93 (C), 0.97 (A), and 0.95 (W), as well as 0.94 for LPT’s dataset). The Wolfe et al. badness-of-fit is due to the additional indicators in the model. With their removal, the goodness-of-fit increases and the correlation changes to 0.870.

Comparison of Separate and Together Model Bifactor Loadings
  • Basically perfectly stable and almost entirely unidimensional!

Snow et al. (1977) n = 364

lowerSNOW <-'
1                                                                                                                                                       
0.364   1                                                                                                                                                   
-0.018  0.078   1                                                                                                                                               
0.09    0.05    0.462   1                                                                                                                                           
0.088   0.05    0.49    0.607   1                                                                                                                                       
0.14    0.277   0.222   0.252   0.144   1                                                                                                                                   
0.135   0.045   0.145   0.27    0.172   0.391   1                                                                                                                               
0.04    0.038   0.239   0.309   0.197   0.425   0.434   1                                                                                                                           
0.017   -0.015  0.236   0.32    0.22    0.5 0.466   0.574   1                                                                                                                       
0.207   0.241   0.173   0.331   0.288   0.348   0.186   0.161   0.223   1                                                                                                                   
0.179   0.315   0.15    0.186   0.188   0.428   0.218   0.202   0.214   0.582   1                                                                                                               
0.229   0.314   0.248   0.333   0.249   0.45    0.261   0.184   0.256   0.679   0.588   1                                                                                                           
0.164   0.2 0.29    0.451   0.385   0.434   0.434   0.368   0.36    0.427   0.398   0.476   1                                                                                                       
0.202   0.179   0.314   0.33    0.311   0.33    0.386   0.288   0.237   0.237   0.21    0.29    0.43    1                                                                                                   
0.152   0.187   0.38    0.377   0.392   0.242   0.321   0.199   0.272   0.292   0.255   0.294   0.528   0.4 1                                                                                               
0.204   0.234   0.149   0.208   0.233   0.416   0.375   0.279   0.313   0.535   0.519   0.54    0.442   0.307   0.365   1                                                                                           
0.231   0.31    0.119   0.263   0.262   0.388   0.235   0.164   0.214   0.63    0.552   0.657   0.442   0.254   0.317   0.488   1                                                                                       
0.243   0.289   0.146   0.225   0.153   0.379   0.16    0.144   0.156   0.543   0.517   0.54    0.377   0.295   0.178   0.382   0.526   1                                                                                   
0.228   0.194   0.333   0.343   0.41    0.26    0.281   0.198   0.187   0.374   0.324   0.356   0.497   0.384   0.495   0.388   0.318   0.212   1                                                                               
0.142   0.162   0.337   0.36    0.398   0.238   0.326   0.226   0.272   0.424   0.326   0.359   0.525   0.389   0.442   0.452   0.301   0.25    0.801   1                                                                           
0.129   0.164   0.268   0.366   0.412   0.226   0.26    0.187   0.203   0.362   0.266   0.352   0.467   0.312   0.439   0.302   0.375   0.282   0.803   0.709   1                                                                       
0.166   0.188   0.324   0.389   0.337   0.355   0.331   0.313   0.383   0.588   0.447   0.519   0.526   0.371   0.407   0.495   0.426   0.314   0.582   0.584   0.559   1                                                                   
0.235   0.216   0.246   0.392   0.36    0.305   0.278   0.224   0.224   0.533   0.328   0.453   0.571   0.35    0.444   0.398   0.455   0.39    0.751   0.7 0.759   0.637   1                                                               
0.223   0.215   0.246   0.373   0.322   0.427   0.339   0.263   0.372   0.666   0.515   0.627   0.545   0.41    0.393   0.53    0.566   0.487   0.518   0.605   0.449   0.557   0.582   1                                                           
0.189   0.212   0.184   0.429   0.306   0.328   0.304   0.217   0.308   0.492   0.354   0.569   0.492   0.313   0.383   0.458   0.536   0.342   0.454   0.497   0.481   0.48    0.558   0.671   1                                                       
0.169   0.126   0.151   0.325   0.304   0.172   0.185   0.149   0.158   0.363   0.259   0.349   0.481   0.243   0.383   0.273   0.383   0.33    0.699   0.587   0.71    0.453   0.664   0.392   0.48    1                                                   
0.047   0.124   0.182   0.276   0.309   0.148   0.204   0.095   0.173   0.325   0.254   0.295   0.369   0.196   0.349   0.348   0.348   0.262   0.531   0.474   0.577   0.402   0.493   0.366   0.407   0.476   1                                               
0.172   0.176   0.136   0.21    0.235   0.164   0.127   0.021   0.157   0.357   0.297   0.269   0.302   0.223   0.308   0.289   0.397   0.257   0.501   0.465   0.56    0.393   0.533   0.342   0.386   0.48    0.531   1                                           
0.117   0.065   0.252   0.374   0.351   0.202   0.199   0.191   0.243   0.43    0.349   0.409   0.472   0.227   0.404   0.339   0.378   0.267   0.518   0.517   0.535   0.615   0.644   0.456   0.433   0.482   0.394   0.501   1                                       
0.141   0.148   0.309   0.42    0.353   0.363   0.337   0.325   0.422   0.417   0.366   0.448   0.499   0.316   0.374   0.363   0.387   0.278   0.51    0.585   0.465   0.607   0.548   0.628   0.61    0.412   0.337   0.338   0.502   1                                   
0.172   0.213   0.365   0.404   0.336   0.367   0.309   0.287   0.334   0.519   0.413   0.531   0.545   0.35    0.38    0.441   0.475   0.35    0.595   0.618   0.55    0.683   0.655   0.674   0.679   0.505   0.397   0.415   0.603   0.812   1                               
0.279   0.194   0.295   0.424   0.348   0.226   0.234   0.232   0.226   0.46    0.403   0.469   0.514   0.332   0.371   0.432   0.399   0.293   0.601   0.581   0.552   0.658   0.64    0.584   0.548   0.556   0.419   0.488   0.667   0.743   0.768   1                           
0.122   0.137   0.344   0.421   0.372   0.303   0.334   0.264   0.265   0.378   0.348   0.386   0.515   0.425   0.516   0.381   0.28    0.235   0.751   0.79    0.66    0.528   0.645   0.571   0.541   0.585   0.479   0.389   0.464   0.572   0.607   0.562   1                       
0.084   0.032   0.345   0.331   0.311   0.152   0.33    0.302   0.257   0.185   0.092   0.174   0.547   0.443   0.437   0.224   0.111   0.125   0.587   0.624   0.547   0.446   0.602   0.374   0.341   0.474   0.319   0.343   0.437   0.438   0.485   0.471   0.575   1                   
0.127   0.148   0.341   0.406   0.328   0.262   0.384   0.383   0.34    0.285   0.264   0.304   0.526   0.346   0.401   0.286   0.192   0.162   0.546   0.579   0.427   0.484   0.466   0.482   0.45    0.335   0.226   0.21    0.385   0.613   0.526   0.532   0.618   0.462   1               
-0.042  -0.006  0.154   0.149   0.144   0.309   0.175   0.201   0.342   0.161   0.13    0.175   0.188   0.082   0.121   0.198   0.084   0.144   0.109   0.176   0.112   0.13    0.089   0.206   0.236   0.035   0.053   0.039   0.039   0.082   0.097   -0.049  0.222   0.122   0.226   1           
0.065   0.099   0.106   0.077   0.105   0.316   0.121   0.104   0.117   0.215   0.223   0.184   0.351   0.039   0.242   0.142   0.215   0.251   0.25    0.166   0.235   0.22    0.298   0.136   0.186   0.226   0.328   0.189   0.106   0.113   0.116   0.052   0.181   0.126   0.21    0.154   1       
0.171   0.185   -0.024  0.136   0.12    0.284   0.151   0.094   0.171   0.324   0.234   0.29    0.257   0.289   0.284   0.367   0.343   0.341   0.269   0.27    0.265   0.251   0.246   0.349   0.332   0.246   0.234   0.171   0.181   0.229   0.337   0.248   0.288   0.107   0.085   0.061   0.048   1   
0.169   0.192   0.088   0.131   0.054   0.141   0.058   0.073   0.14    0.27    0.262   0.283   0.189   0.178   0.192   0.24    0.25    0.297   0.272   0.289   0.244   0.244   0.286   0.326   0.279   0.295   0.276   0.255   0.281   0.2 0.254   0.241   0.256   0.187   0.184   0.088   0.084   0.161   1'

lowerSNOWWA <- '
1                                       
0.22    1                                   
0.262   0.214   1                               
0.153   0.156   0.526   1                           
0.412   0.203   0.375   0.282   1                       
0.304   0.158   0.383   0.33    0.71    1                   
0.309   0.173   0.348   0.262   0.577   0.476   1               
0.235   0.157   0.397   0.257   0.56    0.48    0.531   1           
0.351   0.243   0.378   0.267   0.535   0.482   0.394   0.501   1       
0.12    0.171   0.343   0.341   0.265   0.246   0.234   0.171   0.181   1   
0.054   0.14    0.25    0.297   0.244   0.295   0.276   0.255   0.281   0.161   1'

lowerSNOWOTH <- '
1                                                                                                           
0.364   1                                                                                                       
-0.018  0.078   1                                                                                                   
0.09    0.05    0.462   1                                                                                               
0.14    0.277   0.222   0.252   1                                                                                           
0.135   0.045   0.145   0.27    0.391   1                                                                                       
0.04    0.038   0.239   0.309   0.425   0.434   1                                                                                   
0.207   0.241   0.173   0.331   0.348   0.186   0.161   1                                                                               
0.179   0.315   0.15    0.186   0.428   0.218   0.202   0.582   1                                                                           
0.229   0.314   0.248   0.333   0.45    0.261   0.184   0.679   0.588   1                                                                       
0.164   0.2 0.29    0.451   0.434   0.434   0.368   0.427   0.398   0.476   1                                                                   
0.202   0.179   0.314   0.33    0.33    0.386   0.288   0.237   0.21    0.29    0.43    1                                                               
0.152   0.187   0.38    0.377   0.242   0.321   0.199   0.292   0.255   0.294   0.528   0.4 1                                                           
0.204   0.234   0.149   0.208   0.416   0.375   0.279   0.535   0.519   0.54    0.442   0.307   0.365   1                                                       
0.228   0.194   0.333   0.343   0.26    0.281   0.198   0.374   0.324   0.356   0.497   0.384   0.495   0.388   1                                                   
0.142   0.162   0.337   0.36    0.238   0.326   0.226   0.424   0.326   0.359   0.525   0.389   0.442   0.452   0.801   1                                               
0.166   0.188   0.324   0.389   0.355   0.331   0.313   0.588   0.447   0.519   0.526   0.371   0.407   0.495   0.582   0.584   1                                           
0.235   0.216   0.246   0.392   0.305   0.278   0.224   0.533   0.328   0.453   0.571   0.35    0.444   0.398   0.751   0.7 0.637   1                                       
0.223   0.215   0.246   0.373   0.427   0.339   0.263   0.666   0.515   0.627   0.545   0.41    0.393   0.53    0.518   0.605   0.557   0.582   1                                   
0.189   0.212   0.184   0.429   0.328   0.304   0.217   0.492   0.354   0.569   0.492   0.313   0.383   0.458   0.454   0.497   0.48    0.558   0.671   1                               
0.141   0.148   0.309   0.42    0.363   0.337   0.325   0.417   0.366   0.448   0.499   0.316   0.374   0.363   0.51    0.585   0.607   0.548   0.628   0.61    1                           
0.172   0.213   0.365   0.404   0.367   0.309   0.287   0.519   0.413   0.531   0.545   0.35    0.38    0.441   0.595   0.618   0.683   0.655   0.674   0.679   0.812   1                       
0.279   0.194   0.295   0.424   0.226   0.234   0.232   0.46    0.403   0.469   0.514   0.332   0.371   0.432   0.601   0.581   0.658   0.64    0.584   0.548   0.743   0.768   1                   
0.122   0.137   0.344   0.421   0.303   0.334   0.264   0.378   0.348   0.386   0.515   0.425   0.516   0.381   0.751   0.79    0.528   0.645   0.571   0.541   0.572   0.607   0.562   1               
0.084   0.032   0.345   0.331   0.152   0.33    0.302   0.185   0.092   0.174   0.547   0.443   0.437   0.224   0.587   0.624   0.446   0.602   0.374   0.341   0.438   0.485   0.471   0.575   1           
0.127   0.148   0.341   0.406   0.262   0.384   0.383   0.285   0.264   0.304   0.526   0.346   0.401   0.286   0.546   0.579   0.484   0.466   0.482   0.45    0.613   0.526   0.532   0.618   0.462   1       
-0.042  -0.006  0.154   0.149   0.309   0.175   0.201   0.161   0.13    0.175   0.188   0.082   0.121   0.198   0.109   0.176   0.13    0.089   0.206   0.236   0.082   0.097   -0.049  0.222   0.122   0.226   1   
0.065   0.099   0.106   0.077   0.316   0.121   0.104   0.215   0.223   0.184   0.351   0.039   0.242   0.142   0.25    0.166   0.22    0.298   0.136   0.186   0.113   0.116   0.052   0.181   0.126   0.21    0.154   1'

nSNOW <- 364

SNOW.cor = getCov(lowerSNOW, names = c("STRGEST", "HARGEST", "AUDLS", "VISNS", "DIGS", "IDENPIC", "FINA", "NUMCOM", "DSC", "PAPFO", "FORMBO", "SURDEV", "WORDTRAN", "CAMOWORD", "WORDBEEN", "HIDFIG", "BD", "OA", "READVOC", "READCOMP", "VOCAB", "NARITHO", "CONCMAST", "RPM", "LS", "INFO", "COMP", "SIM", "ARITH", "ARITHCOMP", "ARITHCONC", "ARITHAPPL", "LANEX", "LANSP", "LANME", "FILMMEM", "USETHI", "PICCOM", "PICARR"))
SNOWWA.cor = getCov(lowerSNOWWA, names = c("DIGS", "DSC", "BD", "OA", "VOCAB", "INFO", "COMP", "SIM", "ARITH", "PICCOM", "PICARR"))
SNOWOTH.cor = getCov(lowerSNOWOTH, names = c("STRGEST", "HARGEST", "AUDLS", "VISNS", "IDENPIC", "FINA", "NUMCOM", "PAPFO", "FORMBO", "SURDEV", "WORDTRAN", "CAMOWORD", "WORDBEEN", "HIDFIG", "READVOC", "READCOMP", "NARITHO", "CONCMAST", "RPM", "LS", "ARITHCOMP", "ARITHCONC", "ARITHAPPL", "LANEX", "LANSP", "LANME", "FILMMEM", "USETHI"))
Parallel Analysis
fa.parallel(SNOW.cor, n.obs = nSNOW)

## Parallel analysis suggests that the number of factors =  6  and the number of components =  3
fa.parallel(SNOWWA.cor, n.obs = nSNOW)

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
fa.parallel(SNOWOTH.cor, n.obs = nSNOW)

## Parallel analysis suggests that the number of factors =  6  and the number of components =  3
Exploratory Factor Analyses
FATOT <- fa(SNOW.cor, n.obs = nSNOW, nfactors = 6)
FATOT1 <- fa(SNOW.cor, n.obs = nSNOW, nfactors = 1)
  
FAWA <- fa(SNOWWA.cor, n.obs = nSNOW, nfactors = 2)
FAWA1 <- fa(SNOWWA.cor, n.obs = nSNOW, nfactors = 1)

FAOTH <- fa(SNOWOTH.cor, n.obs = nSNOW, nfactors = 5)
FAOTH1 <- fa(SNOWOTH.cor, n.obs = nSNOW, nfactors = 1)

print(FATOT$loadings, cutoff = 0.3)
## 
## Loadings:
##           MR1    MR2    MR4    MR3    MR5    MR6   
## STRGEST           0.314                       0.372
## HARGEST           0.448                       0.358
## AUDLS                                  0.662       
## VISNS                                  0.718       
## DIGS                                   0.821       
## IDENPIC           0.407         0.541              
## FINA                            0.522              
## NUMCOM                          0.620              
## DSC                             0.760              
## PAPFO             0.677                            
## FORMBO            0.642                            
## SURDEV            0.704                            
## WORDTRAN                                           
## CAMOWORD                                      0.449
## WORDBEEN   0.325                       0.315       
## HIDFIG            0.480                            
## BD                0.735                            
## OA                0.678                            
## READVOC    0.819                                   
## READCOMP   0.646                                   
## VOCAB      0.874                                   
## NARITHO                  0.362                     
## CONCMAST   0.685                                   
## RPM               0.436  0.352                     
## LS                0.318  0.314                     
## INFO       0.750                                   
## COMP       0.673                                   
## SIM        0.607                                   
## ARITH      0.351         0.381                     
## ARITHCOMP                0.714                     
## ARITHCONC                0.674                     
## ARITHAPPL                0.719                     
## LANEX      0.573                                   
## LANSP      0.530                                   
## LANME                    0.323                     
## FILMMEM                         0.429              
## USETHI     0.402        -0.353                     
## PICCOM            0.354                            
## PICARR                                             
## 
##                  MR1   MR2   MR4   MR3   MR5   MR6
## SS loadings    5.111 3.935 2.513 2.258 2.001 0.920
## Proportion Var 0.131 0.101 0.064 0.058 0.051 0.024
## Cumulative Var 0.131 0.232 0.296 0.354 0.406 0.429
print(FAWA$loadings, cutoff = 0.2)
## 
## Loadings:
##        MR1    MR2   
## DIGS    0.446       
## DSC                 
## BD             0.619
## OA             0.785
## VOCAB   0.915       
## INFO    0.702       
## COMP    0.642       
## SIM     0.653       
## ARITH   0.614       
## PICCOM         0.427
## PICARR         0.274
## 
##                  MR1   MR2
## SS loadings    2.850 1.311
## Proportion Var 0.259 0.119
## Cumulative Var 0.259 0.378
print(FAOTH$loadings, cutoff = 0.25)
## 
## Loadings:
##           MR1    MR4    MR2    MR3    MR5   
## STRGEST                                0.532
## HARGEST                                0.452
## AUDLS                           0.269       
## VISNS             0.313         0.298       
## IDENPIC                  0.422  0.538       
## FINA                            0.567       
## NUMCOM                          0.624       
## PAPFO                    0.729              
## FORMBO                   0.642              
## SURDEV                   0.686              
## WORDTRAN   0.355                0.395       
## CAMOWORD                        0.427       
## WORDBEEN   0.479                0.270       
## HIDFIG                   0.496              
## READVOC    0.913                            
## READCOMP   0.827                            
## NARITHO    0.277  0.338  0.266              
## CONCMAST   0.684                            
## RPM               0.325  0.469              
## LS                0.370  0.350              
## ARITHCOMP         0.795                     
## ARITHCONC         0.724                     
## ARITHAPPL         0.794                     
## LANEX      0.739                            
## LANSP      0.662        -0.294              
## LANME      0.352  0.286         0.289       
## FILMMEM          -0.257  0.281  0.264 -0.294
## USETHI     0.335 -0.338  0.264              
## 
##                 MR1   MR4   MR2   MR3   MR5
## SS loadings    3.91 2.684 2.665 1.908 0.767
## Proportion Var 0.14 0.096 0.095 0.068 0.027
## Cumulative Var 0.14 0.235 0.331 0.399 0.426
print(FATOT1$loadings)
## 
## Loadings:
##           MR1  
## STRGEST   0.256
## HARGEST   0.276
## AUDLS     0.400
## VISNS     0.536
## DIGS      0.486
## IDENPIC   0.482
## FINA      0.439
## NUMCOM    0.375
## DSC       0.429
## PAPFO     0.649
## FORMBO    0.544
## SURDEV    0.650
## WORDTRAN  0.727
## CAMOWORD  0.501
## WORDBEEN  0.584
## HIDFIG    0.598
## BD        0.598
## OA        0.487
## READVOC   0.775
## READCOMP  0.782
## VOCAB     0.735
## NARITHO   0.764
## CONCMAST  0.812
## RPM       0.776
## LS        0.715
## INFO      0.658
## COMP      0.558
## SIM       0.544
## ARITH     0.667
## ARITHCOMP 0.736
## ARITHCONC 0.812
## ARITHAPPL 0.763
## LANEX     0.766
## LANSP     0.592
## LANME     0.625
## FILMMEM   0.210
## USETHI    0.282
## PICCOM    0.379
## PICARR    0.357
## 
##                   MR1
## SS loadings    13.886
## Proportion Var  0.356
print(FAWA1$loadings)
## 
## Loadings:
##        MR1  
## DIGS   0.434
## DSC    0.301
## BD     0.600
## OA     0.484
## VOCAB  0.802
## INFO   0.734
## COMP   0.664
## SIM    0.670
## ARITH  0.661
## PICCOM 0.374
## PICARR 0.390
## 
##                  MR1
## SS loadings    3.672
## Proportion Var 0.334
print(FAOTH1$loadings)
## 
## Loadings:
##           MR1  
## STRGEST   0.255
## HARGEST   0.276
## AUDLS     0.416
## VISNS     0.533
## IDENPIC   0.496
## FINA      0.463
## NUMCOM    0.400
## PAPFO     0.633
## FORMBO    0.536
## SURDEV    0.644
## WORDTRAN  0.735
## CAMOWORD  0.517
## WORDBEEN  0.578
## HIDFIG    0.600
## READVOC   0.752
## READCOMP  0.779
## NARITHO   0.766
## CONCMAST  0.782
## RPM       0.787
## LS        0.710
## ARITHCOMP 0.759
## ARITHCONC 0.821
## ARITHAPPL 0.758
## LANEX     0.773
## LANSP     0.599
## LANME     0.669
## FILMMEM   0.222
## USETHI    0.267
## 
##                   MR1
## SS loadings    10.667
## Proportion Var  0.381
EFATOGSNOW <- c(0.256, 0.276, 0.400, 0.536, 0.486, 0.482, 0.439, 0.375, 0.429, 0.649, 0.544, 0.650, 0.727, 0.501, 0.584, 0.598, 0.598, 0.487, 0.775, 0.782, 0.735, 0.764, 0.812, 0.776, 0.715, 0.658, 0.558, 0.544, 0.667, 0.736, 0.812, 0.763, 0.766, 0.592, 0.625, 0.210, 0.282, 0.379, 0.357)
EFATOGSNOWPsy <- c(0.486, 0.429, 0.598, 0.487, 0.735, 0.658, 0.558, 0.544, 0.667, 0.379, 0.357); EFATOGSNOWPsy2 <- c(0.256, 0.276, 0.400, 0.536, 0.482, 0.439, 0.375, 0.649, 0.544, 0.650, 0.727, 0.501, 0.584, 0.598, 0.775, 0.782, 0.764, 0.812, 0.776, 0.715, 0.736, 0.812, 0.763, 0.766, 0.592, 0.625, 0.210, 0.282)
EFASEPSNOW <- c(0.255, 0.276, 0.416, 0.533, 0.434, 0.496, 0.463, 0.4, 0.301, 0.633, 0.536, 0.644, 0.735, 0.517, 0.578, 0.600, 0.600, 0.484, 0.752, 0.779, 0.802, 0.766, 0.782, 0.787, 0.710, 0.734, 0.664, 0.670, 0.661, 0.759, 0.821, 0.758, 0.773, 0.599, 0.669, 0.222, 0.267, 0.374, 0.390)
EFASEPSNOWPsy <- c(0.434, 0.301, 0.600, 0.484, 0.802, 0.734, 0.664, 0.670, 0.661, 0.374, 0.390); EFASEPSNOWPsy2 <- c(0.255, 0.276, 0.416, 0.533, 0.496, 0.463, 0.400, 0.633, 0.536, 0.644, 0.735, 0.517, 0.578, 0.600, 0.752, 0.779, 0.766, 0.782, 0.787, 0.710, 0.759, 0.821, 0.758, 0.773, 0.599, 0.669, 0.222, 0.267)

cor(EFATOGSNOW, EFASEPSNOW, method = "pearson"); cor(EFATOGSNOW, EFASEPSNOW, method = "spearman"); CONGO(EFATOGSNOW, EFASEPSNOW)
## [1] 0.9738012
## [1] 0.9669974
## [1] 0.9978387
cor(EFATOGSNOWPsy, EFASEPSNOWPsy, method = "pearson"); cor(EFATOGSNOWPsy, EFASEPSNOWPsy, method = "spearman"); CONGO(EFATOGSNOWPsy, EFASEPSNOWPsy)
## [1] 0.9158751
## [1] 0.8545455
## [1] 0.9930874
cor(EFATOGSNOWPsy2, EFASEPSNOWPsy2, method = "pearson"); cor(EFATOGSNOWPsy2, EFASEPSNOWPsy2, method = "spearman"); CONGO(EFATOGSNOWPsy2, EFASEPSNOWPsy2)
## [1] 0.9965026
## [1] 0.9897359
## [1] 0.9996793
Confirmatory Factor Analyses
SNOWWA.model <- '
Gc =~ VOCAB + INFO + COMP
Gsp =~ BD + OA + PICCOM + PICARR
Gf =~ SIM + ARITH
Gs =~ DIGS + DSC
g =~ Gc + Gsp + Gf + Gs'

SNOWWA.fit <- cfa(SNOWWA.model, sample.cov = SNOW.cor, sample.nobs = nSNOW, std.lv = T, orthogonal = T, check.gradient = F)
summary(SNOWWA.fit, stand = T, fit = T, modindices = F)
## lavaan 0.6-7 ended normally after 53 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         26
##                                                       
##   Number of observations                           364
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                87.242
##   Degrees of freedom                                40
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1238.745
##   Degrees of freedom                                55
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.960
##   Tucker-Lewis Index (TLI)                       0.945
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5100.171
##   Loglikelihood unrestricted model (H1)      -5056.550
##                                                       
##   Akaike (AIC)                               10252.342
##   Bayesian (BIC)                             10353.668
##   Sample-size adjusted Bayesian (BIC)        10271.181
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.057
##   90 Percent confidence interval - lower         0.041
##   90 Percent confidence interval - upper         0.073
##   P-value RMSEA <= 0.05                          0.226
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.044
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gc =~                                                                 
##     VOCAB             0.358    0.066    5.396    0.000    0.883    0.884
##     INFO              0.318    0.058    5.430    0.000    0.784    0.785
##     COMP              0.267    0.051    5.276    0.000    0.660    0.661
##   Gsp =~                                                                
##     BD                0.567    0.050   11.258    0.000    0.763    0.764
##     OA                0.499    0.047   10.654    0.000    0.671    0.672
##     PICCOM            0.345    0.045    7.649    0.000    0.464    0.465
##     PICARR            0.295    0.045    6.580    0.000    0.397    0.398
##   Gf =~                                                                 
##     SIM               0.174    0.119    1.468    0.142    0.712    0.713
##     ARITH             0.172    0.117    1.469    0.142    0.701    0.702
##   Gs =~                                                                 
##     DIGS              0.386    0.110    3.525    0.000    0.599    0.600
##     DSC               0.236    0.064    3.678    0.000    0.366    0.367
##   g =~                                                                  
##     Gc                2.256    0.488    4.627    0.000    0.914    0.914
##     Gsp               0.900    0.114    7.890    0.000    0.669    0.669
##     Gf                3.962    2.794    1.418    0.156    0.970    0.970
##     Gs                1.185    0.352    3.363    0.001    0.764    0.764
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VOCAB             0.218    0.033    6.579    0.000    0.218    0.219
##    .INFO              0.383    0.037   10.227    0.000    0.383    0.384
##    .COMP              0.562    0.047   12.011    0.000    0.562    0.563
##    .BD                0.415    0.057    7.343    0.000    0.415    0.416
##    .OA                0.547    0.056    9.759    0.000    0.547    0.549
##    .PICCOM            0.782    0.063   12.323    0.000    0.782    0.784
##    .PICARR            0.839    0.066   12.700    0.000    0.839    0.842
##    .SIM               0.490    0.051    9.681    0.000    0.490    0.491
##    .ARITH             0.505    0.051    9.964    0.000    0.505    0.507
##    .DIGS              0.639    0.097    6.582    0.000    0.639    0.640
##    .DSC               0.863    0.071   12.088    0.000    0.863    0.865
##    .Gc                1.000                               0.164    0.164
##    .Gsp               1.000                               0.553    0.553
##    .Gf                1.000                               0.060    0.060
##    .Gs                1.000                               0.416    0.416
##     g                 1.000                               1.000    1.000
SNOWOTH.model <- '
Gr =~ WORDBEEN + READVOC + READCOMP + CONCMAST + LANEX + LANSP + LANME 
Gm =~ VISNS + NARITHO + LS + ARITHCOMP + ARITHCONC + ARITHAPPL + USETHI
Gsp =~ PAPFO + FORMBO + SURDEV + HIDFIG + RPM
Ga =~ AUDLS + IDENPIC + FINA + NUMCOM + WORDTRAN + CAMOWORD 
Gest =~ STRGEST + HARGEST + FILMMEM

g =~ Gr + Gm + Gsp + Ga + Gest'

SNOWOTH.fit <- cfa(SNOWOTH.model, sample.cov = SNOW.cor, sample.nobs = nSNOW, std.lv = T, orthogonal = T, check.gradient = F)
summary(SNOWOTH.fit, stand = T, fit = T, modindices = F)
## lavaan 0.6-7 ended normally after 66 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         61
##                                                       
##   Number of observations                           364
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                              1477.386
##   Degrees of freedom                               345
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              6511.583
##   Degrees of freedom                               378
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.815
##   Tucker-Lewis Index (TLI)                       0.798
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11930.704
##   Loglikelihood unrestricted model (H1)     -11192.011
##                                                       
##   Akaike (AIC)                               23983.408
##   Bayesian (BIC)                             24221.134
##   Sample-size adjusted Bayesian (BIC)        24027.607
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.095
##   90 Percent confidence interval - lower         0.090
##   90 Percent confidence interval - upper         0.100
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.083
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gr =~                                                                 
##     WORDBEEN          0.300    0.030   10.070    0.000    0.565    0.566
##     READVOC           0.465    0.031   14.803    0.000    0.876    0.877
##     READCOMP          0.472    0.032   14.977    0.000    0.889    0.890
##     CONCMAST          0.430    0.031   13.881    0.000    0.810    0.811
##     LANEX             0.456    0.031   14.577    0.000    0.859    0.860
##     LANSP             0.365    0.030   12.045    0.000    0.688    0.689
##     LANME             0.353    0.030   11.666    0.000    0.664    0.665
##   Gm =~                                                                 
##     VISNS             0.185    0.027    6.884    0.000    0.502    0.503
##     NARITHO           0.280    0.034    8.275    0.000    0.761    0.762
##     LS                0.266    0.033    8.129    0.000    0.723    0.724
##     ARITHCOMP         0.315    0.037    8.582    0.000    0.855    0.856
##     ARITHCONC         0.336    0.039    8.703    0.000    0.912    0.913
##     ARITHAPPL         0.308    0.036    8.525    0.000    0.835    0.836
##     USETHI            0.066    0.021    3.135    0.002    0.178    0.178
##   Gsp =~                                                                
##     PAPFO             0.449    0.034   13.328    0.000    0.801    0.802
##     FORMBO            0.381    0.033   11.614    0.000    0.680    0.681
##     SURDEV            0.444    0.034   13.199    0.000    0.792    0.793
##     HIDFIG            0.379    0.033   11.535    0.000    0.675    0.676
##     RPM               0.467    0.034   13.715    0.000    0.833    0.834
##   Ga =~                                                                 
##     AUDLS             0.233    0.034    6.852    0.000    0.420    0.421
##     IDENPIC           0.326    0.036    9.000    0.000    0.588    0.589
##     FINA              0.316    0.036    8.793    0.000    0.570    0.571
##     NUMCOM            0.286    0.035    8.139    0.000    0.517    0.517
##     WORDTRAN          0.433    0.041   10.646    0.000    0.781    0.782
##     CAMOWORD          0.322    0.036    8.918    0.000    0.581    0.582
##   Gest =~                                                               
##     STRGEST           0.514    0.075    6.820    0.000    0.575    0.576
##     HARGEST           0.558    0.082    6.796    0.000    0.624    0.625
##     FILMMEM           0.037    0.062    0.596    0.551    0.041    0.041
##   g =~                                                                  
##     Gr                1.596    0.144   11.063    0.000    0.847    0.847
##     Gm                2.523    0.338    7.474    0.000    0.930    0.930
##     Gsp               1.477    0.140   10.537    0.000    0.828    0.828
##     Ga                1.502    0.169    8.898    0.000    0.832    0.832
##     Gest              0.500    0.096    5.226    0.000    0.447    0.447
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .WORDBEEN          0.678    0.052   13.087    0.000    0.678    0.680
##    .READVOC           0.230    0.022   10.575    0.000    0.230    0.231
##    .READCOMP          0.207    0.020   10.147    0.000    0.207    0.207
##    .CONCMAST          0.341    0.029   11.822    0.000    0.341    0.342
##    .LANEX             0.259    0.024   11.003    0.000    0.259    0.260
##    .LANSP             0.524    0.041   12.712    0.000    0.524    0.525
##    .LANME             0.556    0.043   12.809    0.000    0.556    0.558
##    .VISNS             0.745    0.056   13.194    0.000    0.745    0.747
##    .NARITHO           0.419    0.034   12.269    0.000    0.419    0.420
##    .LS                0.475    0.038   12.519    0.000    0.475    0.476
##    .ARITHCOMP         0.266    0.024   11.025    0.000    0.266    0.267
##    .ARITHCONC         0.166    0.018    8.994    0.000    0.166    0.166
##    .ARITHAPPL         0.300    0.026   11.411    0.000    0.300    0.301
##    .USETHI            0.966    0.072   13.462    0.000    0.966    0.968
##    .PAPFO             0.355    0.033   10.717    0.000    0.355    0.356
##    .FORMBO            0.534    0.044   12.178    0.000    0.534    0.536
##    .SURDEV            0.371    0.034   10.901    0.000    0.371    0.372
##    .HIDFIG            0.541    0.044   12.216    0.000    0.541    0.543
##    .RPM               0.304    0.030    9.982    0.000    0.304    0.305
##    .AUDLS             0.821    0.063   12.936    0.000    0.821    0.823
##    .IDENPIC           0.651    0.054   12.106    0.000    0.651    0.653
##    .FINA              0.672    0.055   12.232    0.000    0.672    0.674
##    .NUMCOM            0.730    0.058   12.545    0.000    0.730    0.732
##    .WORDTRAN          0.387    0.042    9.270    0.000    0.387    0.388
##    .CAMOWORD          0.660    0.054   12.158    0.000    0.660    0.661
##    .STRGEST           0.667    0.091    7.335    0.000    0.667    0.668
##    .HARGEST           0.608    0.100    6.048    0.000    0.608    0.609
##    .FILMMEM           0.996    0.074   13.474    0.000    0.996    0.998
##    .Gr                1.000                               0.282    0.282
##    .Gm                1.000                               0.136    0.136
##    .Gsp               1.000                               0.314    0.314
##    .Ga                1.000                               0.307    0.307
##    .Gest              1.000                               0.800    0.800
##     g                 1.000                               1.000    1.000
SNOWNO.model <- '
Gc =~ VOCAB + INFO + COMP
Gsp =~ BD + OA + PICCOM + PICARR
Gf =~ SIM + ARITH
Gs =~ DIGS + DSC
gPsy =~ Gc + Gsp + Gf + Gs

Gr =~ WORDBEEN + READVOC + READCOMP + CONCMAST + LANEX + LANSP + LANME 
Gm =~ VISNS + NARITHO + LS + ARITHCOMP + ARITHCONC + ARITHAPPL + USETHI
Gsp =~ PAPFO + FORMBO + SURDEV + HIDFIG + RPM
Ga =~ AUDLS + IDENPIC + FINA + NUMCOM + WORDTRAN + CAMOWORD 
Gest =~ STRGEST + HARGEST + FILMMEM

gPsyB =~ Gr + Gm + Gsp + Ga + Gest

gPsy ~~ 0*gPsyB'

SNOW.model <- '
Gc =~ VOCAB + INFO + COMP
Gsp =~ BD + OA + PICCOM + PICARR
Gf =~ SIM + ARITH
Gs =~ DIGS + DSC
gPsy =~ Gc + Gsp + Gf + Gs

Gr =~ WORDBEEN + READVOC + READCOMP + CONCMAST + LANEX + LANSP + LANME 
Gm =~ VISNS + NARITHO + LS + ARITHCOMP + ARITHCONC + ARITHAPPL + USETHI
Gsp =~ PAPFO + FORMBO + SURDEV + HIDFIG + RPM
Ga =~ AUDLS + IDENPIC + FINA + NUMCOM + WORDTRAN + CAMOWORD 
Gest =~ STRGEST + HARGEST + FILMMEM

gPsyB =~ Gr + Gm + Gsp + Ga + Gest

gPsy ~~ gPsyB'

SNOWID.model <- '
Gc =~ VOCAB + INFO + COMP
Gsp =~ BD + OA + PICCOM + PICARR
Gf =~ SIM + ARITH
Gs =~ DIGS + DSC
gPsy =~ Gc + Gsp + Gf + Gs

Gr =~ WORDBEEN + READVOC + READCOMP + CONCMAST + LANEX + LANSP + LANME 
Gm =~ VISNS + NARITHO + LS + ARITHCOMP + ARITHCONC + ARITHAPPL + USETHI
Gsp =~ PAPFO + FORMBO + SURDEV + HIDFIG + RPM
Ga =~ AUDLS + IDENPIC + FINA + NUMCOM + WORDTRAN + CAMOWORD 
Gest =~ STRGEST + HARGEST + FILMMEM

gPsyB =~ Gr + Gm + Gsp + Ga + Gest

gPsy ~~ 1*gPsyB'

SNOWNo.fit <- cfa(SNOWNO.model, sample.cov = SNOW.cor, sample.nobs = nSNOW, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4))
SNOW.fit <- cfa(SNOW.model, sample.cov = SNOW.cor, sample.nobs = nSNOW, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4)); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
SNOWID.fit <- cfa(SNOWID.model, sample.cov = SNOW.cor, sample.nobs = nSNOW, std.lv = T, check.gradient = F, control=list(rel.tol=1e-4)); "\n"
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
## [1] "\n"
round(cbind("No Relationship"   = fitMeasures(SNOWNo.fit, FITM),
            "Free Relationship" = fitMeasures(SNOW.fit, FITM),
            "Identical"         = fitMeasures(SNOWID.fit, FITM)),3)
##                No Relationship Free Relationship Identical
## chisq                 3286.921          2900.941  2903.269
## df                     693.000           692.000   693.000
## npar                    87.000            88.000    87.000
## cfi                      0.710             0.753     0.753
## rmsea                    0.101             0.094     0.094
## rmsea.ci.lower           0.098             0.090     0.090
## rmsea.ci.upper           0.105             0.097     0.097
## aic                  34026.554         33642.574 33642.902
## bic                  34365.607         33985.524 33981.954
summary(SNOW.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 49 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         88
##                                                       
##   Number of observations                           364
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                              2900.941
##   Degrees of freedom                               692
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              9681.816
##   Degrees of freedom                               741
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.753
##   Tucker-Lewis Index (TLI)                       0.735
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -16733.287
##   Loglikelihood unrestricted model (H1)     -15282.817
##                                                       
##   Akaike (AIC)                               33642.574
##   Bayesian (BIC)                             33985.524
##   Sample-size adjusted Bayesian (BIC)        33706.337
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.094
##   90 Percent confidence interval - lower         0.090
##   90 Percent confidence interval - upper         0.097
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.088
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gc =~                                                                 
##     VOCAB             0.436    0.039   11.043    0.000    0.901    0.899
##     INFO              0.381    0.035   10.815    0.000    0.789    0.787
##     COMP              0.308    0.032    9.489    0.000    0.638    0.637
##   Gsp =~                                                                
##     BD                0.524    0.037   14.339    0.000    0.760    0.760
##     OA                0.449    0.037   12.196    0.000    0.651    0.651
##     PICCOM            0.293    0.037    7.852    0.000    0.425    0.425
##     PICARR            0.257    0.037    6.881    0.000    0.373    0.374
##   Gf =~                                                                 
##     SIM               0.313    0.048    6.560    0.000    0.642    0.642
##     ARITH             0.380    0.059    6.482    0.000    0.779    0.780
##   Gs =~                                                                 
##     DIGS              0.267    0.105    2.544    0.011    0.553    0.554
##     DSC               0.210    0.082    2.555    0.011    0.434    0.436
##   gPsy =~                                                               
##     Gc                1.811    0.201    9.017    0.000    0.875    0.875
##     Gsp               0.900    0.999    0.900    0.368    0.621    0.621
##     Gf                1.788    0.298    5.989    0.000    0.873    0.873
##     Gs                1.813    0.724    2.503    0.012    0.876    0.876
##   Gr =~                                                                 
##     WORDBEEN          0.208    0.024    8.584    0.000    0.575    0.575
##     READVOC           0.321    0.030   10.822    0.000    0.886    0.886
##     READCOMP          0.319    0.030   10.793    0.000    0.881    0.880
##     CONCMAST          0.301    0.029   10.544    0.000    0.832    0.833
##     LANEX             0.308    0.029   10.630    0.000    0.850    0.848
##     LANSP             0.248    0.026    9.556    0.000    0.684    0.686
##     LANME             0.234    0.025    9.249    0.000    0.647    0.648
##   Gm =~                                                                 
##     VISNS             0.236    0.026    8.983    0.000    0.503    0.504
##     NARITHO           0.357    0.027   12.991    0.000    0.761    0.762
##     LS                0.335    0.027   12.320    0.000    0.714    0.716
##     ARITHCOMP         0.399    0.028   14.232    0.000    0.850    0.852
##     ARITHCONC         0.425    0.029   14.903    0.000    0.907    0.909
##     ARITHAPPL         0.397    0.028   14.158    0.000    0.846    0.847
##     USETHI            0.084    0.025    3.288    0.001    0.178    0.179
##   Gsp =~                                                                
##     PAPFO             0.566    0.036   15.549    0.000    0.821    0.820
##     FORMBO            0.486    0.037   13.242    0.000    0.704    0.704
##     SURDEV            0.562    0.036   15.412    0.000    0.814    0.813
##     HIDFIG            0.463    0.037   12.585    0.000    0.671    0.671
##     RPM               0.552    0.036   15.143    0.000    0.799    0.800
##   Ga =~                                                                 
##     AUDLS             0.255    0.035    7.216    0.000    0.424    0.424
##     IDENPIC           0.343    0.036    9.474    0.000    0.570    0.570
##     FINA              0.344    0.036    9.488    0.000    0.571    0.571
##     NUMCOM            0.309    0.036    8.613    0.000    0.513    0.513
##     WORDTRAN          0.478    0.039   12.110    0.000    0.793    0.793
##     CAMOWORD          0.353    0.036    9.695    0.000    0.586    0.585
##   Gest =~                                                               
##     STRGEST           0.560    0.087    6.442    0.000    0.608    0.609
##     HARGEST           0.547    0.085    6.446    0.000    0.595    0.596
##     FILMMEM           0.022    0.064    0.342    0.732    0.024    0.024
##   gPsyB =~                                                              
##     Gr                2.574    0.275    9.369    0.000    0.932    0.932
##     Gm                1.882    0.162   11.614    0.000    0.883    0.883
##     Gsp               0.146    1.029    0.142    0.887    0.101    0.101
##     Ga                1.326    0.135    9.839    0.000    0.798    0.798
##     Gest              0.425    0.088    4.843    0.000    0.391    0.391
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gPsy ~~                                                               
##     gPsyB             1.021    0.017   59.208    0.000    1.021    1.021
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VOCAB             0.192    0.029    6.689    0.000    0.192    0.191
##    .INFO              0.381    0.035   10.871    0.000    0.381    0.380
##    .COMP              0.596    0.048   12.448    0.000    0.596    0.594
##    .BD                0.423    0.036   11.805    0.000    0.423    0.423
##    .OA                0.575    0.046   12.584    0.000    0.575    0.576
##    .PICCOM            0.816    0.062   13.220    0.000    0.816    0.819
##    .PICARR            0.857    0.064   13.292    0.000    0.857    0.860
##    .SIM               0.589    0.052   11.302    0.000    0.589    0.588
##    .ARITH             0.390    0.051    7.661    0.000    0.390    0.391
##    .DIGS              0.692    0.076    9.127    0.000    0.692    0.693
##    .DSC               0.804    0.069   11.680    0.000    0.804    0.810
##    .WORDBEEN          0.670    0.051   13.113    0.000    0.670    0.670
##    .READVOC           0.215    0.020   10.647    0.000    0.215    0.215
##    .READCOMP          0.227    0.021   10.822    0.000    0.227    0.226
##    .CONCMAST          0.306    0.026   11.739    0.000    0.306    0.307
##    .LANEX             0.282    0.025   11.500    0.000    0.282    0.281
##    .LANSP             0.526    0.041   12.807    0.000    0.526    0.529
##    .LANME             0.578    0.045   12.934    0.000    0.578    0.580
##    .VISNS             0.741    0.056   13.189    0.000    0.741    0.746
##    .NARITHO           0.417    0.034   12.249    0.000    0.417    0.419
##    .LS                0.484    0.039   12.550    0.000    0.484    0.487
##    .ARITHCOMP         0.273    0.025   11.086    0.000    0.273    0.274
##    .ARITHCONC         0.172    0.019    9.149    0.000    0.172    0.173
##    .ARITHAPPL         0.283    0.025   11.201    0.000    0.283    0.283
##    .USETHI            0.963    0.071   13.462    0.000    0.963    0.968
##    .PAPFO             0.328    0.030   10.944    0.000    0.328    0.328
##    .FORMBO            0.503    0.041   12.277    0.000    0.503    0.504
##    .SURDEV            0.339    0.031   11.070    0.000    0.339    0.339
##    .HIDFIG            0.549    0.044   12.482    0.000    0.549    0.550
##    .RPM               0.360    0.032   11.292    0.000    0.360    0.360
##    .AUDLS             0.818    0.063   12.917    0.000    0.818    0.820
##    .IDENPIC           0.675    0.055   12.220    0.000    0.675    0.675
##    .FINA              0.674    0.055   12.213    0.000    0.674    0.674
##    .NUMCOM            0.736    0.059   12.552    0.000    0.736    0.737
##    .WORDTRAN          0.372    0.042    8.908    0.000    0.372    0.371
##    .CAMOWORD          0.658    0.054   12.115    0.000    0.658    0.657
##    .STRGEST           0.627    0.106    5.913    0.000    0.627    0.629
##    .HARGEST           0.643    0.103    6.258    0.000    0.643    0.645
##    .FILMMEM           0.992    0.074   13.485    0.000    0.992    0.999
##    .Gc                1.000                               0.234    0.234
##    .Gsp               1.000                               0.476    0.476
##    .Gf                1.000                               0.238    0.238
##    .Gs                1.000                               0.233    0.233
##     gPsy              1.000                               1.000    1.000
##    .Gr                1.000                               0.131    0.131
##    .Gm                1.000                               0.220    0.220
##    .Ga                1.000                               0.362    0.362
##    .Gest              1.000                               0.847    0.847
##     gPsyB             1.000                               1.000    1.000
CRITR(436); CRITR(436, NP(436))
## [1] 0.09392729
## [1] 0.1708072
resid(SNOW.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##           VOCAB  INFO   COMP   BD     OA     PICCOM PICARR SIM    ARITH  DIGS  
## VOCAB      0.000                                                               
## INFO       0.002  0.000                                                        
## COMP       0.004 -0.025  0.000                                                 
## BD        -0.058  0.004  0.041  0.000                                          
## OA        -0.089  0.005 -0.001  0.031  0.000                                   
## PICCOM     0.023  0.034  0.062  0.020  0.064  0.000                            
## PICARR     0.031  0.109  0.125 -0.034  0.054  0.002  0.000                     
## SIM        0.119  0.094  0.219  0.089 -0.007 -0.001  0.104  0.000              
## ARITH     -0.001  0.013  0.014  0.003 -0.054 -0.029  0.097  0.000  0.000       
## DIGS       0.030 -0.030  0.039 -0.005 -0.076 -0.029 -0.077 -0.036  0.021  0.000
## DSC       -0.098 -0.105 -0.040  0.004 -0.024  0.053  0.037 -0.057 -0.017 -0.021
## WORDBEEN   0.008  0.006  0.044  0.018 -0.079  0.116  0.045  0.002  0.031  0.127
## READVOC    0.139  0.118  0.061 -0.143 -0.183  0.011  0.045  0.029 -0.056  0.001
## READCOMP   0.050  0.010  0.007 -0.157 -0.143  0.014  0.064 -0.004 -0.053 -0.008
## CONCMAST   0.135  0.118  0.051  0.022  0.018  0.003  0.073  0.089  0.104 -0.024
## LANEX      0.024  0.029  0.029 -0.161 -0.144  0.041  0.039 -0.063 -0.086 -0.019
## LANSP      0.033  0.024 -0.045 -0.246 -0.181 -0.093  0.011 -0.023 -0.008 -0.006
## LANME     -0.059 -0.090 -0.118 -0.145 -0.127 -0.104  0.018 -0.136 -0.035  0.029
## VISNS      0.008  0.012  0.022  0.014  0.012 -0.003  0.009 -0.045  0.064  0.387
## NARITHO    0.018 -0.021  0.019  0.050 -0.008  0.041  0.059  0.008  0.147  0.004
## LS        -0.028  0.035  0.047  0.183  0.039  0.134  0.105  0.024 -0.007 -0.007
## ARITHCOMP -0.140 -0.118 -0.091 -0.033 -0.082 -0.006 -0.007 -0.092 -0.021 -0.020
## ARITHCONC -0.096 -0.060 -0.060  0.027 -0.035  0.086  0.033 -0.044  0.044 -0.062
## ARITHAPPL -0.049  0.030 -0.007 -0.018 -0.065  0.014  0.036  0.060  0.147 -0.022
## USETHI     0.108  0.115  0.238  0.127  0.175 -0.001  0.041  0.099 -0.004  0.027
## PAPFO     -0.105 -0.046 -0.006  0.007  0.009 -0.025 -0.036  0.024  0.026  0.000
## FORMBO    -0.135 -0.093 -0.030  0.017  0.058 -0.066 -0.001  0.011  0.002 -0.059
## SURDEV    -0.111 -0.057 -0.033  0.039  0.010 -0.056 -0.021 -0.061  0.008 -0.036
## HIDFIG    -0.081 -0.062  0.077 -0.022 -0.055  0.082 -0.011  0.017  0.008 -0.003
## RPM       -0.007 -0.007  0.043 -0.041 -0.034  0.009  0.027  0.018  0.062  0.041
## AUDLS     -0.004 -0.088 -0.011 -0.070 -0.016 -0.130 -0.005 -0.058  0.016  0.322
## IDENPIC   -0.140 -0.148 -0.111  0.134  0.161  0.142  0.016 -0.096 -0.115 -0.081
## FINA      -0.107 -0.136 -0.056 -0.020 -0.058  0.008 -0.067 -0.134 -0.118 -0.054
## NUMCOM    -0.142 -0.139 -0.138 -0.065 -0.052 -0.034 -0.040 -0.213 -0.094 -0.006
## WORDTRAN  -0.042  0.035  0.008  0.088  0.074  0.059  0.015 -0.060  0.032  0.072
## CAMOWORD  -0.064 -0.086 -0.070 -0.007  0.071  0.143  0.050 -0.044 -0.098  0.080
## STRGEST   -0.063  0.001 -0.089  0.098  0.129  0.096  0.103  0.036 -0.049 -0.030
## HARGEST   -0.023 -0.038 -0.009  0.180  0.177  0.112  0.128  0.043 -0.097 -0.065
## FILMMEM    0.105  0.028  0.048  0.079  0.140  0.058  0.085  0.034  0.033  0.139
##           DSC    WORDBE READVO READCO CONCMA LANEX  LANSP  LANME  VISNS  NARITH
## VOCAB                                                                          
## INFO                                                                           
## COMP                                                                           
## BD                                                                             
## OA                                                                             
## PICCOM                                                                         
## PICARR                                                                         
## SIM                                                                            
## ARITH                                                                          
## DIGS                                                                           
## DSC        0.000                                                               
## WORDBEEN   0.063  0.000                                                        
## READVOC   -0.135 -0.014  0.000                                                 
## READCOMP  -0.048 -0.064  0.022  0.000                                          
## CONCMAST  -0.079 -0.035  0.013 -0.032  0.000                                   
## LANEX     -0.043  0.029  0.000  0.044 -0.061  0.000                            
## LANSP      0.008  0.043 -0.021  0.020  0.031 -0.007  0.000                     
## LANME      0.104  0.028 -0.028  0.009 -0.074  0.068  0.017  0.000              
## VISNS      0.146  0.138 -0.025 -0.005  0.046  0.069  0.046  0.137  0.000       
## NARITHO    0.121  0.046  0.026  0.032  0.115 -0.004  0.015  0.077  0.005  0.000
## LS         0.061  0.044 -0.068 -0.022  0.067  0.041 -0.064  0.068  0.068 -0.066
## ARITHCOMP  0.129 -0.029 -0.111 -0.032 -0.036 -0.023 -0.043  0.158 -0.010 -0.043
## ARITHCONC  0.021 -0.050 -0.068 -0.041  0.032 -0.028 -0.029  0.041 -0.055 -0.010
## ARITHAPPL -0.065 -0.029 -0.016 -0.032  0.060 -0.029 -0.007  0.080 -0.003  0.013
## USETHI     0.055  0.157  0.120  0.037  0.175  0.056  0.025  0.115 -0.013  0.084
## PAPFO     -0.004 -0.031 -0.124 -0.070  0.065 -0.099 -0.201 -0.079  0.063  0.182
## FORMBO     0.019 -0.022 -0.104 -0.099 -0.074 -0.061 -0.239 -0.049 -0.045  0.098
## SURDEV     0.031 -0.026 -0.138 -0.131 -0.011 -0.087 -0.208 -0.057  0.067  0.117
## HIDFIG     0.127  0.101 -0.019  0.047  0.015 -0.009 -0.092 -0.012 -0.012  0.163
## RPM        0.151  0.078  0.033  0.123  0.126  0.106 -0.002  0.127  0.111  0.161
## AUDLS      0.104  0.198  0.053  0.059 -0.017  0.076  0.128  0.136  0.311  0.096
## IDENPIC    0.322 -0.002 -0.116 -0.135 -0.048 -0.057 -0.139 -0.013  0.049  0.048
## FINA       0.288  0.077 -0.096 -0.048 -0.076 -0.027  0.038  0.108  0.067  0.024
## NUMCOM     0.414 -0.021 -0.140 -0.110 -0.094 -0.060  0.040  0.135  0.127  0.037
## WORDTRAN   0.113  0.189 -0.026  0.006  0.080  0.014  0.142  0.143  0.169  0.100
## CAMOWORD   0.055  0.150 -0.002  0.006 -0.013  0.056  0.144  0.064  0.122  0.056
## STRGEST   -0.076  0.024  0.031 -0.054  0.050 -0.067 -0.069 -0.017 -0.016  0.005
## HARGEST   -0.106  0.062  0.001 -0.029  0.035 -0.047 -0.117  0.007 -0.054  0.031
## FILMMEM    0.338  0.116  0.101  0.168  0.082  0.215  0.116  0.220  0.145  0.124
##           LS     ARITHCOM ARITHCON ARITHA USETHI PAPFO  FORMBO SURDEV HIDFIG
## VOCAB                                                                       
## INFO                                                                        
## COMP                                                                        
## BD                                                                          
## OA                                                                          
## PICCOM                                                                      
## PICARR                                                                      
## SIM                                                                         
## ARITH                                                                       
## DIGS                                                                        
## DSC                                                                         
## WORDBEEN                                                                    
## READVOC                                                                     
## READCOMP                                                                    
## CONCMAST                                                                    
## LANEX                                                                       
## LANSP                                                                       
## LANME                                                                       
## VISNS                                                                       
## NARITHO                                                                     
## LS         0.000                                                            
## ARITHCOMP  0.000  0.000                                                     
## ARITHCONC  0.027  0.037    0.000                                            
## ARITHAPPL -0.058  0.022   -0.002    0.000                                   
## USETHI     0.058 -0.039   -0.047   -0.099  0.000                            
## PAPFO      0.111 -0.037    0.035    0.009  0.120  0.000                     
## FORMBO     0.026 -0.024   -0.003    0.016  0.141  0.004  0.000              
## SURDEV     0.191 -0.002    0.051    0.022  0.090  0.012  0.015  0.000       
## HIDFIG     0.146 -0.008    0.045    0.063  0.064 -0.015  0.046 -0.006  0.000
## RPM        0.299  0.186    0.202    0.145  0.043  0.010 -0.048 -0.023 -0.007
## AUDLS     -0.030  0.054    0.093    0.042  0.053 -0.031 -0.025  0.045 -0.018
## IDENPIC    0.040  0.020    0.001   -0.114  0.244  0.074  0.192  0.178  0.191
## FINA       0.015 -0.006   -0.057   -0.107  0.049 -0.089 -0.018 -0.012  0.150
## NUMCOM    -0.042  0.017   -0.042   -0.074  0.039 -0.086 -0.010 -0.061  0.077
## WORDTRAN   0.091  0.023    0.036    0.041  0.251  0.045  0.070  0.098  0.130
## CAMOWORD   0.017 -0.036   -0.025   -0.017 -0.035 -0.045 -0.032  0.011  0.076
## STRGEST    0.038 -0.038   -0.020    0.101  0.027  0.063  0.055  0.086  0.086
## HARGEST    0.064 -0.027    0.026    0.020  0.062  0.100  0.194  0.175  0.119
## FILMMEM    0.230  0.075    0.090   -0.056  0.153  0.155  0.125  0.169  0.193
##           RPM    AUDLS  IDENPI FINA   NUMCOM WORDTR CAMOWO STRGES HARGES FILMME
## VOCAB                                                                          
## INFO                                                                           
## COMP                                                                           
## BD                                                                             
## OA                                                                             
## PICCOM                                                                         
## PICARR                                                                         
## SIM                                                                            
## ARITH                                                                          
## DIGS                                                                           
## DSC                                                                            
## WORDBEEN                                                                       
## READVOC                                                                        
## READCOMP                                                                       
## CONCMAST                                                                       
## LANEX                                                                          
## LANSP                                                                          
## LANME                                                                          
## VISNS                                                                          
## NARITHO                                                                        
## LS                                                                             
## ARITHCOMP                                                                      
## ARITHCONC                                                                      
## ARITHAPPL                                                                      
## USETHI                                                                         
## PAPFO                                                                          
## FORMBO                                                                         
## SURDEV                                                                         
## HIDFIG                                                                         
## RPM        0.000                                                               
## AUDLS      0.047  0.000                                                        
## IDENPIC    0.159 -0.020  0.000                                                 
## FINA       0.071 -0.097  0.065  0.000                                          
## NUMCOM     0.022  0.021  0.132  0.141  0.000                                   
## WORDTRAN   0.173 -0.047 -0.018 -0.019 -0.039  0.000                            
## CAMOWORD   0.135  0.066 -0.004  0.052 -0.012 -0.034  0.000                     
## STRGEST    0.083 -0.099  0.031  0.026 -0.058  0.013  0.091  0.000              
## HARGEST    0.078 -0.001  0.171 -0.061 -0.058  0.052  0.070  0.001  0.000       
## FILMMEM    0.201  0.151  0.305  0.171  0.197  0.182  0.078 -0.057 -0.020  0.000
length(which(resid(SNOW.fit, "cor")$cov > 0.094)); length(which(resid(SNOW.fit, "cor")$cov > 0.171))
## [1] 272
## [1] 74

There were numerous violations of local independence with and without p value scaling. This can be reduced by finding a better-fitting model and the result doesn’t really change.

Comparison of Separate and Together Model Bifactor Loadings
  • To-do

McGrew & Woodcock (2001) n = 149

lowerMGONE <- '
1                                                                                                                                           
0.40135389  1                                                                                                                                       
0.38441893  0.342538786 1                                                                                                                                   
0.329460795 0.321949636 0.23852148  1                                                                                                                               
0.512549213 0.395743981 0.43053329  0.292910335 1                                                                                                                           
0.256631335 0.204037798 0.274610516 0.251344309 0.157799514 1                                                                                                                       
0.218707712 0.316400392 0.207538646 0.373419808 0.31104699  0.231387586 1                                                                                                                   
0.242453698 0.304949422 0.204973157 0.420894253 0.125097024 0.223774683 0.246478928 1                                                                                                               
0.429345974 0.465406379 0.268342987 0.422306344 0.352301969 0.281069595 0.567353345 0.289807576 1                                                                                                           
0.247361024 0.191150985 0.134611982 0.206552909 0.160722176 0.138391141 0.130232689 0.187796421 0.189476933 1                                                                                                       
0.263051094 0.273339984 0.175386693 0.21074566  0.225277134 0.20922631  0.130279471 0.106391243 0.152799181 0.266610634 1                                                                                                   
0.135246773 0.170430852 0.122232544 0.159254016 0.166528587 0.249778134 0.10222489  0.131029801 0.199445688 0.14739006  0.079479849 1                                                                                               
0.396392495 0.252031934 0.352830183 0.121883151 0.380509755 0.164772727 0.226396464 0.065912375 0.27863417  0.122126885 0.101354366 0.152567791 1                                                                                           
0.365449229 0.235275945 0.224887721 0.06555788  0.219738085 0.4413484   0.193668718 0.068700884 0.279526244 0.279058633 0.321978076 0.131908626 0.166581759 1                                                                                       
0.197625056 0.298706389 0.10252901  0.308338465 0.12297328  0.184746812 0.409839065 0.295120904 0.425467891 0.155206749 0.093717015 0.049180787 0.08078908  0.179514946 1                                                                                   
0.21051328  0.259267369 0.061213031 0.169285114 0.012735369 0.257960942 0.118731306 0.081644013 0.200048466 0.258172293 0.051511728 0.13333726  -0.019230728    0.452192287 0.119629979 1                                                                               
0.44347741  0.409302381 0.197934191 0.203965    0.283184435 0.19758256  0.151656989 0.104010048 0.347536715 0.335725254 0.17887026  0.128347233 0.244972386 0.327224029 0.148143989 0.261281087 1                                                                           
0.435682183 0.26102992  0.241044911 0.288045865 0.376100299 0.197638693 0.219556794 0.263120746 0.293854699 0.186229396 0.208298086 0.11302032  0.186313526 0.187231143 0.229012809 0.032073897 0.258599113 1                                                                       
0.671170839 0.295872157 0.250929156 0.345129952 0.446749945 0.154042937 0.195714527 0.184399411 0.389505477 0.205266741 0.169880617 0.129209799 0.365696693 0.228317603 0.210544636 0.16644072  0.487814108 0.360337482 1                                                                   
0.410255106 0.08397219  0.271050588 0.234603173 0.34919482  -0.015605367    0.140120227 -0.006051191    0.216413202 0.210522527 0.116748902 -0.011616895    0.352751432 0.122605647 0.158211956 0.019006432 0.255954272 0.257200003 0.47418777  1                                                               
0.39643875  0.281371301 0.190077223 0.245868772 0.406653359 0.254208431 0.343612935 0.16674893  0.444388237 0.27380033  0.107162385 0.072021621 0.357448257 0.226713698 0.211678189 0.162677945 0.416114949 0.312734027 0.429869615 0.292772043 1                                                           
0.592782813 0.114390144 0.258253268 0.254465666 0.414894159 0.11346424  0.149774621 0.108588045 0.223051262 0.209276861 0.024488496 0.079648516 0.352508288 0.194013526 0.026756008 -0.017181525    0.371248734 0.33107905  0.575792579 0.477299447 0.441443886 1                                                       
0.56051198  0.160430805 0.208328401 0.177169939 0.356751154 0.061250973 0.132380593 -0.062404496    0.279716291 0.205837106 0.159963138 -0.002312414    0.414808087 0.230380902 0.037040731 0.152655172 0.382607832 0.209370239 0.612817598 0.414986061 0.348647541 0.524894405 1                                                   
0.32258633  0.229496243 0.230373654 0.339703164 0.328488148 0.380001    0.424978958 0.149204008 0.506217112 0.155613727 0.114247974 0.260207031 0.180276744 0.276198911 0.380458412 0.096567029 0.228983645 0.329312134 0.247017439 0.227832451 0.329980273 0.265238539 0.158807466 1                                               
0.268831075 0.177321887 0.347406613 0.052304444 0.24239521  0.058427007 0.017759711 -0.030547869    0.130298419 0.164054412 0.217470335 0.085518146 0.248099764 0.287134943 0.04102976  0.041511623 0.053551601 0.146694175 0.15599148  0.263185071 0.142786829 0.186775722 0.144781993 0.048574253 1                                           
0.176368712 0.16124765  0.17936279  0.319039035 0.057010327 0.446698457 0.142312215 0.151410867 0.283050637 0.164297651 0.137178265 0.084434772 0.133980852 0.470592308 0.126982549 0.416465134 0.239181828 0.062751275 0.192701814 0.096155346 0.322364607 0.144209141 0.145102659 0.20503853  0.147340533 1                                       
0.462042281 0.354459483 0.475697823 0.203410888 0.459480952 0.082562863 0.2477689   0.131478095 0.321097787 0.179484395 0.255051661 0.102207349 0.42845103  0.276214748 0.064632347 0.054739159 0.174054142 0.271240772 0.317512929 0.284046467 0.379522583 0.372659971 0.294523012 0.211525501 0.409525375 0.204499457 1                                   
0.370677368 0.298205153 0.321668191 0.335794    0.370365256 0.190545138 0.238521659 0.258873011 0.311588054 0.1308883   0.224965396 0.112620345 0.438679772 0.23797785  0.149191041 0.014455745 0.342138213 0.245132323 0.362494277 0.308783041 0.523231898 0.329915569 0.33225342  0.283034495 0.279573766 0.278436656 0.452630505 1                               
0.339172671 0.128040509 0.266312379 0.085855451 0.217815504 0.107135175 0.072398997 0.095701513 0.187926735 0.087093895 0.206426669 0.063020546 0.25708265  0.229561467 -0.127334706    0.158076158 0.115649671 0.095516327 0.25657829  0.1742605   0.173849076 0.265458975 0.371859382 -0.00507369 0.318010183 0.212837811 0.3832608   0.306288056 1                           
0.296265132 0.2164265   0.15514279  0.305663138 0.227057604 0.462438601 0.208856264 0.041900101 0.302191483 0.154539985 0.19416672  0.231934366 0.20034525  0.422477554 0.217318235 0.278685333 0.251980896 0.07993121  0.243070109 0.133426184 0.295212926 0.217735049 0.16205328  0.32607026  0.111084978 0.496245842 0.296218141 0.235498971 0.10690197  1                       
0.484812512 0.348249027 0.303609126 0.399946414 0.316290793 0.479227675 0.364631901 0.429824576 0.521286223 0.261372647 0.18750348  0.119869229 0.205378486 0.187210191 0.30002536  0.095732559 0.337606182 0.443090351 0.43533648  0.300356201 0.492203192 0.269422595 0.249764139 0.349613739 0.04540852  0.197147924 0.191375524 0.460503129 0.204794093 0.186837275 1                   
0.370789029 0.575723396 0.375587377 0.38327454  0.325337188 0.295049029 0.4238262   0.349725961 0.54058573  0.26605091  0.2225422   0.198557645 0.229948127 0.239985661 0.308658869 0.161451249 0.481523938 0.381864581 0.277636759 0.102216899 0.343227639 0.092303272 0.071577427 0.281981809 0.228550087 0.15876543  0.36496075  0.496562332 0.179025957 0.15841228  0.428103477 1               
0.467023412 0.409381323 0.238704574 0.291700585 0.484044877 0.373321629 0.272340739 0.159531706 0.478621233 0.147688527 0.22521691  0.133604548 0.339246085 0.300316468 0.123293246 0.023799385 0.380158308 0.290812887 0.398945346 0.162990394 0.340004964 0.282280819 0.267023831 0.320447573 0.220050908 0.247191883 0.366784958 0.379767889 0.25557905  0.376345103 0.385546113 0.437916231 1           
0.592247745 0.232935359 0.090540394 0.169304307 0.261783446 0.113690441 0.033462778 0.162301268 0.261253457 0.256294489 0.188673843 0.063469832 0.151378001 0.189646183 0.105730329 0.072440251 0.514766807 0.360857856 0.62120754  0.394529779 0.188483652 0.512607132 0.475413137 0.069490726 0.155513449 0.089241397 0.206780075 0.272888931 0.233303294 0.194005713 0.462120505 0.33693959  0.361980828 1       
0.474452009 0.4469245   0.453339833 0.304329805 0.464847231 0.228156657 0.264245654 0.204847715 0.327560049 0.22185281  0.360839389 0.179383347 0.282217844 0.255560179 0.101478815 0.072823341 0.357000717 0.268655695 0.315342921 0.300318162 0.329960598 0.156171241 0.245397661 0.227115999 0.316608263 0.163466115 0.418057485 0.461449531 0.236648702 0.270042322 0.286696611 0.414626263 0.479229714 0.308310946 1   
0.520372819 0.305163597 0.336828073 0.353051132 0.427468298 0.215639766 0.310809044 0.256176632 0.385714527 0.170887619 0.288153515 0.037705975 0.296094015 0.234391335 0.276967547 -0.030011705    0.358664941 0.442770475 0.542078604 0.494786892 0.240992141 0.383357408 0.354252879 0.252004728 0.297505279 0.074679428 0.357377094 0.445343849 0.273499317 0.127658889 0.578824018 0.382283823 0.365092773 0.5053603   0.33518301  1
'

nMGONE <- 149

MGONE.cor = getCov(lowerMGONE, names = c("VERCO", "VAL", "SPAR", "BLEN", "CONCF", "VISMAT", "NUMREV", "INCWOR", "AUDWKMEM", "RETFLU", "PICREC", "AUDAT", "ANALSYN", "DECSP", "MEMWRD", "RAPPIC", "STRYREC", "ORACOM", "VOCAB", "SIMIL", "ARI", "INFO", "COMP", "LNS", "PICCOM", "DSC", "BD", "MATR", "PICARR", "SYMS", "DEFS", "REBL", "LOGST", "AUDCOM", "MYSCO", "DOUME"))

lowerMGONEWJ <- '1                                                                  
0.40135389  1                                                               
0.38441893  0.342538786 1                                                           
0.329460795 0.321949636 0.23852148  1                                                       
0.512549213 0.395743981 0.43053329  0.292910335 1                                                   
0.256631335 0.204037798 0.274610516 0.251344309 0.157799514 1                                               
0.218707712 0.316400392 0.207538646 0.373419808 0.31104699  0.231387586 1                                           
0.242453698 0.304949422 0.204973157 0.420894253 0.125097024 0.223774683 0.246478928 1                                       
0.429345974 0.465406379 0.268342987 0.422306344 0.352301969 0.281069595 0.567353345 0.289807576 1                                   
0.247361024 0.191150985 0.134611982 0.206552909 0.160722176 0.138391141 0.130232689 0.187796421 0.189476933 1                               
0.263051094 0.273339984 0.175386693 0.21074566  0.225277134 0.20922631  0.130279471 0.106391243 0.152799181 0.266610634 1                           
0.135246773 0.170430852 0.122232544 0.159254016 0.166528587 0.249778134 0.10222489  0.131029801 0.199445688 0.14739006  0.079479849 1                       
0.396392495 0.252031934 0.352830183 0.121883151 0.380509755 0.164772727 0.226396464 0.065912375 0.27863417  0.122126885 0.101354366 0.152567791 1                   
0.365449229 0.235275945 0.224887721 0.06555788  0.219738085 0.4413484   0.193668718 0.068700884 0.279526244 0.279058633 0.321978076 0.131908626 0.166581759 1               
0.197625056 0.298706389 0.10252901  0.308338465 0.12297328  0.184746812 0.409839065 0.295120904 0.425467891 0.155206749 0.093717015 0.049180787 0.08078908  0.179514946 1           
0.21051328  0.259267369 0.061213031 0.169285114 0.012735369 0.257960942 0.118731306 0.081644013 0.200048466 0.258172293 0.051511728 0.13333726  -0.019230728    0.452192287 0.119629979 1       
0.44347741  0.409302381 0.197934191 0.203965    0.283184435 0.19758256  0.151656989 0.104010048 0.347536715 0.335725254 0.17887026  0.128347233 0.244972386 0.327224029 0.148143989 0.261281087 1   
0.435682183 0.26102992  0.241044911 0.288045865 0.376100299 0.197638693 0.219556794 0.263120746 0.293854699 0.186229396 0.208298086 0.11302032  0.186313526 0.187231143 0.229012809 0.032073897 0.258599113 1'


lowerMGONEWA <- '1                                          
0.47418777  1                                       
0.429869615 0.292772043 1                                   
0.575792579 0.477299447 0.441443886 1                               
0.612817598 0.414986061 0.348647541 0.524894405 1                           
0.247017439 0.227832451 0.329980273 0.265238539 0.158807466 1                       
0.15599148  0.263185071 0.142786829 0.186775722 0.144781993 0.048574253 1                   
0.192701814 0.096155346 0.322364607 0.144209141 0.145102659 0.20503853  0.147340533 1               
0.317512929 0.284046467 0.379522583 0.372659971 0.294523012 0.211525501 0.409525375 0.204499457 1           
0.362494277 0.308783041 0.523231898 0.329915569 0.33225342  0.283034495 0.279573766 0.278436656 0.452630505 1       
0.25657829  0.1742605   0.173849076 0.265458975 0.371859382 -0.00507369 0.318010183 0.212837811 0.3832608   0.306288056 1   
0.243070109 0.133426184 0.295212926 0.217735049 0.16205328  0.32607026  0.111084978 0.496245842 0.296218141 0.235498971 0.10690197  1'

lowerMGONEKA <- '1                  
0.428103477 1               
0.385546113 0.437916231 1           
0.462120505 0.33693959  0.361980828 1       
0.286696611 0.414626263 0.479229714 0.308310946 1   
0.578824018 0.382283823 0.365092773 0.5053603   0.33518301  1'

MGONEWJ.cor = getCov(lowerMGONEWJ, names = c("VERCO", "VAL", "SPAR", "BLEN", "CONCF", "VISMAT", "NUMREV", "INCWOR", "AUDWKMEM", "RETFLU", "PICREC", "AUDAT", "ANALSYN", "DECSP", "MEMWRD", "RAPPIC", "STRYREC", "ORACOM"))

MGONEWA.cor = getCov(lowerMGONEWA, names = c("VOCAB", "SIMIL ", "ARI", "INFO", "COMP", "LNS", "PICCOM", "DSC", "BD", "MATR", "PICARR", "SYMS"))

MGONEKA.cor = getCov(lowerMGONEKA, names = c("DEFS", "REBL", "LOGST", "AUDCOM", "MYSCO", "DOUME"))

Parallel Analysis

fa.parallel(MGONE.cor, n.obs = nMGONE)

## Parallel analysis suggests that the number of factors =  5  and the number of components =  4
fa.parallel(MGONEWJ.cor, n.obs = nMGONE)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
fa.parallel(MGONEWA.cor, n.obs = nMGONE)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
fa.parallel(MGONEKA.cor, n.obs = nMGONE)

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1

Exploratory Factor Analyses

FATOT <- fa(MGONE.cor, n.obs = nMGONE, nfactors = 5)
FATOT1 <- fa(MGONE.cor, n.obs = nMGONE, nfactors = 1)
  
FAWA <- fa(MGONEWJ.cor, n.obs = nMGONE, nfactors = 3)
FAWA1 <- fa(MGONEWJ.cor, n.obs = nMGONE, nfactors = 1)

FAOTH <- fa(MGONEWA.cor, n.obs = nMGONE, nfactors = 3)
FAOTH1 <- fa(MGONEWA.cor, n.obs = nMGONE, nfactors = 1)

FAKA <- fa(MGONEKA.cor, n.obs = nMGONE, nfactors = 3)
FAKA1 <- fa(MGONEKA.cor, n.obs = nMGONE, nfactors = 1)

print(FATOT$loadings)
## 
## Loadings:
##          MR1    MR4    MR2    MR3    MR5   
## VERCO     0.562  0.277         0.112       
## VAL              0.315  0.237  0.104  0.369
## SPAR             0.607                     
## BLEN      0.101         0.495              
## CONCF     0.137  0.518  0.221              
## VISMAT                  0.281  0.512       
## NUMREV   -0.136  0.105  0.653              
## INCWOR                  0.402         0.296
## AUDWKMEM         0.100  0.607  0.142       
## RETFLU    0.249                0.227  0.129
## PICREC           0.299         0.162  0.240
## AUDAT                   0.140  0.182       
## ANALSYN          0.503               -0.235
## DECSP            0.155         0.667       
## MEMWRD          -0.157  0.582              
## RAPPIC          -0.170         0.623  0.101
## STRYREC   0.517                0.241  0.133
## ORACOM    0.312  0.123  0.308         0.100
## VOCAB     0.704         0.160        -0.164
## SIMIL     0.413  0.223        -0.107 -0.268
## ARI       0.162  0.179  0.359  0.168 -0.189
## INFO      0.544  0.142  0.102        -0.416
## COMP      0.568  0.164               -0.324
## LNS                     0.625  0.170 -0.168
## PICCOM           0.615 -0.246              
## DSC                            0.700       
## BD               0.762                     
## MATR      0.118  0.467  0.200              
## PICARR    0.158  0.442 -0.238  0.141       
## SYMS                    0.155  0.593 -0.136
## DEFS      0.377         0.519         0.149
## REBL             0.323  0.343         0.490
## LOGST     0.152  0.342  0.195  0.160       
## AUDCOM    0.925        -0.101         0.154
## MYSCO            0.574                0.227
## DOUME     0.459  0.265  0.251 -0.162       
## 
##                  MR1   MR4   MR2   MR3   MR5
## SS loadings    3.450 3.415 3.144 2.344 1.257
## Proportion Var 0.096 0.095 0.087 0.065 0.035
## Cumulative Var 0.096 0.191 0.278 0.343 0.378
print(FAWA$loadings)
## 
## Loadings:
##          MR1    MR3    MR2   
## VERCO            0.617  0.204
## VAL       0.343  0.295  0.148
## SPAR             0.522       
## BLEN      0.607              
## CONCF            0.750       
## VISMAT    0.196         0.376
## NUMREV    0.634              
## INCWOR    0.536              
## AUDWKMEM  0.631  0.144       
## RETFLU    0.103         0.343
## PICREC           0.221  0.234
## AUDAT     0.109  0.107  0.145
## ANALSYN          0.566       
## DECSP            0.102  0.761
## MEMWRD    0.647 -0.149       
## RAPPIC    0.108 -0.207  0.636
## STRYREC          0.312  0.347
## ORACOM    0.218  0.366       
## 
##                  MR1   MR3   MR2
## SS loadings    2.131 2.029 1.521
## Proportion Var 0.118 0.113 0.084
## Cumulative Var 0.118 0.231 0.316
print(FAOTH$loadings)
## 
## Loadings:
##        MR1    MR2    MR3   
## VOCAB   0.811              
## SIMIL   0.566              
## ARI     0.374  0.384       
## INFO    0.721              
## COMP    0.716              
## LNS     0.233  0.426 -0.140
## PICCOM                0.632
## DSC            0.600  0.122
## BD             0.166  0.581
## MATR    0.221  0.267  0.336
## PICARR                0.559
## SYMS           0.697       
## 
##                  MR1   MR2   MR3
## SS loadings    2.284 1.294 1.221
## Proportion Var 0.190 0.108 0.102
## Cumulative Var 0.190 0.298 0.400
print(FAKA$loadings)
## 
## Loadings:
##        MR2    MR1    MR3   
## DEFS                  0.929
## REBL    0.520         0.168
## LOGST   0.687              
## AUDCOM  0.245  0.256  0.203
## MYSCO   0.724              
## DOUME          1.000       
## 
##                  MR2   MR1   MR3
## SS loadings    1.326 1.066 0.946
## Proportion Var 0.221 0.178 0.158
## Cumulative Var 0.221 0.399 0.556
print(FATOT1$loadings)
## 
## Loadings:
##          MR1  
## VERCO    0.769
## VAL      0.560
## SPAR     0.503
## BLEN     0.511
## CONCF    0.623
## VISMAT   0.424
## NUMREV   0.459
## INCWOR   0.344
## AUDWKMEM 0.653
## RETFLU   0.367
## PICREC   0.356
## AUDAT    0.231
## ANALSYN  0.491
## DECSP    0.462
## MEMWRD   0.341
## RAPPIC   0.236
## STRYREC  0.573
## ORACOM   0.513
## VOCAB    0.684
## SIMIL    0.473
## ARI      0.601
## INFO     0.546
## COMP     0.518
## LNS      0.487
## PICCOM   0.337
## DSC      0.373
## BD       0.572
## MATR     0.621
## PICARR   0.369
## SYMS     0.439
## DEFS     0.650
## REBL     0.616
## LOGST    0.624
## AUDCOM   0.544
## MYSCO    0.599
## DOUME    0.653
## 
##                  MR1
## SS loadings    9.701
## Proportion Var 0.269
print(FAWA1$loadings)
## 
## Loadings:
##          MR1  
## VERCO    0.688
## VAL      0.633
## SPAR     0.492
## BLEN     0.535
## CONCF    0.575
## VISMAT   0.455
## NUMREV   0.517
## INCWOR   0.408
## AUDWKMEM 0.685
## RETFLU   0.384
## PICREC   0.367
## AUDAT    0.277
## ANALSYN  0.415
## DECSP    0.481
## MEMWRD   0.420
## RAPPIC   0.315
## STRYREC  0.519
## ORACOM   0.494
## 
##                  MR1
## SS loadings    4.399
## Proportion Var 0.244
print(FAOTH1$loadings)
## 
## Loadings:
##        MR1  
## VOCAB  0.698
## SIMIL  0.553
## ARI    0.639
## INFO   0.684
## COMP   0.632
## LNS    0.384
## PICCOM 0.358
## DSC    0.379
## BD     0.599
## MATR   0.627
## PICARR 0.429
## SYMS   0.411
## 
##                  MR1
## SS loadings    3.593
## Proportion Var 0.299
print(FAKA1$loadings)
## 
## Loadings:
##        MR1  
## DEFS   0.692
## REBL   0.621
## LOGST  0.627
## AUDCOM 0.623
## MYSCO  0.554
## DOUME  0.700
## 
##                  MR1
## SS loadings    2.443
## Proportion Var 0.407
EFATOGMGONE <- c(0.769, 0.560, 0.503, 0.511, 0.632, 0.424, 0.459, 0.344, 0.653, 0.367, 0.356, 0.231, 0.491, 0.462, 0.341, 0.236, 0.573, 0.513, 0.684, 0.473, 0.601, 0.546, 0.518, 0.487, 0.337, 0.373, 0.572, 0.621, 0.369, 0.439, 0.650, 0.616, 0.624, 0.544, 0.599, 0.653)
EFATOGMGONEPsy <- c(0.769, 0.560, 0.503, 0.511, 0.632, 0.424, 0.459, 0.344, 0.653, 0.367, 0.356, 0.231, 0.491, 0.462, 0.341, 0.236, 0.573, 0.513); EFATOGMGONEPsy2 <- c(0.684, 0.473, 0.601, 0.546, 0.518, 0.487, 0.337, 0.373, 0.572, 0.621, 0.369, 0.439); EFATOGMGONEPsy3 <- c(0.650, 0.616, 0.624, 0.544, 0.599, 0.653)
EFASEPMGONE <- c(0.688, 0.633, 0.492, 0.535, 0.575, 0.455, 0.517, 0.408, 0.685, 0.384, 0.367, 0.277, 0.415, 0.481, 0.420, 0.315, 0.519, 0.494, 0.698, 0.553, 0.639, 0.684, 0.632, 0.384, 0.358, 0.379, 0.599, 0.627, 0.429, 0.411, 0.692, 0.621, 0.627, 0.623, 0.554, 0.700)
EFASEPMGONEPsy <- c(0.688, 0.633, 0.492, 0.535, 0.575, 0.455, 0.517, 0.408, 0.685, 0.384, 0.367, 0.277, 0.415, 0.481, 0.420, 0.315, 0.519, 0.494); EFASEPMGONEPsy2 <- c(0.698, 0.553, 0.639, 0.684, 0.632, 0.384, 0.358, 0.379, 0.599, 0.627, 0.429, 0.411); EFASEPMGONEPsy3 <- c(0.692, 0.621, 0.627, 0.623, 0.554, 0.700)

cor(EFATOGMGONE, EFASEPMGONE, method = "pearson"); cor(EFATOGMGONE, EFASEPMGONE, method = "spearman"); CONGO(EFATOGMGONE, EFASEPMGONE)
## [1] 0.9082599
## [1] 0.9086696
## [1] 0.9947625
cor(EFATOGMGONEPsy, EFASEPMGONEPsy, method = "pearson"); cor(EFATOGMGONEPsy, EFASEPMGONEPsy, method = "spearman"); CONGO(EFATOGMGONEPsy, EFASEPMGONEPsy)
## [1] 0.9375931
## [1] 0.9215686
## [1] 0.9943513
cor(EFATOGMGONEPsy2, EFASEPMGONEPsy2, method = "pearson"); cor(EFATOGMGONEPsy2, EFASEPMGONEPsy2, method = "spearman"); CONGO(EFATOGMGONEPsy2, EFASEPMGONEPsy2)
## [1] 0.8729544
## [1] 0.8391608
## [1] 0.9937857
cor(EFATOGMGONEPsy3, EFASEPMGONEPsy3, method = "pearson"); cor(EFATOGMGONEPsy3, EFASEPMGONEPsy3, method = "spearman"); CONGO(EFATOGMGONEPsy3, EFASEPMGONEPsy3)
## [1] 0.6061865
## [1] 0.8285714
## [1] 0.9980475

Confirmatory Factor Analyses

WJSO.model <- '
Gf =~ VERCO + SPAR + CONCF + ANALSYN + ORACOM
Gm =~ NUMREV + AUDWKMEM + MEMWRD
Gsp =~ VISMAT + PICREC + DECSP
Gv =~ BLEN + INCWOR 
Glr =~ VAL + RETFLU + RAPPIC + STRYREC

WJg =~ Gf + Gm + Gsp + Gv + Glr'

WJSO.fit <- cfa(WJSO.model, sample.cov = MGONEWJ.cor, sample.nobs = nMGONE, std.lv = T, orthogonal = T, check.gradient = F)
summary(WJSO.fit, stand = T, fit = T, modindices = F)
## lavaan 0.6-7 ended normally after 42 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         39
##                                                       
##   Number of observations                           149
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               144.273
##   Degrees of freedom                               114
##   P-value (Chi-square)                           0.029
## 
## Model Test Baseline Model:
## 
##   Test statistic                               711.040
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.947
##   Tucker-Lewis Index (TLI)                       0.937
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3302.259
##   Loglikelihood unrestricted model (H1)      -3230.123
##                                                       
##   Akaike (AIC)                                6682.519
##   Bayesian (BIC)                              6799.672
##   Sample-size adjusted Bayesian (BIC)         6676.248
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.042
##   90 Percent confidence interval - lower         0.014
##   90 Percent confidence interval - upper         0.062
##   P-value RMSEA <= 0.05                          0.721
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.063
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gf =~                                                                 
##     VERCO             0.459    0.075    6.155    0.000    0.775    0.777
##     SPAR              0.325    0.064    5.110    0.000    0.548    0.550
##     CONCF             0.402    0.069    5.850    0.000    0.680    0.682
##     ANALSYN           0.297    0.062    4.791    0.000    0.501    0.503
##     ORACOM            0.314    0.063    4.991    0.000    0.530    0.532
##   Gm =~                                                                 
##     NUMREV            0.423    0.066    6.381    0.000    0.661    0.663
##     AUDWKMEM          0.546    0.083    6.556    0.000    0.855    0.857
##     MEMWRD            0.332    0.063    5.279    0.000    0.520    0.521
##   Gsp =~                                                                
##     VISMAT            0.436    0.081    5.398    0.000    0.598    0.600
##     PICREC            0.324    0.075    4.296    0.000    0.445    0.446
##     DECSP             0.511    0.091    5.592    0.000    0.701    0.704
##   Gv =~                                                                 
##     BLEN              0.542    0.114    4.761    0.000    0.753    0.756
##     INCWOR            0.400    0.079    5.085    0.000    0.555    0.557
##   Glr =~                                                                
##     VAL               0.289    0.108    2.668    0.008    0.685    0.687
##     RETFLU            0.174    0.071    2.472    0.013    0.413    0.414
##     RAPPIC            0.164    0.067    2.423    0.015    0.387    0.389
##     STRYREC           0.255    0.095    2.670    0.008    0.604    0.606
##   WJg =~                                                                
##     Gf                1.361    0.288    4.728    0.000    0.806    0.806
##     Gm                1.203    0.246    4.888    0.000    0.769    0.769
##     Gsp               0.941    0.218    4.315    0.000    0.685    0.685
##     Gv                0.963    0.245    3.938    0.000    0.694    0.694
##     Glr               2.147    0.879    2.443    0.015    0.906    0.906
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VERCO             0.393    0.070    5.596    0.000    0.393    0.396
##    .SPAR              0.693    0.089    7.785    0.000    0.693    0.698
##    .CONCF             0.531    0.077    6.900    0.000    0.531    0.535
##    .ANALSYN           0.742    0.093    7.973    0.000    0.742    0.747
##    .ORACOM            0.712    0.091    7.862    0.000    0.712    0.717
##    .NUMREV            0.557    0.081    6.903    0.000    0.557    0.560
##    .AUDWKMEM          0.263    0.081    3.258    0.001    0.263    0.265
##    .MEMWRD            0.723    0.092    7.890    0.000    0.723    0.728
##    .VISMAT            0.635    0.099    6.407    0.000    0.635    0.640
##    .PICREC            0.795    0.103    7.696    0.000    0.795    0.801
##    .DECSP             0.501    0.104    4.807    0.000    0.501    0.505
##    .BLEN              0.426    0.130    3.288    0.001    0.426    0.429
##    .INCWOR            0.685    0.103    6.677    0.000    0.685    0.690
##    .VAL               0.524    0.086    6.068    0.000    0.524    0.528
##    .RETFLU            0.823    0.102    8.093    0.000    0.823    0.828
##    .RAPPIC            0.843    0.103    8.170    0.000    0.843    0.849
##    .STRYREC           0.629    0.089    7.051    0.000    0.629    0.633
##    .Gf                1.000                               0.351    0.351
##    .Gm                1.000                               0.409    0.409
##    .Gsp               1.000                               0.531    0.531
##    .Gv                1.000                               0.519    0.519
##    .Glr               1.000                               0.178    0.178
##     WJg               1.000                               1.000    1.000
WASO.model <- '
Gc =~ VOCAB + SIMIL + INFO + COMP
Gv =~ PICCOM + BD + MATR + PICARR
Gs =~ DSC + SYMS
Gsm =~ ARI + LNS

WAg =~ Gc + Gv + Gs + 1*Gsm

Gsm ~~ 0*Gsm'

WASO.fit <- cfa(WASO.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T, orthogonal = T, check.gradient = F)
summary(WASO.fit, stand = T, fit = T, modindices = F)
## lavaan 0.6-7 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         27
##                                                       
##   Number of observations                           149
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                63.967
##   Degrees of freedom                                51
##   P-value (Chi-square)                           0.105
## 
## Model Test Baseline Model:
## 
##   Test statistic                               532.934
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.972
##   Tucker-Lewis Index (TLI)                       0.964
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2296.558
##   Loglikelihood unrestricted model (H1)      -2264.575
##                                                       
##   Akaike (AIC)                                4647.117
##   Bayesian (BIC)                              4728.223
##   Sample-size adjusted Bayesian (BIC)         4642.776
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.041
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.070
##   P-value RMSEA <= 0.05                          0.657
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.056
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gc =~                                                                 
##     VOCAB             0.543    0.070    7.698    0.000    0.799    0.802
##     SIMIL             0.408    0.065    6.229    0.000    0.600    0.602
##     INFO              0.503    0.068    7.354    0.000    0.741    0.744
##     COMP              0.489    0.068    7.208    0.000    0.721    0.723
##   Gv =~                                                                 
##     PICCOM            0.264    0.066    3.993    0.000    0.452    0.453
##     BD                0.410    0.082    4.980    0.000    0.701    0.704
##     MATR              0.411    0.083    4.983    0.000    0.704    0.706
##     PICARR            0.280    0.067    4.144    0.000    0.478    0.480
##   Gs =~                                                                 
##     DSC               0.548    0.091    6.028    0.000    0.679    0.681
##     SYMS              0.586    0.099    5.930    0.000    0.726    0.728
##   Gsm =~                                                                
##     ARI               0.721    0.083    8.695    0.000    0.721    0.724
##     LNS               0.434    0.089    4.886    0.000    0.434    0.435
##   WAg =~                                                                
##     Gc                1.081    0.213    5.079    0.000    0.734    0.734
##     Gv                1.388    0.349    3.980    0.000    0.811    0.811
##     Gs                0.731    0.175    4.186    0.000    0.590    0.590
##     Gsm               1.000                               1.000    1.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Gsm               0.000                               0.000    0.000
##    .VOCAB             0.354    0.063    5.587    0.000    0.354    0.357
##    .SIMIL             0.633    0.082    7.691    0.000    0.633    0.637
##    .INFO              0.444    0.068    6.534    0.000    0.444    0.447
##    .COMP              0.474    0.070    6.782    0.000    0.474    0.477
##    .PICCOM            0.789    0.099    7.967    0.000    0.789    0.795
##    .BD                0.502    0.083    6.015    0.000    0.502    0.505
##    .MATR              0.498    0.083    5.978    0.000    0.498    0.502
##    .PICARR            0.765    0.097    7.861    0.000    0.765    0.770
##    .DSC               0.532    0.116    4.585    0.000    0.532    0.536
##    .SYMS              0.466    0.125    3.739    0.000    0.466    0.470
##    .ARI               0.473    0.084    5.624    0.000    0.473    0.476
##    .LNS               0.805    0.100    8.017    0.000    0.805    0.811
##    .Gc                1.000                               0.461    0.461
##    .Gv                1.000                               0.342    0.342
##    .Gs                1.000                               0.652    0.652
##     WAg               1.000                               1.000    1.000
KASO.model <- '
VERB =~ DEFS + AUDCOM + DOUME
LEAR =~ REBL + LOGST + MYSCO

Kg =~ VERB + LEAR'

KASO.fit <- cfa(KASO.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T, orthogonal = T, check.gradient = F)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
summary(KASO.fit, stand = T, fit = T, modindices = F)
## lavaan 0.6-7 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         14
##                                                       
##   Number of observations                           149
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 5.098
##   Degrees of freedom                                 7
##   P-value (Chi-square)                           0.648
## 
## Model Test Baseline Model:
## 
##   Test statistic                               250.974
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.017
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1142.583
##   Loglikelihood unrestricted model (H1)      -1140.034
##                                                       
##   Akaike (AIC)                                2313.166
##   Bayesian (BIC)                              2355.222
##   Sample-size adjusted Bayesian (BIC)         2310.916
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.082
##   P-value RMSEA <= 0.05                          0.823
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   VERB =~                                                               
##     DEFS              0.383       NA                      0.739    0.742
##     AUDCOM            0.335       NA                      0.648    0.650
##     DOUME             0.396       NA                      0.766    0.769
##   LEAR =~                                                               
##     REBL              0.338       NA                      0.660    0.663
##     LOGST             0.358       NA                      0.698    0.700
##     MYSCO             0.324       NA                      0.633    0.635
##   Kg =~                                                                 
##     VERB              1.654       NA                      0.856    0.856
##     LEAR              1.676       NA                      0.859    0.859
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .DEFS              0.446       NA                      0.446    0.449
##    .AUDCOM            0.573       NA                      0.573    0.577
##    .DOUME             0.406       NA                      0.406    0.409
##    .REBL              0.557       NA                      0.557    0.561
##    .LOGST             0.506       NA                      0.506    0.510
##    .MYSCO             0.592       NA                      0.592    0.596
##    .VERB              1.000                               0.268    0.268
##    .LEAR              1.000                               0.263    0.263
##     Kg                1.000                               1.000    1.000
WJ - WAIS
WJWANo.model <- '
Gf =~ VERCO + SPAR + CONCF + ANALSYN + ORACOM
Gm =~ NUMREV + AUDWKMEM + MEMWRD
Gsp =~ VISMAT + PICREC + DECSP
Gv =~ BLEN + INCWOR 
Glr =~ VAL + RETFLU + RAPPIC + STRYREC

WJg =~ Gf + Gm + Gsp + Gv + Glr

Gc =~ VOCAB + SIMIL + INFO + COMP
Gv =~ PICCOM + BD + MATR + PICARR
Gs =~ DSC + SYMS
Gsm =~ ARI + LNS

WAg =~ Gc + Gv + Gs + 1*Gsm

Gsm ~~ 0*Gsm

WJg ~~ 0*WAg'

WJWA.model <- '
Gf =~ VERCO + SPAR + CONCF + ANALSYN + ORACOM
Gm =~ NUMREV + AUDWKMEM + MEMWRD
Gsp =~ VISMAT + PICREC + DECSP
Gv =~ BLEN + INCWOR 
Glr =~ VAL + RETFLU + RAPPIC + STRYREC

WJg =~ Gf + Gm + Gsp + Gv + Glr

Gc =~ VOCAB + SIMIL + INFO + COMP
Gv =~ PICCOM + BD + MATR + PICARR
Gs =~ DSC + SYMS
Gsm =~ ARI + LNS

WAg =~ Gc + Gv + Gs + 1*Gsm

Gsm ~~ 0*Gsm

WJg ~~ WAg'

WJWAID.model <- '
Gf =~ VERCO + SPAR + CONCF + ANALSYN + ORACOM
Gm =~ NUMREV + AUDWKMEM + MEMWRD
Gsp =~ VISMAT + PICREC + DECSP
Gv =~ BLEN + INCWOR 
Glr =~ VAL + RETFLU + RAPPIC + STRYREC

WJg =~ Gf + Gm + Gsp + Gv + Glr

Gc =~ VOCAB + SIMIL + INFO + COMP
Gv =~ PICCOM + BD + MATR + PICARR
Gs =~ DSC + SYMS
Gsm =~ ARI + LNS

WAg =~ Gc + Gv + Gs + 1*Gsm

Gsm ~~ 0*Gsm

WJg ~~ 1*WAg'

WJWANo.fit <- cfa(WJWANo.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T)

WJWA.fit <- cfa(WJWA.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
WJWAID.fit <- cfa(WJWAID.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T); "\n"
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
## [1] "\n"
round(cbind("No Relationship"   = fitMeasures(WJWANo.fit, FITM),
            "Free Relationship" = fitMeasures(WJWA.fit, FITM),
            "Identical"         = fitMeasures(WJWAID.fit, FITM)),3)
##                No Relationship Free Relationship Identical
## chisq                  782.762           654.697   656.120
## df                     369.000           368.000   369.000
## npar                    66.000            67.000    66.000
## cfi                      0.704             0.795     0.794
## rmsea                    0.087             0.072     0.072
## rmsea.ci.lower           0.078             0.063     0.063
## rmsea.ci.upper           0.095             0.081     0.081
## aic                  11345.063         11218.998 11218.421
## bic                  11543.324         11420.262 11416.682
summary(WJWA.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 64 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         67
##                                                       
##   Number of observations                           149
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               654.697
##   Degrees of freedom                               368
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1803.068
##   Degrees of freedom                               406
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.795
##   Tucker-Lewis Index (TLI)                       0.774
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5542.499
##   Loglikelihood unrestricted model (H1)      -5215.150
##                                                       
##   Akaike (AIC)                               11218.998
##   Bayesian (BIC)                             11420.262
##   Sample-size adjusted Bayesian (BIC)        11208.226
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.072
##   90 Percent confidence interval - lower         0.063
##   90 Percent confidence interval - upper         0.081
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.086
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gf =~                                                                 
##     VERCO             0.276    0.082    3.369    0.001    0.787    0.789
##     SPAR              0.183    0.058    3.152    0.002    0.523    0.524
##     CONCF             0.234    0.070    3.323    0.001    0.667    0.669
##     ANALSYN           0.190    0.060    3.182    0.001    0.542    0.544
##     ORACOM            0.178    0.057    3.128    0.002    0.508    0.510
##   Gm =~                                                                 
##     NUMREV            0.474    0.063    7.535    0.000    0.653    0.656
##     AUDWKMEM          0.633    0.076    8.297    0.000    0.873    0.876
##     MEMWRD            0.362    0.063    5.703    0.000    0.500    0.501
##   Gsp =~                                                                
##     VISMAT            0.444    0.077    5.774    0.000    0.584    0.586
##     PICREC            0.328    0.075    4.393    0.000    0.431    0.432
##     DECSP             0.555    0.090    6.194    0.000    0.730    0.733
##   Gv =~                                                                 
##     BLEN              0.237    0.062    3.835    0.000    0.476    0.478
##     INCWOR            0.166    0.054    3.094    0.002    0.335    0.336
##   Glr =~                                                                
##     VAL               0.377    0.072    5.212    0.000    0.606    0.608
##     RETFLU            0.273    0.065    4.191    0.000    0.440    0.441
##     RAPPIC            0.232    0.063    3.670    0.000    0.374    0.375
##     STRYREC           0.430    0.079    5.427    0.000    0.692    0.694
##   WJg =~                                                                
##     Gf                2.672    0.854    3.129    0.002    0.937    0.937
##     Gm                0.950    0.163    5.840    0.000    0.689    0.689
##     Gsp               0.855    0.178    4.811    0.000    0.650    0.650
##     Gv                0.384    1.464    0.262    0.793    0.191    0.191
##     Glr               1.262    0.267    4.735    0.000    0.784    0.784
##   Gc =~                                                                 
##     VOCAB             0.521    0.063    8.289    0.000    0.829    0.832
##     SIMIL             0.370    0.058    6.356    0.000    0.588    0.590
##     INFO              0.451    0.060    7.546    0.000    0.718    0.720
##     COMP              0.450    0.060    7.533    0.000    0.716    0.719
##   Gv =~                                                                 
##     PICCOM            0.203    0.058    3.520    0.000    0.409    0.410
##     BD                0.334    0.076    4.397    0.000    0.671    0.674
##     MATR              0.334    0.076    4.400    0.000    0.673    0.675
##     PICARR            0.220    0.060    3.685    0.000    0.442    0.444
##   Gs =~                                                                 
##     DSC               0.526    0.082    6.431    0.000    0.645    0.647
##     SYMS              0.624    0.098    6.343    0.000    0.765    0.767
##   Gsm =~                                                                
##     ARI               0.614    0.078    7.885    0.000    0.614    0.616
##     LNS               0.501    0.080    6.239    0.000    0.501    0.503
##   WAg =~                                                                
##     Gc                1.238    0.206    5.994    0.000    0.778    0.778
##     Gv                1.349    1.314    1.026    0.305    0.670    0.670
##     Gs                0.710    0.152    4.662    0.000    0.579    0.579
##     Gsm               1.000                               1.000    1.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   WJg ~~                                                                
##     WAg               1.048    0.043   24.261    0.000    1.048    1.048
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Gsm               0.000                               0.000    0.000
##    .VERCO             0.374    0.060    6.286    0.000    0.374    0.377
##    .SPAR              0.720    0.088    8.145    0.000    0.720    0.725
##    .CONCF             0.548    0.073    7.559    0.000    0.548    0.552
##    .ANALSYN           0.700    0.086    8.092    0.000    0.700    0.704
##    .ORACOM            0.735    0.090    8.182    0.000    0.735    0.740
##    .NUMREV            0.566    0.081    6.973    0.000    0.566    0.570
##    .AUDWKMEM          0.232    0.084    2.761    0.006    0.232    0.233
##    .MEMWRD            0.744    0.093    7.994    0.000    0.744    0.749
##    .VISMAT            0.652    0.098    6.665    0.000    0.652    0.656
##    .PICREC            0.808    0.103    7.815    0.000    0.808    0.813
##    .DECSP             0.460    0.105    4.381    0.000    0.460    0.463
##    .BLEN              0.766    0.095    8.050    0.000    0.766    0.771
##    .INCWOR            0.881    0.105    8.385    0.000    0.881    0.887
##    .VAL               0.626    0.090    6.928    0.000    0.626    0.630
##    .RETFLU            0.800    0.101    7.953    0.000    0.800    0.805
##    .RAPPIC            0.854    0.104    8.176    0.000    0.854    0.859
##    .STRYREC           0.515    0.088    5.846    0.000    0.515    0.518
##    .VOCAB             0.306    0.057    5.346    0.000    0.306    0.308
##    .SIMIL             0.647    0.082    7.865    0.000    0.647    0.651
##    .INFO              0.478    0.068    7.054    0.000    0.478    0.481
##    .COMP              0.480    0.068    7.068    0.000    0.480    0.483
##    .PICCOM            0.826    0.100    8.238    0.000    0.826    0.832
##    .BD                0.543    0.078    6.927    0.000    0.543    0.546
##    .MATR              0.541    0.078    6.912    0.000    0.541    0.544
##    .PICARR            0.798    0.098    8.152    0.000    0.798    0.803
##    .DSC               0.578    0.105    5.480    0.000    0.578    0.582
##    .SYMS              0.409    0.124    3.298    0.001    0.409    0.412
##    .ARI               0.616    0.078    7.885    0.000    0.616    0.620
##    .LNS               0.742    0.090    8.281    0.000    0.742    0.747
##    .Gf                1.000                               0.123    0.123
##    .Gm                1.000                               0.525    0.525
##    .Gsp               1.000                               0.578    0.578
##    .Gv                1.000                               0.247    0.247
##    .Glr               1.000                               0.386    0.386
##     WJg               1.000                               1.000    1.000
##    .Gc                1.000                               0.395    0.395
##    .Gs                1.000                               0.665    0.665
##     WAg               1.000                               1.000    1.000
CRITR(149); CRITR(149, NP(149))
## [1] 0.1608739
## [1] 0.2622549
resid(WJWA.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##          VERCO  SPAR   CONCF  ANALSY ORACOM NUMREV AUDWKM MEMWRD VISMAT PICREC
## VERCO     0.000                                                               
## SPAR     -0.030  0.000                                                        
## CONCF    -0.016  0.079  0.000                                                 
## ANALSYN  -0.033  0.068  0.017  0.000                                          
## ORACOM    0.033 -0.026  0.035 -0.091  0.000                                   
## NUMREV   -0.115 -0.014  0.028 -0.004  0.004  0.000                            
## AUDWKMEM -0.017 -0.028 -0.026 -0.029  0.006 -0.007  0.000                     
## MEMWRD   -0.058 -0.067 -0.093 -0.095  0.064  0.081 -0.013  0.000              
## VISMAT   -0.025  0.087 -0.081 -0.029  0.016  0.059  0.051  0.053  0.000       
## PICREC    0.055  0.037  0.049 -0.042  0.074  0.003 -0.017 -0.003 -0.044  0.000
## DECSP     0.014 -0.009 -0.079 -0.076 -0.040 -0.021 -0.008  0.015  0.012  0.005
## BLEN      0.014  0.029  0.025 -0.095  0.084  0.181  0.165  0.161  0.089  0.091
## INCWOR    0.021  0.058 -0.063 -0.087  0.120  0.111  0.109  0.192  0.110  0.022
## VAL       0.049  0.108  0.097  0.009  0.033  0.101  0.178  0.134  0.022  0.139
## RETFLU   -0.008 -0.035 -0.056 -0.054  0.021 -0.026 -0.019  0.036  0.007  0.169
## RAPPIC   -0.007 -0.083 -0.171 -0.169 -0.108 -0.014  0.023  0.018  0.146 -0.031
## STRYREC   0.041 -0.069 -0.058 -0.032 -0.001 -0.094  0.019 -0.040 -0.010  0.026
## VOCAB     0.170 -0.082  0.022  0.021  0.037 -0.110 -0.019 -0.023 -0.104 -0.021
## SIMIL     0.055  0.035  0.048  0.108  0.027 -0.077 -0.074 -0.008 -0.199 -0.018
## INFO      0.159 -0.030  0.047  0.054  0.051 -0.115 -0.131 -0.176 -0.110 -0.140
## COMP      0.127 -0.079 -0.010  0.117 -0.070 -0.132 -0.074 -0.165 -0.162 -0.005
## PICCOM   -0.002  0.168  0.013  0.062 -0.028 -0.148 -0.091 -0.085 -0.081  0.115
## BD        0.017  0.180  0.082  0.122 -0.016 -0.024 -0.042 -0.143 -0.147  0.086
## MATR     -0.075  0.026 -0.007  0.132 -0.043 -0.034 -0.052 -0.059 -0.039  0.056
## PICARR    0.046  0.072 -0.031  0.055 -0.094 -0.107 -0.051 -0.264 -0.044  0.095
## DSC      -0.114 -0.013 -0.189 -0.066 -0.125 -0.035  0.046 -0.008  0.297  0.027
## SYMS     -0.048 -0.073 -0.065 -0.036 -0.142 -0.001  0.022  0.057  0.285  0.063
## ARI      -0.081 -0.127  0.002  0.029  0.004  0.052  0.055 -0.011  0.008 -0.074
## LNS      -0.067 -0.029 -0.002 -0.088  0.078  0.187  0.188  0.198  0.179 -0.034
##          DECSP  BLEN   INCWOR VAL    RETFLU RAPPIC STRYRE VOCAB  SIMIL  INFO  
## VERCO                                                                         
## SPAR                                                                          
## CONCF                                                                         
## ANALSYN                                                                       
## ORACOM                                                                        
## NUMREV                                                                        
## AUDWKMEM                                                                      
## MEMWRD                                                                        
## VISMAT                                                                        
## PICREC                                                                        
## DECSP     0.000                                                               
## BLEN     -0.138  0.000                                                        
## INCWOR   -0.074  0.260  0.000                                                 
## VAL       0.008  0.118  0.162  0.000                                          
## RETFLU    0.114  0.059  0.084 -0.077  0.000                                   
## RAPPIC    0.312  0.044 -0.007  0.031  0.093  0.000                            
## STRYREC   0.068 -0.028 -0.059 -0.013  0.029  0.001  0.000                     
## VOCAB    -0.094  0.076 -0.005 -0.027 -0.029 -0.033  0.119  0.000              
## SIMIL    -0.106  0.044 -0.140 -0.145  0.044 -0.122 -0.006 -0.017  0.000       
## INFO     -0.085  0.021 -0.055 -0.166  0.006 -0.190  0.052 -0.023  0.052  0.000
## COMP     -0.048 -0.055 -0.226 -0.119  0.003 -0.019  0.064  0.015 -0.009  0.007
## PICCOM    0.113 -0.144 -0.168  0.003  0.037 -0.066 -0.146 -0.075  0.099 -0.013
## BD       -0.010 -0.119 -0.095  0.068 -0.029 -0.122 -0.153 -0.062  0.015  0.044
## MATR     -0.049  0.013  0.032  0.011 -0.078 -0.163  0.014 -0.017  0.039  0.001
## PICARR    0.041 -0.126 -0.053 -0.061 -0.050  0.042 -0.100  0.007 -0.003  0.049
## DSC       0.284  0.163  0.042 -0.026  0.029  0.301  0.026 -0.049 -0.076 -0.066
## SYMS      0.201  0.121 -0.088 -0.005 -0.006  0.142 -0.001 -0.044 -0.070 -0.031
## ARI      -0.081 -0.010 -0.013 -0.027  0.050 -0.027  0.065  0.031  0.010  0.096
## LNS       0.025  0.130  0.002 -0.022 -0.027 -0.058 -0.058 -0.078 -0.003 -0.017
##          COMP   PICCOM BD     MATR   PICARR DSC    SYMS   ARI    LNS   
## VERCO                                                                  
## SPAR                                                                   
## CONCF                                                                  
## ANALSYN                                                                
## ORACOM                                                                 
## NUMREV                                                                 
## AUDWKMEM                                                               
## MEMWRD                                                                 
## VISMAT                                                                 
## PICREC                                                                 
## DECSP                                                                  
## BLEN                                                                   
## INCWOR                                                                 
## VAL                                                                    
## RETFLU                                                                 
## RAPPIC                                                                 
## STRYREC                                                                
## VOCAB                                                                  
## SIMIL                                                                  
## INFO                                                                   
## COMP      0.000                                                        
## PICCOM   -0.055  0.000                                                 
## BD       -0.033  0.133  0.000                                          
## MATR      0.004  0.003 -0.002  0.000                                   
## PICARR    0.156  0.136  0.084  0.007  0.000                            
## DSC      -0.064  0.014 -0.015  0.059  0.068  0.000                     
## SYMS     -0.086 -0.047  0.036 -0.025 -0.065  0.000  0.000              
## ARI       0.004 -0.077  0.018  0.161 -0.064  0.092  0.022  0.000       
## LNS      -0.122 -0.131 -0.083 -0.012 -0.199  0.017  0.103  0.020  0.000
length(which(resid(WJWA.fit, "cor")$cov > 0.161)); length(which(resid(WJWA.fit, "cor")$cov > 0.262))
## [1] 44
## [1] 10
WJ - KAIT
WJKANo.model <- '
Gf =~ VERCO + SPAR + CONCF + ANALSYN + ORACOM
Gm =~ NUMREV + AUDWKMEM + MEMWRD
Gsp =~ VISMAT + PICREC + DECSP
Gv =~ BLEN + INCWOR 
Glr =~ VAL + RETFLU + RAPPIC + STRYREC

WJg =~ Gf + Gm + Gsp + Gv + Glr

VERB =~ DEFS + AUDCOM + DOUME
LEAR =~ REBL + LOGST + MYSCO

Kg =~ VERB + LEAR

WJg ~~ 0*Kg'

WJKA.model <- '
Gf =~ VERCO + SPAR + CONCF + ANALSYN + ORACOM
Gm =~ NUMREV + AUDWKMEM + MEMWRD
Gsp =~ VISMAT + PICREC + DECSP
Gv =~ BLEN + INCWOR 
Glr =~ VAL + RETFLU + RAPPIC + STRYREC

WJg =~ Gf + Gm + Gsp + Gv + Glr

VERB =~ DEFS + AUDCOM + DOUME
LEAR =~ REBL + LOGST + MYSCO

Kg =~ VERB + LEAR

WJg ~~ Kg'

WJKAID.model <- '
Gf =~ VERCO + SPAR + CONCF + ANALSYN + ORACOM
Gm =~ NUMREV + AUDWKMEM + MEMWRD
Gsp =~ VISMAT + PICREC + DECSP
Gv =~ BLEN + INCWOR 
Glr =~ VAL + RETFLU + RAPPIC + STRYREC

WJg =~ Gf + Gm + Gsp + Gv + Glr

VERB =~ DEFS + AUDCOM + DOUME
LEAR =~ REBL + LOGST + MYSCO

Kg =~ VERB + LEAR

WJg ~~ 1*Kg'

WJKANo.fit <- cfa(WJKANo.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T); "\n"
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
## [1] "\n"
WJKA.fit <- cfa(WJKA.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
WJKAID.fit <- cfa(WJKAID.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T)

round(cbind("No Relationship"   = fitMeasures(WJKANo.fit, FITM),
            "Free Relationship" = fitMeasures(WJKA.fit, FITM),
            "Identical"         = fitMeasures(WJKAID.fit, FITM)),3)
##                No Relationship Free Relationship Identical
## chisq                  574.977           397.811   405.708
## df                     223.000           222.000   223.000
## npar                    53.000            54.000    53.000
## cfi                      0.690             0.845     0.839
## rmsea                    0.103             0.073     0.074
## rmsea.ci.lower           0.093             0.061     0.063
## rmsea.ci.upper           0.113             0.084     0.086
## aic                   8995.685          8820.519  8826.416
## bic                   9154.894          8982.732  8985.625
summary(WJKA.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 59 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         54
##                                                       
##   Number of observations                           149
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               397.811
##   Degrees of freedom                               222
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1387.619
##   Degrees of freedom                               253
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.845
##   Tucker-Lewis Index (TLI)                       0.823
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4356.260
##   Loglikelihood unrestricted model (H1)      -4157.354
##                                                       
##   Akaike (AIC)                                8820.519
##   Bayesian (BIC)                              8982.732
##   Sample-size adjusted Bayesian (BIC)         8811.837
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.073
##   90 Percent confidence interval - lower         0.061
##   90 Percent confidence interval - upper         0.084
##   P-value RMSEA <= 0.05                          0.001
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.072
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gf =~                                                                 
##     VERCO             0.382    0.064    5.942    0.000    0.775    0.777
##     SPAR              0.268    0.054    4.998    0.000    0.545    0.546
##     CONCF             0.332    0.059    5.648    0.000    0.673    0.675
##     ANALSYN           0.238    0.052    4.613    0.000    0.484    0.485
##     ORACOM            0.273    0.054    5.057    0.000    0.555    0.556
##   Gm =~                                                                 
##     NUMREV            0.440    0.060    7.370    0.000    0.651    0.653
##     AUDWKMEM          0.592    0.074    8.036    0.000    0.875    0.878
##     MEMWRD            0.337    0.060    5.627    0.000    0.498    0.500
##   Gsp =~                                                                
##     VISMAT            0.472    0.082    5.771    0.000    0.632    0.634
##     PICREC            0.342    0.076    4.526    0.000    0.459    0.460
##     DECSP             0.482    0.083    5.818    0.000    0.646    0.648
##   Gv =~                                                                 
##     BLEN              0.529    0.101    5.245    0.000    0.728    0.731
##     INCWOR            0.417    0.078    5.341    0.000    0.574    0.576
##   Glr =~                                                                
##     VAL               0.330    0.082    4.031    0.000    0.685    0.688
##     RETFLU            0.190    0.058    3.294    0.001    0.395    0.396
##     RAPPIC            0.136    0.051    2.657    0.008    0.283    0.284
##     STRYREC           0.316    0.079    4.018    0.000    0.655    0.658
##   WJg =~                                                                
##     Gf                1.766    0.339    5.212    0.000    0.870    0.870
##     Gm                1.090    0.181    6.025    0.000    0.737    0.737
##     Gsp               0.891    0.186    4.802    0.000    0.665    0.665
##     Gv                0.948    0.213    4.454    0.000    0.688    0.688
##     Glr               1.820    0.484    3.763    0.000    0.876    0.876
##   VERB =~                                                               
##     DEFS              0.477    0.065    7.308    0.000    0.777    0.780
##     AUDCOM            0.377    0.060    6.256    0.000    0.614    0.616
##     DOUME             0.461    0.064    7.213    0.000    0.752    0.755
##   LEAR =~                                                               
##     REBL              0.254    0.094    2.705    0.007    0.707    0.709
##     LOGST             0.232    0.086    2.687    0.007    0.647    0.649
##     MYSCO             0.225    0.084    2.678    0.007    0.627    0.629
##   Kg =~                                                                 
##     VERB              1.288    0.224    5.745    0.000    0.790    0.790
##     LEAR              2.599    1.026    2.533    0.011    0.933    0.933
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   WJg ~~                                                                
##     Kg                1.110    0.042   26.670    0.000    1.110    1.110
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VERCO             0.393    0.064    6.178    0.000    0.393    0.396
##    .SPAR              0.697    0.087    7.983    0.000    0.697    0.701
##    .CONCF             0.540    0.074    7.330    0.000    0.540    0.544
##    .ANALSYN           0.759    0.093    8.164    0.000    0.759    0.765
##    .ORACOM            0.686    0.086    7.947    0.000    0.686    0.690
##    .NUMREV            0.569    0.079    7.179    0.000    0.569    0.573
##    .AUDWKMEM          0.227    0.078    2.926    0.003    0.227    0.228
##    .MEMWRD            0.745    0.093    8.054    0.000    0.745    0.750
##    .VISMAT            0.594    0.099    6.002    0.000    0.594    0.598
##    .PICREC            0.783    0.103    7.620    0.000    0.783    0.788
##    .DECSP             0.576    0.099    5.793    0.000    0.576    0.580
##    .BLEN              0.463    0.115    4.016    0.000    0.463    0.466
##    .INCWOR            0.664    0.100    6.660    0.000    0.664    0.668
##    .VAL               0.524    0.081    6.460    0.000    0.524    0.527
##    .RETFLU            0.837    0.102    8.244    0.000    0.837    0.843
##    .RAPPIC            0.913    0.108    8.452    0.000    0.913    0.919
##    .STRYREC           0.564    0.082    6.844    0.000    0.564    0.568
##    .DEFS              0.389    0.067    5.824    0.000    0.389    0.392
##    .AUDCOM            0.616    0.081    7.568    0.000    0.616    0.620
##    .DOUME             0.428    0.068    6.257    0.000    0.428    0.431
##    .REBL              0.493    0.069    7.104    0.000    0.493    0.497
##    .LOGST             0.575    0.075    7.638    0.000    0.575    0.579
##    .MYSCO             0.601    0.077    7.763    0.000    0.601    0.605
##    .Gf                1.000                               0.243    0.243
##    .Gm                1.000                               0.457    0.457
##    .Gsp               1.000                               0.557    0.557
##    .Gv                1.000                               0.527    0.527
##    .Glr               1.000                               0.232    0.232
##     WJg               1.000                               1.000    1.000
##    .VERB              1.000                               0.376    0.376
##    .LEAR              1.000                               0.129    0.129
##     Kg                1.000                               1.000    1.000
resid(WJKA.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##          VERCO  SPAR   CONCF  ANALSY ORACOM NUMREV AUDWKM MEMWRD VISMAT PICREC
## VERCO     0.000                                                               
## SPAR     -0.040  0.000                                                        
## CONCF    -0.012  0.062  0.000                                                 
## ANALSYN   0.019  0.088  0.053  0.000                                          
## ORACOM    0.003 -0.063  0.000 -0.084  0.000                                   
## NUMREV   -0.107 -0.021  0.028  0.023 -0.014  0.000                            
## AUDWKMEM -0.008 -0.039 -0.028  0.005 -0.020 -0.007  0.000                     
## MEMWRD   -0.051 -0.073 -0.093 -0.075  0.051  0.083 -0.013  0.000              
## VISMAT   -0.029  0.074 -0.090 -0.013 -0.007  0.028  0.008  0.029  0.000       
## PICREC    0.056  0.030  0.045 -0.028  0.060 -0.017 -0.045 -0.019 -0.083  0.000
## DECSP     0.074  0.020 -0.034 -0.016 -0.022 -0.014  0.000  0.021  0.030  0.024
## BLEN     -0.011 -0.001 -0.002 -0.090  0.045  0.131  0.097  0.123  0.039  0.057
## INCWOR   -0.026  0.017 -0.108 -0.101  0.071  0.056  0.033  0.149  0.057 -0.015
## VAL      -0.006  0.056  0.042 -0.002 -0.031  0.026  0.075  0.077 -0.050  0.089
## RETFLU    0.012 -0.031 -0.043 -0.025  0.018 -0.037 -0.035  0.027 -0.008  0.160
## RAPPIC    0.042 -0.057 -0.134 -0.124 -0.089 -0.001  0.039  0.028  0.153 -0.025
## STRYREC   0.054 -0.076 -0.055  0.002 -0.021 -0.126 -0.026 -0.064 -0.046  0.002
## DEFS      0.022 -0.022 -0.086 -0.083  0.112  0.035  0.079  0.048  0.191 -0.022
## AUDCOM    0.227 -0.166 -0.056 -0.077  0.099 -0.227 -0.088 -0.093 -0.114  0.023
## DOUME     0.073  0.022  0.039  0.017  0.122 -0.008 -0.042  0.033 -0.063  0.086
## REBL     -0.126  0.026 -0.106 -0.080  0.026  0.070  0.065  0.038 -0.015 -0.002
## LOGST     0.012 -0.081  0.089  0.055 -0.035 -0.051  0.043 -0.124  0.090  0.019
## MYSCO     0.034  0.144  0.082  0.007 -0.047 -0.049 -0.094 -0.138 -0.047  0.161
##          DECSP  BLEN   INCWOR VAL    RETFLU RAPPIC STRYRE DEFS   AUDCOM DOUME 
## VERCO                                                                         
## SPAR                                                                          
## CONCF                                                                         
## ANALSYN                                                                       
## ORACOM                                                                        
## NUMREV                                                                        
## AUDWKMEM                                                                      
## MEMWRD                                                                        
## VISMAT                                                                        
## PICREC                                                                        
## DECSP     0.000                                                               
## BLEN     -0.151  0.000                                                        
## INCWOR   -0.102  0.000  0.000                                                 
## VAL      -0.025  0.019  0.066  0.000                                          
## RETFLU    0.129  0.032  0.050 -0.081  0.000                                   
## RAPPIC    0.345  0.044 -0.017  0.064  0.146  0.000                            
## STRYREC   0.079 -0.086 -0.124 -0.043  0.075  0.074  0.000                     
## DEFS     -0.108  0.056  0.159 -0.064  0.024 -0.075 -0.057  0.000              
## AUDCOM   -0.043 -0.102 -0.052 -0.092  0.069 -0.062  0.203 -0.018  0.000       
## DOUME    -0.051  0.021 -0.006 -0.093 -0.059 -0.195 -0.023 -0.010  0.041  0.000
## REBL     -0.077  0.014  0.059  0.133  0.011 -0.022  0.058  0.020  0.015 -0.012
## LOGST     0.010 -0.046 -0.107  0.004 -0.086 -0.144 -0.007  0.012  0.067  0.004
## MYSCO    -0.025 -0.023 -0.053  0.054 -0.004 -0.089 -0.018 -0.075  0.023 -0.015
##          REBL   LOGST  MYSCO 
## VERCO                        
## SPAR                         
## CONCF                        
## ANALSYN                      
## ORACOM                       
## NUMREV                       
## AUDWKMEM                     
## MEMWRD                       
## VISMAT                       
## PICREC                       
## DECSP                        
## BLEN                         
## INCWOR                       
## VAL                          
## RETFLU                       
## RAPPIC                       
## STRYREC                      
## DEFS                         
## AUDCOM                       
## DOUME                        
## REBL      0.000              
## LOGST    -0.023  0.000       
## MYSCO    -0.031  0.071  0.000
length(which(resid(WJKA.fit, "cor")$cov > 0.161)); length(which(resid(WJKA.fit, "cor")$cov > 0.262))
## [1] 10
## [1] 2
WAIS - KAIT
WAKANo.model <- '
Gc =~ VOCAB + SIMIL + INFO + COMP
Gv =~ PICCOM + BD + MATR + PICARR
Gs =~ DSC + SYMS
Gsm =~ ARI + LNS

WAg =~ Gc + Gv + Gs + 1*Gsm

Gsm ~~ 0*Gsm

VERB =~ DEFS + AUDCOM + DOUME
LEAR =~ REBL + LOGST + MYSCO

Kg =~ VERB + LEAR

WAg ~~ 0*Kg'

WAKA.model <- '
Gc =~ VOCAB + SIMIL + INFO + COMP
Gv =~ PICCOM + BD + MATR + PICARR
Gs =~ DSC + SYMS
Gsm =~ ARI + LNS

WAg =~ Gc + Gv + Gs + 1*Gsm

Gsm ~~ 0*Gsm

VERB =~ DEFS + AUDCOM + DOUME
LEAR =~ REBL + LOGST + MYSCO

Kg =~ VERB + LEAR

WAg ~~ Kg'

WAKAID.model <- '
Gc =~ VOCAB + SIMIL + INFO + COMP
Gv =~ PICCOM + BD + MATR + PICARR
Gs =~ DSC + SYMS
Gsm =~ ARI + LNS

WAg =~ Gc + Gv + Gs + 1*Gsm

Gsm ~~ 0*Gsm

VERB =~ DEFS + AUDCOM + DOUME
LEAR =~ REBL + LOGST + MYSCO

Kg =~ VERB + LEAR

WAg ~~ 1*Kg'

WAKANo.fit <- cfa(WAKANo.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T); "\n"
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
## [1] "\n"
WAKA.fit <- cfa(WAKA.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T)

WAKAID.fit <- cfa(WAKAID.model, sample.cov = MGONE.cor, sample.nobs = nMGONE, std.lv = T)

round(cbind("No Relationship"   = fitMeasures(WAKANo.fit, FITM),
            "Free Relationship" = fitMeasures(WAKA.fit, FITM),
            "Identical"         = fitMeasures(WAKAID.fit, FITM)),3)
##                No Relationship Free Relationship Identical
## chisq                  408.283           310.071   310.634
## df                     130.000           129.000   130.000
## npar                    41.000            42.000    41.000
## cfi                      0.713             0.813     0.814
## rmsea                    0.120             0.097     0.097
## rmsea.ci.lower           0.107             0.083     0.083
## rmsea.ci.upper           0.133             0.111     0.110
## aic                   6960.283          6864.071  6862.635
## bic                   7083.445          6990.237  6985.797
summary(WAKA.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 48 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         42
##                                                       
##   Number of observations                           149
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               310.071
##   Degrees of freedom                               129
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1123.125
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.813
##   Tucker-Lewis Index (TLI)                       0.779
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3390.036
##   Loglikelihood unrestricted model (H1)      -3235.000
##                                                       
##   Akaike (AIC)                                6864.071
##   Bayesian (BIC)                              6990.237
##   Sample-size adjusted Bayesian (BIC)         6857.319
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.097
##   90 Percent confidence interval - lower         0.083
##   90 Percent confidence interval - upper         0.111
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.078
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gc =~                                                                 
##     VOCAB             0.537    0.065    8.291    0.000    0.826    0.828
##     SIMIL             0.391    0.060    6.486    0.000    0.601    0.603
##     INFO              0.467    0.062    7.558    0.000    0.717    0.720
##     COMP              0.463    0.062    7.508    0.000    0.712    0.714
##   Gv =~                                                                 
##     PICCOM            0.201    0.059    3.400    0.001    0.434    0.436
##     BD                0.308    0.078    3.974    0.000    0.665    0.667
##     MATR              0.343    0.086    3.997    0.000    0.740    0.743
##     PICARR            0.216    0.061    3.516    0.000    0.466    0.468
##   Gs =~                                                                 
##     DSC               0.548    0.089    6.161    0.000    0.651    0.653
##     SYMS              0.638    0.106    6.029    0.000    0.758    0.760
##   Gsm =~                                                                
##     ARI               0.644    0.079    8.161    0.000    0.644    0.647
##     LNS               0.434    0.085    5.133    0.000    0.434    0.436
##   WAg =~                                                                
##     Gc                1.167    0.201    5.818    0.000    0.759    0.759
##     Gv                1.913    0.537    3.562    0.000    0.886    0.886
##     Gs                0.641    0.150    4.266    0.000    0.539    0.539
##     Gsm               1.000                               1.000    1.000
##   VERB =~                                                               
##     DEFS              0.416    0.073    5.697    0.000    0.743    0.746
##     AUDCOM            0.359    0.067    5.353    0.000    0.643    0.645
##     DOUME             0.429    0.075    5.730    0.000    0.767    0.770
##   LEAR =~                                                               
##     REBL              0.303    0.079    3.838    0.000    0.633    0.635
##     LOGST             0.337    0.086    3.901    0.000    0.704    0.706
##     MYSCO             0.315    0.081    3.871    0.000    0.658    0.661
##   Kg =~                                                                 
##     VERB              1.482    0.325    4.565    0.000    0.829    0.829
##     LEAR              1.834    0.538    3.407    0.001    0.878    0.878
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   WAg ~~                                                                
##     Kg                0.959    0.053   18.234    0.000    0.959    0.959
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Gsm               0.000                               0.000    0.000
##    .VOCAB             0.312    0.060    5.214    0.000    0.312    0.314
##    .SIMIL             0.632    0.081    7.752    0.000    0.632    0.636
##    .INFO              0.479    0.069    6.943    0.000    0.479    0.482
##    .COMP              0.487    0.070    7.001    0.000    0.487    0.490
##    .PICCOM            0.805    0.099    8.144    0.000    0.805    0.810
##    .BD                0.551    0.080    6.896    0.000    0.551    0.555
##    .MATR              0.446    0.076    5.879    0.000    0.446    0.449
##    .PICARR            0.776    0.096    8.049    0.000    0.776    0.781
##    .DSC               0.570    0.116    4.933    0.000    0.570    0.574
##    .SYMS              0.419    0.137    3.049    0.002    0.419    0.422
##    .ARI               0.578    0.078    7.411    0.000    0.578    0.582
##    .LNS               0.805    0.098    8.242    0.000    0.805    0.810
##    .DEFS              0.441    0.072    6.143    0.000    0.441    0.444
##    .AUDCOM            0.580    0.080    7.250    0.000    0.580    0.584
##    .DOUME             0.405    0.071    5.737    0.000    0.405    0.407
##    .REBL              0.593    0.084    7.094    0.000    0.593    0.597
##    .LOGST             0.498    0.079    6.313    0.000    0.498    0.502
##    .MYSCO             0.560    0.082    6.853    0.000    0.560    0.563
##    .Gc                1.000                               0.423    0.423
##    .Gv                1.000                               0.215    0.215
##    .Gs                1.000                               0.709    0.709
##     WAg               1.000                               1.000    1.000
##    .VERB              1.000                               0.313    0.313
##    .LEAR              1.000                               0.229    0.229
##     Kg                1.000                               1.000    1.000
resid(WAKA.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##        VOCAB  SIMIL  INFO   COMP   PICCOM BD     MATR   PICARR DSC    SYMS  
## VOCAB   0.000                                                               
## SIMIL  -0.026  0.000                                                        
## INFO   -0.020  0.043  0.000                                                 
## COMP    0.021 -0.016  0.011  0.000                                          
## PICCOM -0.087  0.086 -0.024 -0.065  0.000                                   
## BD     -0.054  0.013  0.049 -0.026  0.119  0.000                            
## MATR   -0.052  0.007 -0.030 -0.025 -0.044 -0.043  0.000                     
## PICARR -0.004 -0.016  0.039  0.147  0.114  0.071 -0.041  0.000              
## DSC    -0.029 -0.065 -0.048 -0.046  0.011 -0.004  0.047  0.067  0.000       
## SYMS   -0.015 -0.054 -0.006 -0.060 -0.047  0.054 -0.034 -0.063  0.000  0.000
## ARI     0.023 -0.004  0.088 -0.002 -0.107 -0.003  0.098 -0.094  0.095  0.030
## LNS    -0.027  0.028  0.027 -0.077 -0.120 -0.046 -0.004 -0.186  0.052  0.147
## DEFS    0.062  0.029 -0.055 -0.072 -0.184 -0.159  0.070 -0.041 -0.012 -0.056
## AUDCOM  0.299  0.160  0.232  0.197 -0.043 -0.096 -0.065  0.021 -0.091 -0.016
## DOUME   0.157  0.214  0.049  0.022  0.061 -0.005  0.042  0.020 -0.141 -0.123
## REBL   -0.059 -0.143 -0.200 -0.218  0.022  0.049  0.145 -0.043 -0.029 -0.061
## LOGST   0.025 -0.110 -0.043 -0.055 -0.010  0.015 -0.012  0.009  0.038  0.133
## MYSCO  -0.035  0.045 -0.148 -0.056  0.102  0.089  0.095  0.006 -0.032  0.042
##        ARI    LNS    DEFS   AUDCOM DOUME  REBL   LOGST  MYSCO 
## VOCAB                                                         
## SIMIL                                                         
## INFO                                                          
## COMP                                                          
## PICCOM                                                        
## BD                                                            
## MATR                                                          
## PICARR                                                        
## DSC                                                           
## SYMS                                                          
## ARI     0.000                                                 
## LNS     0.048  0.000                                          
## DEFS    0.109  0.091  0.000                                   
## AUDCOM -0.143 -0.154 -0.019  0.000                            
## DOUME  -0.155 -0.015  0.005  0.009  0.000                     
## REBL   -0.003  0.049  0.084  0.039  0.027  0.000              
## LOGST  -0.045  0.061  0.002  0.031 -0.030 -0.010  0.000       
## MYSCO  -0.030 -0.015 -0.072 -0.002 -0.035 -0.005  0.013  0.000
length(which(resid(WAKA.fit, "cor")$cov > 0.161)); length(which(resid(WAKA.fit, "cor")$cov > 0.262))
## [1] 8
## [1] 2

McGrew & Woodcock (2001) n = 148

lowerMGTWO <- '
1                                                                                                                       
0.535652809 1                                                                                                                   
0.252265609 0.187793506 1                                                                                                               
0.22740774  0.16421346  0.044433429 1                                                                                                           
0.472714271 0.367660534 0.29553444  0.186628455 1                                                                                                       
0.253308758 0.157274544 0.113824137 0.12495703  0.247269424 1                                                                                                   
0.353733066 0.299465896 0.069215826 0.050047188 0.347213631 0.314374338 1                                                                                               
0.200552887 0.084520247 0.134562911 0.486552203 0.316923    0.084264875 0.082870413 1                                                                                           
0.325356581 0.292231906 0.074539297 0.202628119 0.331830132 0.236639408 0.366483083 0.206803448 1                                                                                       
0.619247848 0.285437159 0.210306366 0.168449258 0.328579857 0.202061477 0.220680703 0.176839769 0.23189466  1                                                                                   
0.143927203 -0.02751458 0.061380442 0.020962465 0.19188281  0.163361699 0.062553422 0.053831023 0.088278926 0.267313497 1                                                                               
0.069637946 0.063336093 0.115741286 0.139582602 0.087675635 0.036878901 -0.035593191    0.088843384 0.096892265 0.118759529 0.057285843 1                                                                           
0.126553255 0.059563933 0.13378963  0.247110633 0.164492402 0.151751959 0.135726163 0.255241018 0.217784337 0.147067693 0.071096279 0.157009936 1                                                                       
0.45221464  0.345289433 0.284758607 0.225107778 0.399969048 0.195535802 0.302959722 0.234071329 0.346685478 0.345435119 0.078154065 0.17110259  0.194556795 1                                                                   
0.204460871 0.181911458 0.111073065 0.040068661 0.201416341 0.500083771 0.184745841 0.103110708 0.161891085 0.262172688 0.118739426 0.121375859 0.181364311 0.119595884 1                                                               
0.322834003 0.241781764 0.162389152 0.282338485 0.250595985 0.091892941 0.28662449  0.325177975 0.349462793 0.335687312 0.250605126 0.031648573 0.176942308 0.312342035 0.052626517 1                                                           
0.176064338 0.060434961 0.067774651 0.1316876   0.194939159 0.291272627 0.062048299 0.192384453 0.192032895 0.183124241 0.335689611 0.054997564 0.101354209 0.007829457 0.296751378 0.097447447 1                                                       
0.191740045 0.226572544 0.119693169 0.163371211 0.153948437 0.216292762 0.204376059 0.077537736 0.311925186 0.189554536 0.112104337 0.031843227 0.160645856 0.220044173 0.162692253 0.235225198 0.017969648 1                                                   
0.229345829 0.140152414 0.095028476 0.085444071 0.207900194 0.722392444 0.301772226 0.134411781 0.267072275 0.235616265 0.165389016 0.038110028 0.181632925 0.066118645 0.653053132 0.123540865 0.273276458 0.129964998 1                                               
0.319857459 0.2715127   0.146237251 0.064769396 0.167154319 0.058395083 0.00847756  0.069945588 0.14141236  0.304580431 -0.045891738    -0.01943789 0.018180315 0.250749061 0.131759353 0.089345974 -0.057152304    0.134212772 0.087258378 1                                           
0.613054674 0.408215735 0.171771364 0.132724464 0.313913048 0.22877099  0.22446635  0.195902821 0.289837067 0.632284733 0.2230419   -0.074341023    0.085969984 0.337729068 0.153415923 0.351051241 0.160835794 0.267788957 0.170203897 0.363862332 1                                       
0.133080192 0.029293608 0.056109872 0.078417473 0.216475854 0.55652057  0.206825905 0.128665872 0.293372682 0.196995699 0.147231166 0.040129436 0.161368599 0.041825433 0.392263532 0.108879894 0.292371631 0.207003489 0.490152624 0.049482739 0.229362333 1                                   
0.60086456  0.430307369 0.278118094 0.196182376 0.411488869 0.221051652 0.173121681 0.226568759 0.327339724 0.570533356 0.233429485 0.006841367 0.054193386 0.361777958 0.246067021 0.28547625  0.158374092 0.283772516 0.184253615 0.292380439 0.630550798 0.241352921 1                               
0.213705744 0.237061648 0.134397142 0.112435475 0.204849329 0.144966555 0.114786299 -0.042971158    0.046737306 0.141008921 -0.031711847    -0.026182421    0.113380792 0.078568478 0.221104872 0.093765686 0.102955899 0.058132644 0.12105761  0.229077215 0.241380628 0.137014125 0.155215853 1                           
0.471314242 0.399492685 0.324235195 0.212149229 0.388310363 0.403573077 0.354862575 0.142598434 0.299655301 0.419824623 0.099189277 0.008535041 0.213539515 0.34763468  0.259284724 0.245676385 0.161704277 0.231953535 0.314983003 0.21966667  0.471339608 0.28858095  0.449236433 0.122040591 1                       
0.37308789  0.422388152 0.341865174 0.18377192  0.417221166 0.358180386 0.253101433 0.040997599 0.235581116 0.315547697 0.019932943 0.003045741 0.15840762  0.43034288  0.233333336 0.232405263 -0.021797805    0.23083707  0.188687644 0.370287239 0.308432377 0.193035378 0.276394988 0.337527493 0.404557448 1                   
0.673702192 0.381798567 0.241437371 0.164141413 0.411072526 0.171179742 0.243277157 0.136073341 0.328793075 0.638824738 0.179871061 -0.050405184    0.027673644 0.380938839 0.112579625 0.416638289 0.174955464 0.306769218 0.109408328 0.344928637 0.653900637 0.203838008 0.695189549 0.241581097 0.412965323 0.373230199 1               
0.235244002 0.259480893 0.384369939 0.031664447 0.33933273  0.268463937 0.149378951 -0.004340432    0.11885517  0.252189888 -0.012662479    0.032356315 0.239151381 0.276954629 0.223471133 0.053414918 -0.019209271    0.197368673 0.256406117 0.37650037  0.248125464 0.2162129   0.226205723 0.240990423 0.304894822 0.492338202 0.183099581 1           
0.530249548 0.207428717 0.028207783 0.074290907 0.26219717  0.188422404 0.107769971 0.031410296 0.174757223 0.488509565 0.214287882 -0.057296316    0.013069325 0.303758863 0.064304656 0.302797444 0.119115212 0.278931476 0.064540246 0.194833971 0.487929429 0.168552013 0.525767218 0.11558593  0.379477785 0.096377166 0.575089093 0.05988722  1       
0.328513913 0.223790689 0.23453979  0.195844914 0.249373315 0.506053983 0.269702891 0.056923004 0.218917605 0.254748536 0.069143129 0.027368591 0.188780622 0.208668126 0.426138932 0.068705329 0.208891107 0.192850937 0.482721177 0.219891132 0.351793472 0.478761417 0.330103282 0.129769185 0.396652861 0.304604532 0.274770062 0.292983011 0.162146438 1   
0.258580476 0.226565639 0.191120579 0.131945756 0.345982364 0.258445034 0.499642807 0.303238315 0.364117662 0.189907238 0.080463813 -0.059727748    0.270386463 0.326039216 0.127638395 0.409724467 0.189777319 0.278120909 0.198205696 0.026821901 0.24419945  0.327782131 0.299042481 0.080266917 0.404579503 0.263628345 0.311334878 0.184765175 0.193346288 0.208998532 1
'

lowerMGTWOWJ <- '1                                                                      
0.535652809 1                                                                   
0.252265609 0.187793506 1                                                               
0.22740774  0.16421346  0.044433429 1                                                           
0.472714271 0.367660534 0.29553444  0.186628455 1                                                       
0.253308758 0.157274544 0.113824137 0.12495703  0.247269424 1                                                   
0.353733066 0.299465896 0.069215826 0.050047188 0.347213631 0.314374338 1                                               
0.200552887 0.084520247 0.134562911 0.486552203 0.316923    0.084264875 0.082870413 1                                           
0.325356581 0.292231906 0.074539297 0.202628119 0.331830132 0.236639408 0.366483083 0.206803448 1                                       
0.619247848 0.285437159 0.210306366 0.168449258 0.328579857 0.202061477 0.220680703 0.176839769 0.23189466  1                                   
0.143927203 -0.02751458 0.061380442 0.020962465 0.19188281  0.163361699 0.062553422 0.053831023 0.088278926 0.267313497 1                               
0.069637946 0.063336093 0.115741286 0.139582602 0.087675635 0.036878901 -0.035593191    0.088843384 0.096892265 0.118759529 0.057285843 1                           
0.126553255 0.059563933 0.13378963  0.247110633 0.164492402 0.151751959 0.135726163 0.255241018 0.217784337 0.147067693 0.071096279 0.157009936 1                       
0.45221464  0.345289433 0.284758607 0.225107778 0.399969048 0.195535802 0.302959722 0.234071329 0.346685478 0.345435119 0.078154065 0.17110259  0.194556795 1                   
0.204460871 0.181911458 0.111073065 0.040068661 0.201416341 0.500083771 0.184745841 0.103110708 0.161891085 0.262172688 0.118739426 0.121375859 0.181364311 0.119595884 1               
0.322834003 0.241781764 0.162389152 0.282338485 0.250595985 0.091892941 0.28662449  0.325177975 0.349462793 0.335687312 0.250605126 0.031648573 0.176942308 0.312342035 0.052626517 1           
0.176064338 0.060434961 0.067774651 0.1316876   0.194939159 0.291272627 0.062048299 0.192384453 0.192032895 0.183124241 0.335689611 0.054997564 0.101354209 0.007829457 0.296751378 0.097447447 1       
0.191740045 0.226572544 0.119693169 0.163371211 0.153948437 0.216292762 0.204376059 0.077537736 0.311925186 0.189554536 0.112104337 0.031843227 0.160645856 0.220044173 0.162692253 0.235225198 0.017969648 1   
0.229345829 0.140152414 0.095028476 0.085444071 0.207900194 0.722392444 0.301772226 0.134411781 0.267072275 0.235616265 0.165389016 0.038110028 0.181632925 0.066118645 0.653053132 0.123540865 0.273276458 0.129964998 1'

lowerMGTWOWI <- '1                                          
0.363862332 1                                       
0.049482739 0.229362333 1                                   
0.292380439 0.630550798 0.241352921 1                               
0.229077215 0.241380628 0.137014125 0.155215853 1                           
0.21966667  0.471339608 0.28858095  0.449236433 0.122040591 1                       
0.370287239 0.308432377 0.193035378 0.276394988 0.337527493 0.404557448 1                   
0.344928637 0.653900637 0.203838008 0.695189549 0.241581097 0.412965323 0.373230199 1               
0.37650037  0.248125464 0.2162129   0.226205723 0.240990423 0.304894822 0.492338202 0.183099581 1           
0.194833971 0.487929429 0.168552013 0.525767218 0.11558593  0.379477785 0.096377166 0.575089093 0.05988722  1       
0.219891132 0.351793472 0.478761417 0.330103282 0.129769185 0.396652861 0.304604532 0.274770062 0.292983011 0.162146438 1   
0.026821901 0.24419945  0.327782131 0.299042481 0.080266917 0.404579503 0.263628345 0.311334878 0.184765175 0.193346288 0.208998532 1'

nMGTWO <- 148

MGTWO.cor = getCov(lowerMGTWO, names = c("VCOMP" ,"VAL" ,"SPAR" ,"BLEN" ,"CONCF" ,"VISM" ,"NUMREV" ,"INCWRD" ,"AWKMEM" ,"GINFO" ,"RETFLU" ,"PICREC" ,"AUDAT" ,"ANALSYN" ,"DECSP" ,"MEMWRD" ,"MEMNAM" ,"PLAN" ,"PAIRCAN" ,"PICCOMP" ,"INFO" ,"DSC" ,"SIM" ,"PASSCOMP" ,"ARI" ,"BD" ,"VOCAB" ,"OBJASS" ,"COMP" ,"SYMS" ,"DIGSPA"))

MGTWOWJ.cor = getCov(lowerMGTWOWJ, names = c("VCOMP" ,"VAL" ,"SPAR" ,"BLEN" ,"CONCF" ,"VISM" ,"NUMREV" ,"INCWRD" ,"AWKMEM" ,"GINFO" ,"RETFLU" ,"PICREC" ,"AUDAT" ,"ANALSYN" ,"DECSP" ,"MEMWRD" ,"MEMNAM" ,"PLAN" ,"PAIRCAN"))
  
MGTWOWI.cor = getCov(lowerMGTWOWI, names = c("PICCOMP" ,"INFO" ,"DSC" ,"SIM" ,"PASSCOMP" ,"ARI" ,"BD" ,"VOCAB" ,"OBJASS" ,"COMP" ,"SYMS" ,"DIGSPA"))

Exploratory Factor Analyses

fa.parallel(MGTWO.cor, n.obs = nMGTWO)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  4
fa.parallel(MGTWOWJ.cor, n.obs = nMGTWO)

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
fa.parallel(MGTWOWI.cor, n.obs = nMGTWO)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Parallel analysis suggests that the number of factors =  3  and the number of components =  2
FATOT <- fa(MGTWO.cor, n.obs = nMGTWO, nfactors = 4)
FATOT1 <- fa(MGTWO.cor, n.obs = nMGTWO, nfactors = 1)
  
FAWA <- fa(MGTWOWJ.cor, n.obs = nMGTWO, nfactors = 3)
FAWA1 <- fa(MGTWOWJ.cor, n.obs = nMGTWO, nfactors = 1)

FAOTH <- fa(MGTWOWI.cor, n.obs = nMGTWO, nfactors = 3)
FAOTH1 <- fa(MGTWOWI.cor, n.obs = nMGTWO, nfactors = 1)

print(FATOT$loadings)
## 
## Loadings:
##          MR1    MR2    MR4    MR3   
## VCOMP     0.671         0.112  0.156
## VAL       0.290         0.131  0.375
## SPAR                    0.130  0.380
## BLEN                    0.474       
## CONCF     0.186         0.349  0.251
## VISM             0.790              
## NUMREV           0.189  0.348  0.125
## INCWRD                  0.619 -0.109
## AWKMEM    0.106  0.135  0.448       
## GINFO     0.701                     
## RETFLU    0.290  0.186        -0.300
## PICREC   -0.112         0.180       
## AUDAT    -0.201  0.137  0.415  0.127
## ANALSYN   0.180 -0.126  0.392  0.335
## DECSP            0.671              
## MEMWRD    0.244         0.528       
## MEMNAM    0.147  0.387  0.144 -0.300
## PLAN      0.171         0.200       
## PAIRCAN          0.857              
## PICCOMP   0.317        -0.173  0.422
## INFO      0.773                     
## DSC              0.652              
## SIM       0.739                     
## PASSCOMP  0.130                0.298
## ARI       0.302  0.224  0.189  0.226
## BD                      0.103  0.689
## VOCAB     0.851                     
## OBJASS           0.164         0.648
## COMP      0.777               -0.181
## SYMS      0.135  0.540         0.177
## DIGSPA           0.124  0.568       
## 
##                  MR1   MR2   MR4   MR3
## SS loadings    4.066 2.950 2.229 2.025
## Proportion Var 0.131 0.095 0.072 0.065
## Cumulative Var 0.131 0.226 0.298 0.364
print(FAWA$loadings)
## 
## Loadings:
##         MR1    MR2    MR3   
## VCOMP    0.806              
## VAL      0.658        -0.111
## SPAR     0.311              
## BLEN                   0.611
## CONCF    0.528         0.137
## VISM            0.735       
## NUMREV   0.471  0.172       
## INCWRD                 0.732
## AWKMEM   0.397  0.127  0.163
## GINFO    0.536              
## RETFLU          0.184  0.108
## PICREC                 0.169
## AUDAT           0.137  0.344
## ANALSYN  0.609         0.125
## DECSP           0.679       
## MEMWRD   0.380         0.305
## MEMNAM          0.355  0.200
## PLAN     0.291              
## PAIRCAN         0.934       
## 
##                  MR1   MR2   MR3
## SS loadings    2.749 2.135 1.295
## Proportion Var 0.145 0.112 0.068
## Cumulative Var 0.145 0.257 0.325
print(FAOTH$loadings)
## 
## Loadings:
##          MR1    MR2    MR3   
## PICCOMP   0.231  0.537 -0.212
## INFO      0.704  0.127       
## DSC                     0.690
## SIM       0.769              
## PASSCOMP         0.377       
## ARI       0.352  0.154  0.351
## BD               0.699       
## VOCAB     0.846              
## OBJASS           0.667  0.115
## COMP      0.747 -0.184       
## SYMS             0.185  0.498
## DIGSPA    0.182         0.408
## 
##                  MR1   MR2   MR3
## SS loadings    2.596 1.476 1.091
## Proportion Var 0.216 0.123 0.091
## Cumulative Var 0.216 0.339 0.430
print(FATOT1$loadings)
## 
## Loadings:
##          MR1  
## VCOMP    0.746
## VAL      0.534
## SPAR     0.358
## BLEN     0.299
## CONCF    0.599
## VISM     0.504
## NUMREV   0.452
## INCWRD   0.297
## AWKMEM   0.497
## GINFO    0.661
## RETFLU   0.237
## PICREC        
## AUDAT    0.273
## ANALSYN  0.547
## DECSP    0.411
## MEMWRD   0.462
## MEMNAM   0.274
## PLAN     0.394
## PAIRCAN  0.445
## PICCOMP  0.369
## INFO     0.693
## DSC      0.423
## SIM      0.706
## PASSCOMP 0.290
## ARI      0.668
## BD       0.561
## VOCAB    0.715
## OBJASS   0.428
## COMP     0.500
## SYMS     0.527
## DIGSPA   0.499
## 
##                  MR1
## SS loadings    7.504
## Proportion Var 0.242
print(FAWA1$loadings)
## 
## Loadings:
##         MR1  
## VCOMP   0.692
## VAL     0.496
## SPAR    0.317
## BLEN    0.354
## CONCF   0.609
## VISM    0.510
## NUMREV  0.488
## INCWRD  0.383
## AWKMEM  0.544
## GINFO   0.583
## RETFLU  0.265
## PICREC  0.164
## AUDAT   0.329
## ANALSYN 0.552
## DECSP   0.447
## MEMWRD  0.487
## MEMNAM  0.321
## PLAN    0.364
## PAIRCAN 0.502
## 
##                  MR1
## SS loadings    4.037
## Proportion Var 0.212
print(FAOTH1$loadings)
## 
## Loadings:
##          MR1  
## PICCOMP  0.441
## INFO     0.755
## DSC      0.394
## SIM      0.744
## PASSCOMP 0.317
## ARI      0.650
## BD       0.534
## VOCAB    0.768
## OBJASS   0.430
## COMP     0.539
## SYMS     0.503
## DIGSPA   0.418
## 
##                  MR1
## SS loadings    3.772
## Proportion Var 0.314
EFATOGMGTWO <- c(0.746, 0.534, 0.358, 0.299, 0.599, 0.504, 0.452, 0.297, 0.497, 0.661, 0.237, 0.001, 0.273, 0.547, 0.411, 0.462, 0.274, 0.394, 0.445, 0.369, 0.693, 0.423, 0.706, 0.290, 0.668, 0.561, 0.715, 0.428, 0.500, 0.527, 0.499)
EFATOGMGTWOPsy <- c(0.746, 0.534, 0.358, 0.299, 0.599, 0.504, 0.452, 0.297, 0.497, 0.661, 0.237, 0.001, 0.273, 0.547, 0.411, 0.462, 0.274, 0.394, 0.445); EFATOGMGTWOPsy2 <- c(0.369, 0.693, 0.423, 0.706, 0.290, 0.668, 0.561, 0.715, 0.428, 0.500, 0.527, 0.499)
EFASEPMGTWO <- c(0.692, 0.496, 0.317, 0.354, 0.609, 0.510, 0.488, 0.383, 0.544, 0.583, 0.265, 0.164, 0.329, 0.552, 0.447, 0.487, 0.321, 0.364, 0.502, 0.441, 0.755, 0.394, 0.744, 0.317, 0.650, 0.534, 0.768, 0.430, 0.539, 0.503, 0.418)
EFASEPMGTWOPsy <- c(0.692, 0.496, 0.317, 0.354, 0.609, 0.510, 0.488, 0.383, 0.544, 0.583, 0.265, 0.164, 0.329, 0.552, 0.447, 0.487, 0.321, 0.364, 0.502); EFASEPMGTWOPsy2 <- c(0.441, 0.755, 0.394, 0.744, 0.317, 0.650, 0.534, 0.768, 0.430, 0.539, 0.503, 0.418)

cor(EFATOGMGTWO, EFASEPMGTWO, method = "pearson"); cor(EFATOGMGTWO, EFASEPMGTWO, method = "spearman"); CONGO(EFATOGMGTWO, EFASEPMGTWO)
## [1] 0.9535556
## [1] 0.9511039
## [1] 0.9943581
cor(EFATOGMGTWOPsy, EFASEPMGTWOPsy, method = "pearson"); cor(EFATOGMGTWOPsy, EFASEPMGTWOPsy, method = "spearman"); CONGO(EFATOGMGTWOPsy, EFASEPMGTWOPsy)
## [1] 0.9645013
## [1] 0.9491228
## [1] 0.9919742
cor(EFATOGMGTWOPsy2, EFASEPMGTWOPsy2, method = "pearson"); cor(EFATOGMGTWOPsy2, EFASEPMGTWOPsy2, method = "spearman"); CONGO(EFATOGMGTWOPsy2, EFASEPMGTWOPsy2)
## [1] 0.9547785
## [1] 0.9230769
## [1] 0.9969205

Confirmatory Factor Analyses

WJSO.model <- '
Gf =~ VCOMP + VAL + SPAR + CONCF + NUMREV + AWKMEM + GINFO + ANALSYN + MEMWRD + PLAN
Gv =~ VISM + DECSP + MEMNAM + PAIRCAN
Gsm =~ BLEN + INCWRD + AUDAT + MEMWRD
Glr =~ RETFLU + MEMNAM

gWJ =~ Gf + Gv + Gsm + Glr'

WJSO.fit <- cfa(WJSO.model, sample.cov = MGTWOWJ.cor, sample.nobs = nMGTWO, std.lv = T, orthogonal = T, check.gradient = F)
summary(WJSO.fit, stand = T, fit = T, modindices = F)
## lavaan 0.6-7 ended normally after 40 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         42
##                                                       
##   Number of observations                           148
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               153.539
##   Degrees of freedom                               129
##   P-value (Chi-square)                           0.069
## 
## Model Test Baseline Model:
## 
##   Test statistic                               785.258
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.961
##   Tucker-Lewis Index (TLI)                       0.954
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3455.162
##   Loglikelihood unrestricted model (H1)      -3378.393
##                                                       
##   Akaike (AIC)                                6994.324
##   Bayesian (BIC)                              7120.207
##   Sample-size adjusted Bayesian (BIC)         6987.293
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.036
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.056
##   P-value RMSEA <= 0.05                          0.865
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.060
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gf =~                                                                 
##     VCOMP             0.450    0.164    2.750    0.006    0.787    0.789
##     VAL               0.333    0.126    2.652    0.008    0.581    0.583
##     SPAR              0.192    0.083    2.298    0.022    0.335    0.336
##     CONCF             0.354    0.132    2.677    0.007    0.618    0.620
##     NUMREV            0.280    0.109    2.567    0.010    0.489    0.491
##     AWKMEM            0.290    0.112    2.586    0.010    0.507    0.509
##     GINFO             0.362    0.135    2.686    0.007    0.632    0.634
##     ANALSYN           0.341    0.128    2.662    0.008    0.596    0.598
##     MEMWRD            0.201    0.089    2.258    0.024    0.350    0.352
##     PLAN              0.192    0.083    2.299    0.022    0.335    0.336
##   Gv =~                                                                 
##     VISM              0.689    0.073    9.391    0.000    0.773    0.775
##     DECSP             0.619    0.074    8.410    0.000    0.694    0.697
##     MEMNAM            0.199    0.089    2.244    0.025    0.223    0.224
##     PAIRCAN           0.824    0.076   10.875    0.000    0.924    0.927
##   Gsm =~                                                                
##     BLEN              0.561    0.094    5.981    0.000    0.660    0.662
##     INCWRD            0.610    0.100    6.114    0.000    0.718    0.721
##     AUDAT             0.324    0.085    3.820    0.000    0.381    0.382
##     MEMWRD            0.244    0.089    2.750    0.006    0.287    0.288
##   Glr =~                                                                
##     RETFLU            0.599    0.227    2.634    0.008    0.656    0.659
##     MEMNAM            0.409    0.144    2.843    0.004    0.449    0.452
##   gWJ =~                                                                
##     Gf                1.432    0.759    1.887    0.059    0.820    0.820
##     Gv                0.507    0.151    3.353    0.001    0.452    0.452
##     Gsm               0.620    0.200    3.095    0.002    0.527    0.527
##     Glr               0.450    0.217    2.072    0.038    0.410    0.410
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VCOMP             0.374    0.063    5.959    0.000    0.374    0.377
##    .VAL               0.655    0.084    7.782    0.000    0.655    0.660
##    .SPAR              0.881    0.105    8.402    0.000    0.881    0.887
##    .CONCF             0.612    0.080    7.606    0.000    0.612    0.616
##    .NUMREV            0.754    0.093    8.099    0.000    0.754    0.759
##    .AWKMEM            0.736    0.091    8.048    0.000    0.736    0.741
##    .GINFO             0.594    0.079    7.530    0.000    0.594    0.598
##    .ANALSYN           0.638    0.083    7.717    0.000    0.638    0.643
##    .MEMWRD            0.700    0.089    7.877    0.000    0.700    0.706
##    .PLAN              0.881    0.105    8.401    0.000    0.881    0.887
##    .VISM              0.396    0.064    6.223    0.000    0.396    0.399
##    .DECSP             0.511    0.070    7.324    0.000    0.511    0.515
##    .MEMNAM            0.699    0.150    4.650    0.000    0.699    0.708
##    .PAIRCAN           0.139    0.064    2.185    0.029    0.139    0.140
##    .BLEN              0.558    0.106    5.264    0.000    0.558    0.561
##    .INCWRD            0.477    0.113    4.244    0.000    0.477    0.481
##    .AUDAT             0.848    0.106    7.966    0.000    0.848    0.854
##    .RETFLU            0.562    0.280    2.009    0.045    0.562    0.566
##    .Gf                1.000                               0.328    0.328
##    .Gv                1.000                               0.796    0.796
##    .Gsm               1.000                               0.722    0.722
##    .Glr               1.000                               0.832    0.832
##     gWJ               1.000                               1.000    1.000
WISO.model <- '
Gc =~ INFO + SIM + ARI + VOCAB + COMP
Gf =~ PICCOMP + PASSCOMP + BD + OBJASS
Gwm =~ DSC + ARI + SYMS + DIGSPA

gWI =~ Gc + Gf + Gwm'

WISO.fit <- cfa(WISO.model, sample.cov = MGTWOWI.cor, sample.nobs = nMGTWO, std.lv = T, orthogonal = T, check.gradient = F)
summary(WISO.fit, stand = T, fit = T, modindices = F)
## lavaan 0.6-7 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         28
##                                                       
##   Number of observations                           148
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                69.023
##   Degrees of freedom                                50
##   P-value (Chi-square)                           0.038
## 
## Model Test Baseline Model:
## 
##   Test statistic                               602.196
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.965
##   Tucker-Lewis Index (TLI)                       0.953
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2247.428
##   Loglikelihood unrestricted model (H1)      -2212.916
##                                                       
##   Akaike (AIC)                                4550.855
##   Bayesian (BIC)                              4634.777
##   Sample-size adjusted Bayesian (BIC)         4546.168
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.051
##   90 Percent confidence interval - lower         0.012
##   90 Percent confidence interval - upper         0.078
##   P-value RMSEA <= 0.05                          0.460
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.057
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gc =~                                                                 
##     INFO              0.558    0.078    7.154    0.000    0.778    0.781
##     SIM               0.583    0.079    7.339    0.000    0.813    0.816
##     ARI               0.209    0.079    2.641    0.008    0.291    0.292
##     VOCAB             0.606    0.081    7.483    0.000    0.844    0.847
##     COMP              0.462    0.073    6.293    0.000    0.643    0.646
##   Gf =~                                                                 
##     PICCOMP           0.360    0.078    4.618    0.000    0.530    0.532
##     PASSCOMP          0.284    0.073    3.900    0.000    0.418    0.420
##     BD                0.512    0.095    5.366    0.000    0.753    0.756
##     OBJASS            0.436    0.084    5.163    0.000    0.642    0.645
##   Gwm =~                                                                
##     DSC               0.362    0.096    3.793    0.000    0.590    0.592
##     ARI               0.282    0.082    3.426    0.001    0.459    0.461
##     SYMS              0.407    0.105    3.863    0.000    0.662    0.665
##     DIGSPA            0.301    0.085    3.535    0.000    0.490    0.492
##   gWI =~                                                                
##     Gc                0.971    0.237    4.092    0.000    0.697    0.697
##     Gf                1.081    0.300    3.609    0.000    0.734    0.734
##     Gwm               1.286    0.441    2.915    0.004    0.789    0.789
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .INFO              0.388    0.058    6.707    0.000    0.388    0.390
##    .SIM               0.332    0.054    6.163    0.000    0.332    0.335
##    .ARI               0.550    0.079    6.961    0.000    0.550    0.554
##    .VOCAB             0.280    0.051    5.499    0.000    0.280    0.282
##    .COMP              0.579    0.075    7.758    0.000    0.579    0.583
##    .PICCOMP           0.712    0.095    7.473    0.000    0.712    0.717
##    .PASSCOMP          0.818    0.102    8.002    0.000    0.818    0.824
##    .BD                0.425    0.090    4.747    0.000    0.425    0.428
##    .OBJASS            0.581    0.090    6.484    0.000    0.581    0.585
##    .DSC               0.645    0.096    6.748    0.000    0.645    0.649
##    .SYMS              0.555    0.095    5.843    0.000    0.555    0.558
##    .DIGSPA            0.753    0.100    7.531    0.000    0.753    0.758
##    .Gc                1.000                               0.515    0.515
##    .Gf                1.000                               0.461    0.461
##    .Gwm               1.000                               0.377    0.377
##     gWI               1.000                               1.000    1.000
WJWISONO.model <- '
Gf =~ VCOMP + VAL + SPAR + CONCF + NUMREV + AWKMEM + GINFO + ANALSYN + MEMWRD + PLAN
Gv =~ VISM + DECSP + MEMNAM + PAIRCAN
Gsm =~ BLEN + INCWRD + AUDAT + MEMWRD
Glr =~ RETFLU + MEMNAM

gWJ =~ Gf + Gv + Gsm + Glr

Gc =~ INFO + SIM + ARI + VOCAB + COMP
GfWI =~ PICCOMP + PASSCOMP + BD + OBJASS
Gwm =~ DSC + ARI + SYMS + DIGSPA

gWI =~ Gc + GfWI + Gwm

gWJ ~~ 0*gWI'

WJWISO.model <- '
Gf =~ VCOMP + VAL + SPAR + CONCF + NUMREV + AWKMEM + GINFO + ANALSYN + MEMWRD + PLAN
Gv =~ VISM + DECSP + MEMNAM + PAIRCAN
Gsm =~ BLEN + INCWRD + AUDAT + MEMWRD
Glr =~ RETFLU + MEMNAM

gWJ =~ Gf + Gv + Gsm + Glr

Gc =~ INFO + SIM + ARI + VOCAB + COMP
GfWI =~ PICCOMP + PASSCOMP + BD + OBJASS
Gwm =~ DSC + ARI + SYMS + DIGSPA

gWI =~ Gc + GfWI + Gwm

gWJ ~~ gWI'

WJWISOID.model <- '
Gf =~ VCOMP + VAL + SPAR + CONCF + NUMREV + AWKMEM + GINFO + ANALSYN + MEMWRD + PLAN
Gv =~ VISM + DECSP + MEMNAM + PAIRCAN
Gsm =~ BLEN + INCWRD + AUDAT + MEMWRD
Glr =~ RETFLU + MEMNAM

gWJ =~ Gf + Gv + Gsm + Glr

Gc =~ INFO + SIM + ARI + VOCAB + COMP
GfWI =~ PICCOMP + PASSCOMP + BD + OBJASS
Gwm =~ DSC + ARI + SYMS + DIGSPA

gWI =~ Gc + GfWI + Gwm

gWJ ~~ 1*gWI'

WJWINO.fit <- cfa(WJWISONO.model, sample.cov = MGTWO.cor, sample.nobs = nMGTWO, std.lv = T, orthogonal = T, check.gradient = F)
WJWI.fit <- cfa(WJWISO.model, sample.cov = MGTWO.cor, sample.nobs = nMGTWO, std.lv = T, orthogonal = T, check.gradient = F); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
WJWIID.fit <- cfa(WJWISOID.model, sample.cov = MGTWO.cor, sample.nobs = nMGTWO, std.lv = T, orthogonal = T, check.gradient = F)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
round(cbind("No Relationship"   = fitMeasures(WJWINO.fit, FITM),
            "Free Relationship" = fitMeasures(WJWI.fit, FITM),
            "Identical"         = fitMeasures(WJWIID.fit, FITM)),3)
##                No Relationship Free Relationship Identical
## chisq                  813.459           647.902   650.986
## df                     395.000           394.000   395.000
## npar                    70.000            71.000    70.000
## cfi                      0.729             0.835     0.834
## rmsea                    0.085             0.066     0.066
## rmsea.ci.lower           0.076             0.057     0.057
## rmsea.ci.upper           0.093             0.075     0.075
## aic                  11545.180         11381.623 11382.707
## bic                  11754.985         11594.425 11592.512
summary(WJWI.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 267 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         71
##                                                       
##   Number of observations                           148
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               647.902
##   Degrees of freedom                               394
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1978.351
##   Degrees of freedom                               435
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.835
##   Tucker-Lewis Index (TLI)                       0.818
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5619.812
##   Loglikelihood unrestricted model (H1)      -5295.860
##                                                       
##   Akaike (AIC)                               11381.623
##   Bayesian (BIC)                             11594.425
##   Sample-size adjusted Bayesian (BIC)        11369.737
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.066
##   90 Percent confidence interval - lower         0.057
##   90 Percent confidence interval - upper         0.075
##   P-value RMSEA <= 0.05                          0.003
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.084
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gf =~                                                                 
##     VCOMP             0.038    0.778    0.049    0.961    0.792    0.795
##     VAL               0.027    0.557    0.049    0.961    0.567    0.569
##     SPAR              0.017    0.353    0.049    0.961    0.360    0.361
##     CONCF             0.028    0.585    0.049    0.961    0.595    0.597
##     NUMREV            0.021    0.432    0.049    0.961    0.440    0.441
##     AWKMEM            0.023    0.467    0.049    0.961    0.475    0.477
##     GINFO             0.033    0.682    0.049    0.961    0.694    0.696
##     ANALSYN           0.027    0.553    0.049    0.961    0.563    0.565
##     MEMWRD            0.016    0.335    0.049    0.961    0.341    0.342
##     PLAN              0.018    0.364    0.049    0.961    0.371    0.372
##   Gv =~                                                                 
##     VISM              0.712    0.068   10.459    0.000    0.782    0.785
##     DECSP             0.636    0.070    9.105    0.000    0.699    0.701
##     MEMNAM            0.232    0.081    2.850    0.004    0.255    0.257
##     PAIRCAN           0.830    0.067   12.361    0.000    0.911    0.914
##   Gsm =~                                                                
##     BLEN              0.616    0.092    6.685    0.000    0.672    0.674
##     INCWRD            0.651    0.095    6.872    0.000    0.710    0.713
##     AUDAT             0.343    0.088    3.900    0.000    0.374    0.375
##     MEMWRD            0.279    0.091    3.062    0.002    0.304    0.305
##   Glr =~                                                                
##     RETFLU            0.715    0.298    2.402    0.016    0.750    0.752
##     MEMNAM            0.368    0.151    2.431    0.015    0.386    0.390
##   gWJ =~                                                                
##     Gf               20.884  429.890    0.049    0.961    0.999    0.999
##     Gv                0.454    0.103    4.392    0.000    0.414    0.414
##     Gsm               0.437    0.122    3.592    0.000    0.400    0.400
##     Glr               0.315    0.159    1.986    0.047    0.301    0.301
##   Gc =~                                                                 
##     INFO              0.418    0.057    7.276    0.000    0.776    0.779
##     SIM               0.435    0.058    7.450    0.000    0.808    0.810
##     ARI               0.126    0.064    1.977    0.048    0.234    0.235
##     VOCAB             0.458    0.060    7.641    0.000    0.850    0.853
##     COMP              0.346    0.054    6.387    0.000    0.641    0.644
##   GfWI =~                                                               
##     PICCOMP           0.393    0.070    5.624    0.000    0.514    0.516
##     PASSCOMP          0.313    0.070    4.466    0.000    0.410    0.411
##     BD                0.601    0.076    7.885    0.000    0.787    0.790
##     OBJASS            0.473    0.070    6.775    0.000    0.619    0.622
##   Gwm =~                                                                
##     DSC               0.369    0.075    4.950    0.000    0.523    0.525
##     ARI               0.377    0.083    4.565    0.000    0.534    0.536
##     SYMS              0.421    0.078    5.402    0.000    0.596    0.598
##     DIGSPA            0.396    0.076    5.200    0.000    0.560    0.562
##   gWI =~                                                                
##     Gc                1.564    0.268    5.828    0.000    0.842    0.842
##     GfWI              0.844    0.153    5.521    0.000    0.645    0.645
##     Gwm               1.003    0.213    4.717    0.000    0.708    0.708
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gWJ ~~                                                                
##     gWI               1.064    0.057   18.796    0.000    1.064    1.064
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .VCOMP             0.366    0.052    7.000    0.000    0.366    0.368
##    .VAL               0.672    0.082    8.184    0.000    0.672    0.676
##    .SPAR              0.864    0.102    8.474    0.000    0.864    0.870
##    .CONCF             0.639    0.079    8.117    0.000    0.639    0.644
##    .NUMREV            0.800    0.095    8.393    0.000    0.800    0.805
##    .AWKMEM            0.767    0.092    8.347    0.000    0.767    0.772
##    .GINFO             0.512    0.066    7.760    0.000    0.512    0.515
##    .ANALSYN           0.676    0.083    8.193    0.000    0.676    0.681
##    .MEMWRD            0.701    0.088    7.937    0.000    0.701    0.706
##    .PLAN              0.856    0.101    8.464    0.000    0.856    0.862
##    .VISM              0.381    0.063    6.081    0.000    0.381    0.384
##    .DECSP             0.505    0.069    7.287    0.000    0.505    0.508
##    .MEMNAM            0.743    0.140    5.292    0.000    0.743    0.757
##    .PAIRCAN           0.163    0.062    2.635    0.008    0.163    0.164
##    .BLEN              0.542    0.109    4.986    0.000    0.542    0.546
##    .INCWRD            0.489    0.113    4.309    0.000    0.489    0.492
##    .AUDAT             0.853    0.107    7.984    0.000    0.853    0.859
##    .RETFLU            0.431    0.425    1.013    0.311    0.431    0.434
##    .INFO              0.391    0.055    7.100    0.000    0.391    0.393
##    .SIM               0.341    0.051    6.726    0.000    0.341    0.343
##    .ARI               0.505    0.078    6.477    0.000    0.505    0.508
##    .VOCAB             0.270    0.045    5.963    0.000    0.270    0.272
##    .COMP              0.582    0.073    7.925    0.000    0.582    0.586
##    .PICCOMP           0.729    0.095    7.675    0.000    0.729    0.734
##    .PASSCOMP          0.825    0.102    8.092    0.000    0.825    0.831
##    .BD                0.374    0.086    4.350    0.000    0.374    0.377
##    .OBJASS            0.609    0.088    6.929    0.000    0.609    0.614
##    .DSC               0.720    0.097    7.413    0.000    0.720    0.725
##    .SYMS              0.638    0.094    6.808    0.000    0.638    0.642
##    .DIGSPA            0.679    0.095    7.136    0.000    0.679    0.684
##    .Gf                1.000                               0.002    0.002
##    .Gv                1.000                               0.829    0.829
##    .Gsm               1.000                               0.840    0.840
##    .Glr               1.000                               0.910    0.910
##     gWJ               1.000                               1.000    1.000
##    .Gc                1.000                               0.290    0.290
##    .GfWI              1.000                               0.584    0.584
##    .Gwm               1.000                               0.498    0.498
##     gWI               1.000                               1.000    1.000
CRITR(148); CRITR(148, NP(148))
## [1] 0.1614186
## [1] 0.2629412
resid(WJWI.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##          VCOMP  VAL    SPAR   CONCF  NUMREV AWKMEM GINFO  ANALSY MEMWRD PLAN  
## VCOMP     0.000                                                               
## VAL       0.084  0.000                                                        
## SPAR     -0.034 -0.017  0.000                                                 
## CONCF    -0.002  0.028  0.080  0.000                                          
## NUMREV    0.003  0.048 -0.090  0.084  0.000                                   
## AWKMEM   -0.054  0.021 -0.098  0.047  0.156  0.000                            
## GINFO     0.066 -0.111 -0.041 -0.087 -0.087 -0.100  0.000                     
## ANALSYN   0.003  0.024  0.081  0.063  0.054  0.077 -0.048  0.000              
## MEMWRD   -0.046 -0.022 -0.005 -0.027  0.082  0.128  0.012  0.050  0.000       
## PLAN     -0.104  0.015 -0.015 -0.068  0.040  0.134 -0.069  0.010  0.062  0.000
## VISM     -0.004 -0.027 -0.003  0.054  0.171  0.082 -0.024  0.012 -0.059  0.096
## DECSP    -0.026  0.017  0.007  0.029  0.057  0.024  0.061 -0.044 -0.082  0.055
## MEMNAM   -0.001 -0.067 -0.013  0.062 -0.036  0.086  0.028 -0.118 -0.006 -0.065
## PAIRCAN  -0.071 -0.075 -0.041 -0.018  0.135  0.087 -0.027 -0.147 -0.052 -0.011
## BLEN      0.013  0.011 -0.053  0.026 -0.069  0.074 -0.019  0.073 -0.016  0.063
## INCWRD   -0.026 -0.078  0.032  0.147 -0.043  0.071 -0.021  0.073  0.010 -0.028
## AUDAT     0.007 -0.026  0.080  0.075  0.070  0.146  0.043  0.110  0.011  0.105
## RETFLU   -0.036 -0.156 -0.020  0.057 -0.037 -0.020  0.110 -0.049  0.146  0.028
## INFO      0.059  0.011 -0.080 -0.102 -0.083 -0.043  0.147 -0.056  0.027  0.008
## SIM       0.024  0.017  0.016 -0.022 -0.147 -0.019  0.065 -0.048 -0.052  0.014
## ARI      -0.016  0.050  0.103  0.022  0.084  0.007 -0.008  0.001 -0.040  0.004
## VOCAB     0.066 -0.053 -0.034 -0.045 -0.094 -0.036  0.107 -0.051  0.062  0.022
## COMP      0.072 -0.120 -0.180 -0.082 -0.147 -0.100  0.087 -0.022  0.035  0.065
## PICCOMP   0.039  0.070  0.019 -0.044 -0.148 -0.027  0.058  0.051 -0.075  0.003
## PASSCOMP -0.010  0.077  0.033  0.036 -0.010 -0.088 -0.055 -0.081 -0.037 -0.047
## BD       -0.057  0.114  0.147  0.094  0.014 -0.023 -0.061  0.125 -0.019  0.029
## OBJASS   -0.103  0.017  0.231  0.085 -0.039 -0.084 -0.045  0.036 -0.145  0.039
## DSC      -0.181 -0.195 -0.086 -0.019  0.033  0.105 -0.078 -0.181 -0.075  0.060
## SYMS     -0.029 -0.032  0.072 -0.019  0.071  0.004 -0.059 -0.046 -0.140  0.025
## DIGSPA   -0.078 -0.014  0.038  0.093  0.313  0.162 -0.105  0.087  0.213  0.121
##          VISM   DECSP  MEMNAM PAIRCA BLEN   INCWRD AUDAT  RETFLU INFO   SIM   
## VCOMP                                                                         
## VAL                                                                           
## SPAR                                                                          
## CONCF                                                                         
## NUMREV                                                                        
## AWKMEM                                                                        
## GINFO                                                                         
## ANALSYN                                                                       
## MEMWRD                                                                        
## PLAN                                                                          
## VISM      0.000                                                               
## DECSP    -0.050  0.000                                                        
## MEMNAM    0.051  0.082  0.000                                                 
## PAIRCAN   0.004  0.012 -0.006  0.000                                          
## BLEN      0.037 -0.038  0.071 -0.017  0.000                                   
## INCWRD   -0.008  0.020  0.129  0.027  0.006  0.000                            
## AUDAT     0.103  0.138  0.068  0.125 -0.006 -0.012  0.000                     
## RETFLU    0.090  0.053  0.018  0.080 -0.040 -0.011  0.037  0.000              
## INFO      0.002 -0.049  0.005 -0.094 -0.056 -0.003 -0.019  0.065  0.000       
## SIM      -0.015  0.035 -0.004 -0.091  0.000  0.019 -0.055  0.069 -0.001  0.000
## ARI       0.204  0.081  0.024  0.083  0.046 -0.033  0.121 -0.040  0.039  0.000
## VOCAB    -0.077 -0.109  0.004 -0.180 -0.042 -0.082 -0.087  0.007 -0.011  0.004
## COMP      0.001 -0.103 -0.010 -0.154 -0.081 -0.133 -0.074  0.084 -0.013  0.004
## PICCOMP  -0.057  0.029 -0.136 -0.047 -0.031 -0.031 -0.035 -0.126  0.146  0.065
## PASSCOMP  0.053  0.139  0.040  0.014  0.036 -0.123  0.071 -0.096  0.067 -0.026
## BD        0.182  0.076 -0.143 -0.016  0.038 -0.114  0.077 -0.103 -0.026 -0.071
## OBJASS    0.130  0.100 -0.115  0.095 -0.083 -0.126  0.175 -0.109 -0.015 -0.047
## DSC       0.428  0.278  0.204  0.341 -0.028  0.016  0.102  0.058 -0.014 -0.012
## SYMS      0.360  0.295  0.108  0.312  0.074 -0.072  0.121 -0.033  0.074  0.041
## DIGSPA    0.121  0.005  0.095  0.038  0.018  0.182  0.207 -0.015 -0.017  0.027
##          ARI    VOCAB  COMP   PICCOM PASSCO BD     OBJASS DSC    SYMS   DIGSPA
## VCOMP                                                                         
## VAL                                                                           
## SPAR                                                                          
## CONCF                                                                         
## NUMREV                                                                        
## AWKMEM                                                                        
## GINFO                                                                         
## ANALSYN                                                                       
## MEMWRD                                                                        
## PLAN                                                                          
## VISM                                                                          
## DECSP                                                                         
## MEMNAM                                                                        
## PAIRCAN                                                                       
## BLEN                                                                          
## INCWRD                                                                        
## AUDAT                                                                         
## RETFLU                                                                        
## INFO                                                                          
## SIM                                                                           
## ARI       0.000                                                               
## VOCAB    -0.060  0.000                                                        
## COMP      0.023  0.026  0.000                                                 
## PICCOMP   0.028  0.106  0.014  0.000                                          
## PASSCOMP -0.031  0.051 -0.028  0.017  0.000                                   
## BD        0.111  0.007 -0.180 -0.037  0.013  0.000                            
## OBJASS    0.073 -0.105 -0.157  0.056 -0.015  0.002  0.000                     
## DSC      -0.066 -0.063 -0.033 -0.074  0.038  0.004  0.067  0.000              
## SYMS     -0.008 -0.030 -0.067  0.079  0.017  0.089  0.123  0.165  0.000       
## DIGSPA    0.025  0.025 -0.023 -0.106 -0.025  0.061  0.025  0.033 -0.127  0.000
length(which(resid(WJWI.fit, "cor")$cov > 0.161)); length(which(resid(WJWI.fit, "cor")$cov > 0.263))
## [1] 36
## [1] 14

Woodcock (1978) n = 167

lowerMGTHREE <- '
1                                                                                       
0.308731678 1                                                                                   
0.645545114 0.230453605 1                                                                               
0.698263673 0.381977368 0.579519845 1                                                                           
0.549587249 0.456076539 0.483341164 0.624492375 1                                                                       
0.346644002 0.212759307 0.438496071 0.403783097 0.370202352 1                                                                   
0.502915462 0.465525511 0.218013225 0.431732575 0.567225732 0.30748068  1                                                               
0.229846334 0.326130466 0.149764849 0.201174012 0.385994138 0.223842511 0.420266158 1                                                           
0.476349715 0.234317503 0.388764326 0.345380223 0.324460076 0.358219168 0.423710069 0.312790029 1                                                       
0.420292298 0.233203696 0.280332852 0.462226686 0.203089937 0.135352137 0.34542386  0.134487539 0.547820501 1                                                   
0.259823121 0.259407527 0.130931604 0.239625252 0.266360294 0.307431473 0.241618841 0.234242915 0.301154061 0.227253449 1                                               
0.71045915  0.321553687 0.409410574 0.761138916 0.503906864 0.237510019 0.380355744 0.127504304 0.319002256 0.479414125 0.102097065 1                                           
0.442621013 0.387265312 0.289258253 0.434733294 0.403802543 0.353110893 0.381560813 0.235463321 0.445574053 0.50310037  0.431958212 0.385718027 1                                       
0.384817128 0.13084541  0.483436975 0.552824676 0.407543255 0.450389822 0.272300986 0.171351385 0.234011971 0.26350779  0.144963083 0.34189593  0.249850222 1                                   
0.242557014 -0.03378249 0.080889009 0.372666911 0.178209999 0.309292621 0.218131692 0.096587852 0.258823056 0.214948684 0.218221687 0.197777787 0.288329991 0.46156211  1                               
0.23455796  0.070297366 0.058616796 0.341536915 0.097839292 0.190959825 0.25768478  -0.057790436    0.20654161  0.352269697 0.3043798   0.341727006 0.272456629 0.345256591 0.416263788 1                           
0.766813365 0.325991087 0.734750257 0.691489171 0.532165658 0.451451371 0.511204962 0.242065973 0.530528062 0.427056348 0.309633512 0.574633625 0.495971524 0.500549297 0.232921086 0.312302948 1                       
0.113432091 0.133644625 0.296481692 0.135409529 0.076307093 0.259922667 0.007220518 -0.125246364    0.268856419 0.248311265 0.263430546 -0.000564397    0.312076773 0.049183462 -0.00738988 0.100412764 0.245425015 1                   
0.581278801 0.322612713 0.527264741 0.770115195 0.553805399 0.338848906 0.301102912 0.195528913 0.43743024  0.43585729  0.206201842 0.57167711  0.41909857  0.502851836 0.393233093 0.241034395 0.545382989 0.159594674 1               
0.374099998 0.100150654 0.454015102 0.465329339 0.257931168 0.422538258 0.344683675 0.190262078 0.288578967 0.323541782 0.232996499 0.273734863 0.455610561 0.473336984 0.359891464 0.194561048 0.503534773 0.180437207 0.344143347 1           
0.409417214 0.192638909 0.474613015 0.352353691 0.31779026  0.60014478  0.33144401  0.272059915 0.394433333 0.086100748 0.293222376 0.222808993 0.213939843 0.490232649 0.228903211 0.274209139 0.54127255  0.170835603 0.298195143 0.322786621 1       
0.399396752 0.189779921 0.372221884 0.36553352  0.245004837 0.392169867 0.304225664 0.301318779 0.343215859 0.228408234 0.136935409 0.335531939 0.41779803  0.311093947 0.229296573 0.151459382 0.448265448 0.142904172 0.410686585 0.352312882 0.438655631 1   
0.596100586 0.43686092  0.493545596 0.677073751 0.495417262 0.513316297 0.51141252  0.303162264 0.438129542 0.376035243 0.241728235 0.488084481 0.477701347 0.516950523 0.327164894 0.316018306 0.662798982 0.184906312 0.624797217 0.543922851 0.577855851 0.549872594 1
'

lowerMGTHREEWJ <- '1                                            
0.385718027 1                                       
0.34189593  0.249850222 1                                   
0.197777787 0.288329991 0.46156211  1                               
0.341727006 0.272456629 0.345256591 0.416263788 1                           
0.574633625 0.495971524 0.500549297 0.232921086 0.312302948 1                       
-0.000564397    0.312076773 0.049183462 -0.00738988 0.100412764 0.245425015 1                   
0.57167711  0.41909857  0.502851836 0.393233093 0.241034395 0.545382989 0.159594674 1               
0.273734863 0.455610561 0.473336984 0.359891464 0.194561048 0.503534773 0.180437207 0.344143347 1           
0.222808993 0.213939843 0.490232649 0.228903211 0.274209139 0.54127255  0.170835603 0.298195143 0.322786621 1       
0.335531939 0.41779803  0.311093947 0.229296573 0.151459382 0.448265448 0.142904172 0.410686585 0.352312882 0.438655631 1   
0.488084481 0.477701347 0.516950523 0.327164894 0.316018306 0.662798982 0.184906312 0.624797217 0.543922851 0.577855851 0.549872594 1'

lowerMGTHREEWI <- '1                                        
0.308731678 1                                   
0.645545114 0.230453605 1                               
0.698263673 0.381977368 0.579519845 1                           
0.549587249 0.456076539 0.483341164 0.624492375 1                       
0.346644002 0.212759307 0.438496071 0.403783097 0.370202352 1                   
0.502915462 0.465525511 0.218013225 0.431732575 0.567225732 0.30748068  1               
0.229846334 0.326130466 0.149764849 0.201174012 0.385994138 0.223842511 0.420266158 1           
0.476349715 0.234317503 0.388764326 0.345380223 0.324460076 0.358219168 0.423710069 0.312790029 1       
0.420292298 0.233203696 0.280332852 0.462226686 0.203089937 0.135352137 0.34542386  0.134487539 0.547820501 1   
0.259823121 0.259407527 0.130931604 0.239625252 0.266360294 0.307431473 0.241618841 0.234242915 0.301154061 0.227253449 1'

nMGTHREE <- 167

MGTHREE.cor = getCov(lowerMGTHREE, names = c("INFO", "SIM", "ARI", "VOCAB", "COMP", "DIG", "PCOMP", "PARR", "BD", "OA", "DSC", "PVOCAB", "SPAR", "MEMSEN", "VAL", "BLEN", "QCON", "VISMAT", "ANTSYN", "ANALSYN", "NUMREV", "CONCF", "ANALO"))

MGTHREEWJ.cor = getCov(lowerMGTHREEWJ, names = c("PVOCAB", "SPAR", "MEMSEN", "VAL", "BLEN", "QCON", "VISMAT", "ANTSYN", "ANALSYN", "NUMREV", "CONCF", "ANALO"))
  
MGTHREEWI.cor = getCov(lowerMGTHREEWI, names = c("INFO", "SIM", "ARI", "VOCAB", "COMP", "DIG", "PCOMP", "PARR", "BD", "OA", "DSC"))

Exploratory Factor Analyses

fa.parallel(MGTHREE.cor, n.obs = nMGTHREE)

## Parallel analysis suggests that the number of factors =  5  and the number of components =  1
fa.parallel(MGTHREEWJ.cor, n.obs = nMGTHREE)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  1
fa.parallel(MGTHREEWI.cor, n.obs = nMGTHREE)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
FATOT <- fa(MGTHREE.cor, n.obs = nMGTHREE, nfactors = 5)
FATOT1 <- fa(MGTHREE.cor, n.obs = nMGTHREE, nfactors = 1)
  
FAWJ <- fa(MGTHREEWJ.cor, n.obs = nMGTHREE, nfactors = 3)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
FAWJ1 <- fa(MGTHREEWJ.cor, n.obs = nMGTHREE, nfactors = 1)

FAWI <- fa(MGTHREEWI.cor, n.obs = nMGTHREE, nfactors = 3)
FAWI1 <- fa(MGTHREEWI.cor, n.obs = nMGTHREE, nfactors = 1)

print(FATOT$loadings)
## 
## Loadings:
##         MR1    MR3    MR5    MR2    MR4   
## INFO     0.508  0.204  0.304         0.122
## SIM      0.141  0.566        -0.231  0.165
## ARI      0.242         0.844              
## VOCAB    0.678  0.100  0.191  0.230       
## COMP     0.339  0.539  0.158              
## DIG     -0.218  0.232  0.390  0.383  0.108
## PCOMP    0.150  0.662 -0.123         0.111
## PARR    -0.103  0.710                     
## BD              0.243  0.125         0.457
## OA       0.366        -0.120         0.591
## DSC     -0.173  0.256         0.150  0.418
## PVOCAB   0.771                            
## SPAR            0.255                0.586
## MEMSEN   0.187         0.261  0.599 -0.133
## VAL                   -0.203  0.742       
## BLEN     0.168 -0.112 -0.204  0.495  0.264
## QCON     0.292  0.182  0.456  0.109  0.224
## VISMAT  -0.206 -0.182  0.340         0.585
## ANTSYN   0.501         0.185  0.211  0.101
## ANALSYN                0.234  0.366  0.188
## NUMREV  -0.242  0.281  0.461  0.396       
## CONCF           0.230  0.242  0.212  0.123
## ANALO    0.180  0.335  0.259  0.310  0.119
## 
##                  MR1   MR3   MR5   MR2   MR4
## SS loadings    2.301 2.193 1.972 1.946 1.714
## Proportion Var 0.100 0.095 0.086 0.085 0.075
## Cumulative Var 0.100 0.195 0.281 0.366 0.440
print(FAWJ$loadings)
## 
## Loadings:
##         MR1    MR3    MR2   
## PVOCAB          0.992       
## SPAR     0.531              
## MEMSEN   0.443         0.366
## VAL                    0.902
## BLEN     0.131  0.157  0.347
## QCON     0.763  0.170       
## VISMAT   0.445 -0.164 -0.161
## ANTSYN   0.412  0.313  0.167
## ANALSYN  0.602         0.148
## NUMREV   0.696 -0.161       
## CONCF    0.628              
## ANALO    0.822              
## 
##                  MR1   MR3   MR2
## SS loadings    3.363 1.208 1.153
## Proportion Var 0.280 0.101 0.096
## Cumulative Var 0.280 0.381 0.477
print(FAWI$loadings)
## 
## Loadings:
##       MR1    MR2    MR3   
## INFO   0.654  0.110  0.206
## SIM           0.568       
## ARI    0.849 -0.109       
## VOCAB  0.673  0.167       
## COMP   0.405  0.635 -0.174
## DIG    0.329  0.211       
## PCOMP         0.684  0.210
## PARR  -0.154  0.594  0.102
## BD            0.128  0.670
## OA     0.126         0.675
## DSC           0.296  0.217
## 
##                  MR1   MR2   MR3
## SS loadings    1.924 1.749 1.094
## Proportion Var 0.175 0.159 0.099
## Cumulative Var 0.175 0.334 0.433
print(FATOT1$loadings)
## 
## Loadings:
##         MR1  
## INFO    0.785
## SIM     0.440
## ARI     0.665
## VOCAB   0.831
## COMP    0.658
## DIG     0.578
## PCOMP   0.596
## PARR    0.352
## BD      0.596
## OA      0.529
## DSC     0.383
## PVOCAB  0.659
## SPAR    0.621
## MEMSEN  0.606
## VAL     0.402
## BLEN    0.377
## QCON    0.848
## VISMAT  0.243
## ANTSYN  0.732
## ANALSYN 0.577
## NUMREV  0.575
## CONCF   0.548
## ANALO   0.818
## 
##                  MR1
## SS loadings    8.408
## Proportion Var 0.366
print(FAWJ1$loadings)
## 
## Loadings:
##         MR1  
## PVOCAB  0.593
## SPAR    0.592
## MEMSEN  0.657
## VAL     0.466
## BLEN    0.431
## QCON    0.801
## VISMAT  0.228
## ANTSYN  0.707
## ANALSYN 0.614
## NUMREV  0.584
## CONCF   0.587
## ANALO   0.846
## 
##                  MR1
## SS loadings    4.509
## Proportion Var 0.376
print(FAWI1$loadings)
## 
## Loadings:
##       MR1  
## INFO  0.791
## SIM   0.509
## ARI   0.625
## VOCAB 0.776
## COMP  0.734
## DIG   0.512
## PCOMP 0.657
## PARR  0.418
## BD    0.605
## OA    0.502
## DSC   0.387
## 
##                  MR1
## SS loadings    4.051
## Proportion Var 0.368
EFATOGMGTHREE <- c(0.785, 0.440, 0.665, 0.831, 0.658, 0.578, 0.596, 0.352, 0.596, 0.529, 0.383, 0.659, 0.621, 0.606, 0.402, 0.377, 0.848, 0.243, 0.732, 0.577, 0.575, 0.548, 0.818)
EFATOGMGTHREEPsy <- c(0.785, 0.440, 0.665, 0.831, 0.658, 0.578, 0.596, 0.352, 0.596, 0.529, 0.383); EFATOGMGTHREEPsy2 <- c(0.659, 0.621, 0.606, 0.402, 0.377, 0.848, 0.243, 0.732, 0.577, 0.575, 0.548, 0.818)
EFASEPMGTHREE <- c(0.791, 0.509, 0.625, 0.776, 0.734, 0.512, 0.657, 0.418, 0.605, 0.502, 0.387, 0.593, 0.592, 0.657, 0.466, 0.431, 0.801, 0.228, 0.707, 0.614, 0.584, 0.587, 0.846)
EFASEPMGTHREEPsy <- c(0.791, 0.509, 0.625, 0.776, 0.734, 0.512, 0.657, 0.418, 0.605, 0.502, 0.387); EFASEPMGTHREEPsy2 <- c(0.593, 0.592, 0.657, 0.466, 0.431, 0.801, 0.228, 0.707, 0.614, 0.584, 0.587, 0.846)

cor(EFATOGMGTHREE, EFASEPMGTHREE, method = "pearson"); cor(EFATOGMGTHREE, EFASEPMGTHREE, method = "spearman"); CONGO(EFATOGMGTHREE, EFASEPMGTHREE)
## [1] 0.9580595
## [1] 0.9359862
## [1] 0.9970891
cor(EFATOGMGTHREEPsy, EFASEPMGTHREEPsy, method = "pearson"); cor(EFATOGMGTHREEPsy, EFASEPMGTHREEPsy, method = "spearman"); CONGO(EFATOGMGTHREEPsy, EFASEPMGTHREEPsy)
## [1] 0.9392033
## [1] 0.938499
## [1] 0.9965053
cor(EFATOGMGTHREEPsy2, EFASEPMGTHREEPsy2, method = "pearson"); cor(EFATOGMGTHREEPsy2, EFASEPMGTHREEPsy2, method = "spearman"); CONGO(EFATOGMGTHREEPsy2, EFASEPMGTHREEPsy2)
## [1] 0.9704728
## [1] 0.9300699
## [1] 0.997614

Confirmatory Factor Analyses

WJSO.model <- '
Gf =~ MEMSEN + ANTSYN + ANALSYN + NUMREV + CONCF + ANALO
Gsp =~ SPAR + VISMAT + ANALSYN
Ga =~ MEMSEN + VAL + BLEN

gWJ =~ 1*Gf + Gsp + Ga
Gf ~~ 0*Gf'

WJSO.fit <- cfa(WJSO.model, sample.cov = MGTHREEWJ.cor, sample.nobs = nMGTHREE, std.lv = T, orthogonal = T, check.gradient = F)
summary(WJSO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         24
##                                                       
##   Number of observations                           167
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                77.900
##   Degrees of freedom                                31
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               575.159
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.912
##   Tucker-Lewis Index (TLI)                       0.872
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2115.983
##   Loglikelihood unrestricted model (H1)      -2077.033
##                                                       
##   Akaike (AIC)                                4279.966
##   Bayesian (BIC)                              4354.797
##   Sample-size adjusted Bayesian (BIC)         4278.810
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.095
##   90 Percent confidence interval - lower         0.069
##   90 Percent confidence interval - upper         0.122
##   P-value RMSEA <= 0.05                          0.003
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.054
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gf =~                                                                 
##     MEMSEN            0.385    0.103    3.742    0.000    0.385    0.386
##     ANTSYN            0.682    0.071    9.542    0.000    0.682    0.684
##     ANALSYN           0.458    0.111    4.139    0.000    0.458    0.460
##     NUMREV            0.616    0.073    8.391    0.000    0.616    0.618
##     CONCF             0.614    0.074    8.345    0.000    0.614    0.615
##     ANALO             0.892    0.064   13.890    0.000    0.892    0.895
##   Gsp =~                                                                
##     SPAR              0.717    0.171    4.197    0.000    0.893    0.895
##     VISMAT            0.279    0.068    4.124    0.000    0.347    0.349
##     ANALSYN           0.188    0.086    2.178    0.029    0.235    0.235
##   Ga =~                                                                 
##     MEMSEN            0.321    0.089    3.614    0.000    0.397    0.398
##     VAL               0.587    0.094    6.239    0.000    0.726    0.728
##     BLEN              0.461    0.077    5.970    0.000    0.570    0.572
##   gWJ =~                                                                
##     Gf                1.000                               1.000    1.000
##     Gsp               0.742    0.204    3.633    0.000    0.596    0.596
##     Ga                0.727    0.162    4.474    0.000    0.588    0.588
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Gf                0.000                               0.000    0.000
##    .MEMSEN            0.509    0.071    7.218    0.000    0.509    0.512
##    .ANTSYN            0.529    0.066    8.003    0.000    0.529    0.532
##    .ANALSYN           0.601    0.072    8.309    0.000    0.601    0.605
##    .NUMREV            0.614    0.073    8.358    0.000    0.614    0.618
##    .CONCF             0.617    0.074    8.370    0.000    0.617    0.621
##    .ANALO             0.198    0.047    4.191    0.000    0.198    0.199
##    .SPAR              0.197    0.238    0.829    0.407    0.197    0.198
##    .VISMAT            0.873    0.102    8.556    0.000    0.873    0.879
##    .VAL               0.467    0.109    4.297    0.000    0.467    0.470
##    .BLEN              0.669    0.094    7.113    0.000    0.669    0.673
##    .Gsp               1.000                               0.645    0.645
##    .Ga                1.000                               0.654    0.654
##     gWJ               1.000                               1.000    1.000
WISO.model <- '
Gc =~ INFO + ARI + VOCAB + COMP 
Gf =~ SIM + COMP + PCOMP + PARR + DSC
Gsp =~ BD + OA + DSC

gWI =~ Gc + Gf + Gsp'

WISO.fit <- cfa(WISO.model, sample.cov = MGTHREEWI.cor, sample.nobs = nMGTHREE, std.lv = T, orthogonal = T, check.gradient = F)
summary(WISO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         25
##                                                       
##   Number of observations                           167
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                79.423
##   Degrees of freedom                                30
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               680.906
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.922
##   Tucker-Lewis Index (TLI)                       0.883
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2063.871
##   Loglikelihood unrestricted model (H1)      -2024.159
##                                                       
##   Akaike (AIC)                                4177.742
##   Bayesian (BIC)                              4255.692
##   Sample-size adjusted Bayesian (BIC)         4176.538
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.099
##   90 Percent confidence interval - lower         0.073
##   90 Percent confidence interval - upper         0.126
##   P-value RMSEA <= 0.05                          0.002
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.050
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gc =~                                                                 
##     INFO              0.461    0.099    4.672    0.000    0.862    0.865
##     ARI               0.384    0.085    4.524    0.000    0.718    0.720
##     VOCAB             0.439    0.094    4.659    0.000    0.822    0.824
##     COMP              0.200    0.063    3.168    0.002    0.375    0.376
##   Gf =~                                                                 
##     SIM               0.410    0.070    5.828    0.000    0.606    0.608
##     COMP              0.321    0.068    4.714    0.000    0.474    0.476
##     PCOMP             0.536    0.084    6.412    0.000    0.793    0.795
##     PARR              0.359    0.068    5.311    0.000    0.531    0.532
##     DSC               0.143    0.077    1.863    0.062    0.212    0.212
##   Gsp =~                                                                
##     BD                0.517    0.092    5.651    0.000    0.793    0.795
##     OA                0.449    0.076    5.870    0.000    0.688    0.690
##     DSC               0.156    0.075    2.076    0.038    0.240    0.240
##   gWI =~                                                                
##     Gc                1.581    0.461    3.434    0.001    0.845    0.845
##     Gf                1.090    0.249    4.373    0.000    0.737    0.737
##     Gsp               1.162    0.277    4.193    0.000    0.758    0.758
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .INFO              0.251    0.048    5.193    0.000    0.251    0.252
##    .ARI               0.479    0.062    7.740    0.000    0.479    0.481
##    .VOCAB             0.318    0.051    6.242    0.000    0.318    0.320
##    .COMP              0.407    0.056    7.251    0.000    0.407    0.409
##    .SIM               0.626    0.081    7.729    0.000    0.626    0.630
##    .PCOMP             0.365    0.075    4.879    0.000    0.365    0.368
##    .PARR              0.712    0.087    8.206    0.000    0.712    0.717
##    .DSC               0.835    0.095    8.821    0.000    0.835    0.840
##    .BD                0.366    0.091    4.022    0.000    0.366    0.368
##    .OA                0.521    0.084    6.200    0.000    0.521    0.524
##    .Gc                1.000                               0.286    0.286
##    .Gf                1.000                               0.457    0.457
##    .Gsp               1.000                               0.426    0.426
##     gWI               1.000                               1.000    1.000
WJWINO.model <- '
Gf =~ MEMSEN + ANTSYN + ANALSYN + NUMREV + CONCF + ANALO
Gsp =~ SPAR + VISMAT + ANALSYN
Ga =~ MEMSEN + VAL + BLEN

gWJ =~ 1*Gf + Gsp + Ga
Gf ~~ 0*Gf

Gc =~ INFO + ARI + VOCAB + COMP 
GfWI =~ SIM + COMP + PCOMP + PARR + DSC
GspWI =~ BD + OA + DSC

gWI =~ Gc + GfWI + GspWI

gWJ ~~ 0*gWI'

WJWI.model <- '
Gf =~ MEMSEN + ANTSYN + ANALSYN + NUMREV + CONCF + ANALO
Gsp =~ SPAR + VISMAT + ANALSYN
Ga =~ MEMSEN + VAL + BLEN

gWJ =~ 1*Gf + Gsp + Ga
Gf ~~ 0*Gf

Gc =~ INFO + ARI + VOCAB + COMP 
GfWI =~ SIM + COMP + PCOMP + PARR + DSC
GspWI =~ BD + OA + DSC

gWI =~ Gc + GfWI + GspWI

gWJ ~~ gWI'

WJWIID.model <- '
Gf =~ MEMSEN + ANTSYN + ANALSYN + NUMREV + CONCF + ANALO
Gsp =~ SPAR + VISMAT + ANALSYN
Ga =~ MEMSEN + VAL + BLEN

gWJ =~ 1*Gf + Gsp + Ga
Gf ~~ 0*Gf

Gc =~ INFO + ARI + VOCAB + COMP 
GfWI =~ SIM + COMP + PCOMP + PARR + DSC
GspWI =~ BD + OA + DSC

gWI =~ Gc + GfWI + GspWI

gWJ ~~ 1*gWI'

WJWINO.fit <- cfa(WJWINO.model, sample.cov = MGTHREE.cor, sample.nobs = nMGTHREE, std.lv = T, orthogonal = T, check.gradient = F)
WJWI.fit <- cfa(WJWI.model, sample.cov = MGTHREE.cor, sample.nobs = nMGTHREE, std.lv = T, orthogonal = T, check.gradient = F)
WJWIID.fit <- cfa(WJWIID.model, sample.cov = MGTHREE.cor, sample.nobs = nMGTHREE, std.lv = T, orthogonal = T, check.gradient = F)

round(cbind("No Relationship"   = fitMeasures(WJWINO.fit, FITM),
            "Free Relationship" = fitMeasures(WJWI.fit, FITM),
            "Identical"         = fitMeasures(WJWIID.fit, FITM)),3)
##                No Relationship Free Relationship Identical
## chisq                  711.186           541.840   542.282
## df                     161.000           160.000   161.000
## npar                    49.000            50.000    49.000
## cfi                      0.660             0.764     0.765
## rmsea                    0.143             0.120     0.119
## rmsea.ci.lower           0.132             0.109     0.108
## rmsea.ci.upper           0.154             0.131     0.130
## aic                   8457.707          8290.361  8288.803
## bic                   8610.489          8446.261  8441.585
summary(WJWI.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 46 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         50
##                                                       
##   Number of observations                           167
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               541.840
##   Degrees of freedom                               160
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1809.928
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.764
##   Tucker-Lewis Index (TLI)                       0.720
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4095.181
##   Loglikelihood unrestricted model (H1)      -3824.261
##                                                       
##   Akaike (AIC)                                8290.361
##   Bayesian (BIC)                              8446.261
##   Sample-size adjusted Bayesian (BIC)         8287.953
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.120
##   90 Percent confidence interval - lower         0.109
##   90 Percent confidence interval - upper         0.131
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.077
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gf =~                                                                 
##     MEMSEN            0.392    0.101    3.890    0.000    0.392    0.393
##     ANTSYN            0.761    0.067   11.288    0.000    0.761    0.763
##     ANALSYN           0.444    0.115    3.874    0.000    0.444    0.445
##     NUMREV            0.576    0.073    7.836    0.000    0.576    0.577
##     CONCF             0.578    0.073    7.869    0.000    0.578    0.579
##     ANALO             0.852    0.064   13.359    0.000    0.852    0.854
##   Gsp =~                                                                
##     SPAR              0.694    0.167    4.155    0.000    0.902    0.905
##     VISMAT            0.265    0.064    4.155    0.000    0.344    0.345
##     ANALSYN           0.169    0.085    1.992    0.046    0.219    0.220
##   Ga =~                                                                 
##     MEMSEN            0.318    0.087    3.649    0.000    0.393    0.394
##     VAL               0.586    0.093    6.276    0.000    0.725    0.727
##     BLEN              0.462    0.077    6.002    0.000    0.571    0.573
##   gWJ =~                                                                
##     Gf                1.000                               1.000    1.000
##     Gsp               0.830    0.224    3.705    0.000    0.639    0.639
##     Ga                0.727    0.159    4.569    0.000    0.588    0.588
##   Gc =~                                                                 
##     INFO              0.328    0.065    5.012    0.000    0.814    0.816
##     ARI               0.286    0.059    4.841    0.000    0.709    0.711
##     VOCAB             0.351    0.070    5.033    0.000    0.872    0.875
##     COMP              0.147    0.045    3.294    0.001    0.366    0.367
##   GfWI =~                                                               
##     SIM               0.450    0.065    6.976    0.000    0.614    0.616
##     COMP              0.354    0.068    5.187    0.000    0.483    0.485
##     PCOMP             0.573    0.071    8.116    0.000    0.782    0.784
##     PARR              0.392    0.064    6.130    0.000    0.535    0.537
##     DSC               0.163    0.075    2.160    0.031    0.222    0.223
##   GspWI =~                                                              
##     BD                0.547    0.075    7.282    0.000    0.781    0.783
##     OA                0.488    0.067    7.317    0.000    0.697    0.699
##     DSC               0.171    0.073    2.343    0.019    0.245    0.246
##   gWI =~                                                                
##     Gc                2.272    0.524    4.335    0.000    0.915    0.915
##     GfWI              0.928    0.162    5.723    0.000    0.680    0.680
##     GspWI             1.019    0.180    5.654    0.000    0.714    0.714
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gWJ ~~                                                                
##     gWI               0.979    0.031   31.990    0.000    0.979    0.979
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Gf                0.000                               0.000    0.000
##    .MEMSEN            0.505    0.069    7.286    0.000    0.505    0.508
##    .ANTSYN            0.415    0.053    7.818    0.000    0.415    0.417
##    .ANALSYN           0.625    0.073    8.559    0.000    0.625    0.628
##    .NUMREV            0.663    0.076    8.673    0.000    0.663    0.667
##    .CONCF             0.660    0.076    8.668    0.000    0.660    0.664
##    .ANALO             0.269    0.041    6.528    0.000    0.269    0.270
##    .SPAR              0.181    0.225    0.803    0.422    0.181    0.182
##    .VISMAT            0.876    0.101    8.650    0.000    0.876    0.881
##    .VAL               0.469    0.108    4.330    0.000    0.469    0.472
##    .BLEN              0.668    0.094    7.105    0.000    0.668    0.672
##    .INFO              0.332    0.047    7.057    0.000    0.332    0.334
##    .ARI               0.491    0.061    8.100    0.000    0.491    0.494
##    .VOCAB             0.233    0.041    5.699    0.000    0.233    0.234
##    .COMP              0.407    0.056    7.329    0.000    0.407    0.409
##    .SIM               0.617    0.080    7.671    0.000    0.617    0.621
##    .PCOMP             0.382    0.074    5.147    0.000    0.382    0.385
##    .PARR              0.708    0.086    8.182    0.000    0.708    0.712
##    .DSC               0.830    0.094    8.828    0.000    0.830    0.837
##    .BD                0.385    0.085    4.512    0.000    0.385    0.387
##    .OA                0.508    0.081    6.241    0.000    0.508    0.511
##    .Gsp               1.000                               0.592    0.592
##    .Ga                1.000                               0.654    0.654
##     gWJ               1.000                               1.000    1.000
##    .Gc                1.000                               0.162    0.162
##    .GfWI              1.000                               0.537    0.537
##    .GspWI             1.000                               0.491    0.491
##     gWI               1.000                               1.000    1.000
CRITR(167); CRITR(167, NP(167))
## [1] 0.1519261
## [1] 0.2508602
resid(WJWI.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##         MEMSEN ANTSYN ANALSY NUMREV CONCF  ANALO  SPAR   VISMAT VAL    BLEN  
## MEMSEN   0.000                                                               
## ANTSYN   0.026  0.000                                                        
## ANALSYN  0.108 -0.103  0.000                                                 
## NUMREV   0.130 -0.142 -0.015  0.000                                          
## CONCF   -0.051 -0.032  0.013  0.104  0.000                                   
## ANALO   -0.017 -0.027  0.044  0.085  0.055  0.000                            
## SPAR    -0.111 -0.022 -0.001 -0.120  0.083 -0.016  0.000                     
## VISMAT  -0.088 -0.009  0.006  0.044  0.015 -0.003  0.000  0.000              
## VAL      0.007  0.067  0.110 -0.018 -0.018 -0.038  0.041 -0.102  0.000       
## BLEN    -0.013 -0.016 -0.003  0.080 -0.044  0.028  0.078  0.026  0.000  0.000
## INFO    -0.072  0.023 -0.054 -0.013 -0.024 -0.029  0.020 -0.048 -0.070 -0.012
## ARI      0.085  0.041  0.081  0.107  0.003 -0.051 -0.079  0.156 -0.191 -0.156
## VOCAB    0.063  0.172  0.006 -0.100 -0.089  0.007 -0.018 -0.037  0.038  0.078
## COMP     0.001  0.057 -0.123 -0.058 -0.132 -0.061  0.028 -0.067 -0.100 -0.121
## SIM     -0.125  0.010 -0.140 -0.044 -0.048  0.087  0.150  0.043 -0.209 -0.068
## PCOMP   -0.054 -0.098  0.039  0.030  0.002  0.065  0.080 -0.108 -0.005  0.082
## PARR    -0.052 -0.077 -0.019  0.066  0.094 -0.002  0.029 -0.204 -0.056 -0.178
## DSC     -0.055 -0.038  0.046  0.108 -0.049 -0.032  0.247  0.193  0.081  0.197
## BD      -0.108  0.020 -0.032  0.078  0.026 -0.029  0.129  0.148  0.025  0.022
## OA      -0.042  0.063  0.037 -0.196 -0.055 -0.041  0.221  0.141  0.006  0.188
##         INFO   ARI    VOCAB  COMP   SIM    PCOMP  PARR   DSC    BD     OA    
## MEMSEN                                                                       
## ANTSYN                                                                       
## ANALSYN                                                                      
## NUMREV                                                                       
## CONCF                                                                        
## ANALO                                                                        
## SPAR                                                                         
## VISMAT                                                                       
## VAL                                                                          
## BLEN                                                                         
## INFO     0.000                                                               
## ARI      0.065  0.000                                                        
## VOCAB   -0.016 -0.043  0.000                                                 
## COMP     0.004  0.008  0.040  0.000                                          
## SIM     -0.004 -0.042  0.047  0.017  0.000                                   
## PCOMP    0.104 -0.129  0.004  0.008 -0.017  0.000                            
## PARR    -0.043 -0.088 -0.091  0.003 -0.004 -0.001  0.000                     
## DSC      0.016 -0.082 -0.022 -0.009  0.049 -0.027  0.051  0.000              
## BD       0.059  0.025 -0.102 -0.047  0.000  0.125  0.109  0.024  0.000       
## OA       0.047 -0.045  0.063 -0.129  0.024  0.079 -0.048 -0.020  0.000  0.000
length(which(resid(WJWI.fit, "cor")$cov > 0.152)); length(which(resid(WJWI.fit, "cor")$cov > 0.251))
## [1] 14
## [1] 0

Undheim (1976); n = 144

Data found in Undheim & Gustafsson (1978).

lowerUG <- '
1                                                                                                   
0.65    1                                                                                               
0.17    0.17    1                                                                                           
0.05    0.05    0.3 1                                                                                       
0.36    0.28    0.2 0.18    1                                                                                   
0.44    0.44    0.14    0.24    0.57    1                                                                               
0.36    0.36    0   0.17    0.52    0.74    1                                                                           
0.39    0.33    0.19    0.21    0.43    0.58    0.65    1                                                                       
0.47    0.36    0.09    0.09    0.26    0.36    0.31    0.28    1                                                                   
0.41    0.39    0.09    0.1 0.17    0.31    0.17    0.21    0.33    1                                                               
0.57    0.49    0.21    0.1 0.28    0.34    0.29    0.29    0.45    0.26    1                                                           
0.49    0.41    0.11    0.17    0.21    0.31    0.22    0.17    0.45    0.46    0.38    1                                                       
0.42    0.35    0.11    0.01    0.3 0.28    0.18    0.13    0.39    0.31    0.42    0.5 1                                                   
0.33    0.33    0.12    0.18    0.21    0.41    0.26    0.29    0.23    0.27    0.35    0.21    0.25    1                                               
0.29    0.32    0.05    0.2 0.1 0.37    0.23    0.29    0.18    0.19    0.35    0.19    0.25    0.73    1                                           
0.41    0.35    0.19    0.22    0.4 0.47    0.33    0.23    0.29    0.25    0.35    0.42    0.32    0.27    0.2 1                                       
0.33    0.3 0.09    0.21    0.23    0.47    0.43    0.4 0.22    0.38    0.3 0.32    0.12    0.25    0.21    0.35    1                                   
0.42    0.51    0.2 0.32    0.37    0.45    0.35    0.28    0.34    0.33    0.4 0.42    0.27    0.31    0.28    0.5 0.37    1                               
0.51    0.48    0.19    0.22    0.36    0.47    0.28    0.31    0.42    0.34    0.51    0.37    0.3 0.37    0.26    0.53    0.35    0.55    1                           
0.49    0.34    0.12    0.23    0.66    0.64    0.54    0.42    0.4 0.32    0.39    0.4 0.29    0.2 0.1 0.51    0.34    0.47    0.51    1                       
0.5 0.4 0.2 0.15    0.57    0.69    0.57    0.41    0.31    0.28    0.37    0.42    0.37    0.25    0.18    0.41    0.33    0.47    0.38    0.69    1                   
0.3 0.27    0.19    0.17    0.45    0.69    0.53    0.42    0.17    0.19    0.19    0.2 0.24    0.18    0.13    0.33    0.37    0.27    0.22    0.54    0.52    1               
0.19    0.18    0.04    0.35    0.14    0.34    0.22    0.03    0.15    0.13    0.24    0.24    0.16    0.14    0.18    0.23    0.22    0.28    0.2 0.15    0.2 0.22    1           
0.16    0.15    0.13    0.27    0.25    0.29    0.34    0.04    0.21    0.09    0.12    0.25    0.15    0.05    0.06    0.26    0.32    0.37    0.25    0.24    0.22    0.34    0.53    1       
0.12    0.1 0.15    0.19    0.35    0.23    0.26    0.13    0.22    0.3 0.24    0.24    0.23    0.06    0   0.21    0.32    0.24    0.31    0.38    0.37    0.26    0.29    0.52    1   
0.25    0.1 0.14    0.18    0.36    0.26    0.3 0.1 0.19    0.18    0.21    0.33    0.25    0.11    0.04    0.26    0.28    0.22    0.21    0.4 0.32    0.3 0.34    0.5 0.51    1'

lowerUGWISC <- '
1                           
0.65    1                       
0.17    0.17    1                   
0.05    0.05    0.3 1               
0.36    0.28    0.2 0.18    1           
0.44    0.44    0.14    0.24    0.57    1       
0.36    0.36    0   0.17    0.52    0.74    1   
0.39    0.33    0.19    0.21    0.43    0.58    0.65    1'

lowerUGPsy <- '
1                                                                   
0.33    1                                                               
0.45    0.26    1                                                           
0.45    0.46    0.38    1                                                       
0.39    0.31    0.42    0.5 1                                                   
0.23    0.27    0.35    0.21    0.25    1                                               
0.18    0.19    0.35    0.19    0.25    0.73    1                                           
0.29    0.25    0.35    0.42    0.32    0.27    0.2 1                                       
0.22    0.38    0.3 0.32    0.12    0.25    0.21    0.35    1                                   
0.34    0.33    0.4 0.42    0.27    0.31    0.28    0.5 0.37    1                               
0.42    0.34    0.51    0.37    0.3 0.37    0.26    0.53    0.35    0.55    1                           
0.4 0.32    0.39    0.4 0.29    0.2 0.1 0.51    0.34    0.47    0.51    1                       
0.31    0.28    0.37    0.42    0.37    0.25    0.18    0.41    0.33    0.47    0.38    0.69    1                   
0.17    0.19    0.19    0.2 0.24    0.18    0.13    0.33    0.37    0.27    0.22    0.54    0.52    1               
0.15    0.13    0.24    0.24    0.16    0.14    0.18    0.23    0.22    0.28    0.2 0.15    0.2 0.22    1           
0.21    0.09    0.12    0.25    0.15    0.05    0.06    0.26    0.32    0.37    0.25    0.24    0.22    0.34    0.53    1       
0.22    0.3 0.24    0.24    0.23    0.06    0   0.21    0.32    0.24    0.31    0.38    0.37    0.26    0.29    0.52    1   
0.19    0.18    0.21    0.33    0.25    0.11    0.04    0.26    0.28    0.22    0.21    0.4 0.32    0.3 0.34    0.5 0.51    1'

nUG <- 144

UG.cor = getCov(lowerUG, names = c("WBD", "WOA", "WDF", "WDB", "WAR", "WV", "WI", "WC", "BC", "PFB", "PH", "CR", "FR", "SG1", "SG2", "FA", "FC", "FE", "FM", "AR", "NF", "SYN", "LI", "SI", "NAA", "NM"))

UGWISC.cor = getCov(lowerUGWISC, names = c("WBD", "WOA", "WDF", "WDB", "WAR", "WV", "WI", "WC"))
  
UGPSY.cor = getCov(lowerUGPsy, names = c("BC", "PFB", "PH", "CR", "FR", "SG1", "SG2", "FA", "FC", "FE", "FM", "AR", "NF", "SYN", "LI", "SI", "NAA", "NM"))

Exploratory Factor Analyses

fa.parallel(UG.cor, n.obs = nUG)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  3
fa.parallel(UGWISC.cor, n.obs = nUG)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.

## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully

## Parallel analysis suggests that the number of factors =  3  and the number of components =  1
fa.parallel(UGPSY.cor, n.obs = nUG)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  2
FATOT <- fa(UG.cor, n.obs = nUG, nfactors = 4)
FATOT1 <- fa(UG.cor, n.obs = nUG, nfactors = 1)
  
FAWISC <- fa(UGWISC.cor, n.obs = nUG, nfactors = 3)
FAWISC1 <- fa(UGWISC.cor, n.obs = nUG, nfactors = 1)

FAPSY <- fa(UGPSY.cor, n.obs = nUG, nfactors = 4)
FAPSY1 <- fa(UGPSY.cor, n.obs = nUG, nfactors = 1)

print(FATOT$loadings)
## 
## Loadings:
##     MR3    MR1    MR2    MR4   
## WBD  0.742  0.123 -0.125       
## WOA  0.615        -0.105  0.165
## WDF  0.133         0.119       
## WDB         0.112  0.386  0.224
## WAR  0.127  0.627        -0.160
## WV          0.837         0.180
## WI  -0.103  0.830              
## WC          0.712 -0.182  0.155
## BC   0.577                     
## PFB  0.516                     
## PH   0.632                0.160
## CR   0.708 -0.130  0.169       
## FR   0.603                     
## SG1  0.180  0.101         0.658
## SG2                       0.804
## FA   0.400  0.195  0.158       
## FC   0.141  0.293  0.229  0.135
## FE   0.429  0.129  0.226  0.152
## FM   0.558         0.110  0.123
## AR   0.339  0.615        -0.241
## NF   0.297  0.599        -0.131
## SYN         0.696  0.143       
## LI                 0.601  0.197
## SI                 0.827       
## NAA  0.146         0.547 -0.166
## NM   0.136  0.106  0.538 -0.136
## 
##                  MR3   MR1   MR2   MR4
## SS loadings    3.814 3.757 2.067 1.495
## Proportion Var 0.147 0.145 0.080 0.058
## Cumulative Var 0.147 0.291 0.371 0.428
print(FAWISC$loadings)
## 
## Loadings:
##     MR1    MR3    MR2   
## WBD         0.885       
## WOA         0.708       
## WDF                0.812
## WDB  0.277 -0.181  0.382
## WAR  0.552         0.153
## WV   0.782              
## WI   0.949        -0.114
## WC   0.650         0.126
## 
##                  MR1   MR3   MR2
## SS loadings    2.319 1.336 0.862
## Proportion Var 0.290 0.167 0.108
## Cumulative Var 0.290 0.457 0.565
print(FAPSY$loadings)
## 
## Loadings:
##     MR4    MR1    MR3    MR2   
## BC   0.635                     
## PFB  0.464                     
## PH   0.516                0.208
## CR   0.723                     
## FR   0.559                     
## SG1                       0.791
## SG2                       0.890
## FA   0.280  0.348         0.110
## FC   0.111  0.267  0.230  0.153
## FE   0.316  0.256  0.143  0.181
## FM   0.435  0.225         0.170
## AR          0.875              
## NF          0.703              
## SYN -0.228  0.672  0.178       
## LI                 0.557  0.128
## SI                 0.931       
## NAA  0.157  0.173  0.487 -0.127
## NM   0.105  0.175  0.503       
## 
##                  MR4   MR1   MR3   MR2
## SS loadings    2.214 2.107 1.789 1.621
## Proportion Var 0.123 0.117 0.099 0.090
## Cumulative Var 0.123 0.240 0.339 0.430
print(FATOT1$loadings)
## 
## Loadings:
##     MR1  
## WBD 0.681
## WOA 0.607
## WDF 0.249
## WDB 0.306
## WAR 0.620
## WV  0.797
## WI  0.655
## WC  0.545
## BC  0.530
## PFB 0.470
## PH  0.591
## CR  0.572
## FR  0.482
## SG1 0.453
## SG2 0.382
## FA  0.614
## FC  0.546
## FE  0.658
## FM  0.658
## AR  0.749
## NF  0.730
## SYN 0.576
## LI  0.370
## SI  0.420
## NAA 0.436
## NM  0.445
## 
##                  MR1
## SS loadings    8.163
## Proportion Var 0.314
print(FAWISC1$loadings)
## 
## Loadings:
##     MR1  
## WBD 0.591
## WOA 0.556
## WDF 0.219
## WDB 0.245
## WAR 0.634
## WV  0.852
## WI  0.782
## WC  0.711
## 
##                  MR1
## SS loadings    3.011
## Proportion Var 0.376
print(FAPSY1$loadings)
## 
## Loadings:
##     MR1  
## BC  0.540
## PFB 0.496
## PH  0.597
## CR  0.631
## FR  0.517
## SG1 0.433
## SG2 0.359
## FA  0.630
## FC  0.537
## FE  0.669
## FM  0.671
## AR  0.713
## NF  0.676
## SYN 0.505
## LI  0.398
## SI  0.463
## NAA 0.499
## NM  0.489
## 
##                  MR1
## SS loadings    5.540
## Proportion Var 0.308
EFATOGUG <- c(0.681, 0.607, 0.249, 0.306, 0.620, 0.797, 0.655, 0.545, 0.530, 0.470, 0.591, 0.572, 0.482, 0.453, 0.382, 0.614, 0.546, 0.658, 0.658, 0.749, 0.730, 0.576, 0.370, 0.420, 0.436, 0.445)
EFATOGUGPsy <- c(0.681, 0.607, 0.249, 0.306, 0.620, 0.797, 0.655, 0.545); EFATOGUGPsy2 <- c(0.530, 0.470, 0.591, 0.572, 0.482, 0.453, 0.382, 0.614, 0.546, 0.658, 0.658, 0.749, 0.730, 0.576, 0.370, 0.420, 0.436, 0.445)
EFASEPUG <- c(0.591, 0.556, 0.219, 0.245, 0.634, 0.852, 0.782, 0.711, 0.540, 0.496, 0.597, 0.631, 0.517, 0.433, 0.359, 0.630, 0.537, 0.669, 0.671, 0.713, 0.676, 0.505, 0.398, 0.463, 0.499, 0.489)
EFASEPUGPsy <- c(0.591, 0.556, 0.219, 0.245, 0.634, 0.852, 0.782, 0.711); EFASEPUGPsy2 <- c(0.540, 0.496, 0.597, 0.631, 0.517, 0.433, 0.359, 0.630, 0.537, 0.669, 0.671, 0.713, 0.676, 0.505, 0.398, 0.463, 0.499, 0.489)

cor(EFATOGUG, EFASEPUG, method = "pearson"); cor(EFATOGUG, EFASEPUG, method = "spearman"); CONGO(EFATOGUG, EFASEPUG)
## [1] 0.9219611
## [1] 0.8986152
## [1] 0.9950578
cor(EFATOGUGPsy, EFASEPUGPsy, method = "pearson"); cor(EFATOGUGPsy, EFASEPUGPsy, method = "spearman"); CONGO(EFATOGUGPsy, EFASEPUGPsy)
## [1] 0.9242498
## [1] 0.7619048
## [1] 0.9903265
cor(EFATOGUGPsy2, EFASEPUGPsy2, method = "pearson"); cor(EFATOGUGPsy2, EFASEPUGPsy2, method = "spearman"); CONGO(EFATOGUGPsy2, EFASEPUGPsy2)
## [1] 0.9461369
## [1] 0.9437275
## [1] 0.9977838

Confirmatory Factor Analyses

WISO.model <- '
Gv =~ WBD + WOA
Gf =~ WDF + WDB
Gc =~ WAR + WV + WI + WC

gWI =~ Gv + Gf + Gc'

WISO.fit <- cfa(WISO.model, sample.cov = UG.cor, sample.nobs = nUG, std.lv = T, orthogonal = T, check.gradient = F, control = list(rel.tol = 1e-4))
summary(WISO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 49 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         19
##                                                       
##   Number of observations                           144
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                31.006
##   Degrees of freedom                                17
##   P-value (Chi-square)                           0.020
## 
## Model Test Baseline Model:
## 
##   Test statistic                               428.931
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.965
##   Tucker-Lewis Index (TLI)                       0.942
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1431.641
##   Loglikelihood unrestricted model (H1)      -1416.138
##                                                       
##   Akaike (AIC)                                2901.282
##   Bayesian (BIC)                              2957.708
##   Sample-size adjusted Bayesian (BIC)         2897.587
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.076
##   90 Percent confidence interval - lower         0.030
##   90 Percent confidence interval - upper         0.117
##   P-value RMSEA <= 0.05                          0.150
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.048
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gv =~                                                                 
##     WBD               0.655    0.123    5.331    0.000    0.823    0.826
##     WOA               0.625    0.117    5.355    0.000    0.784    0.787
##   Gf =~                                                                 
##     WDF               0.399    0.134    2.966    0.003    0.426    0.428
##     WDB               0.653    0.225    2.903    0.004    0.699    0.701
##   Gc =~                                                                 
##     WAR               0.143    0.672    0.212    0.832    0.632    0.635
##     WV                0.195    0.917    0.212    0.832    0.862    0.867
##     WI                0.190    0.897    0.212    0.832    0.844    0.848
##     WC                0.160    0.754    0.212    0.832    0.709    0.713
##   gWI =~                                                                
##     Gv                0.760    0.328    2.313    0.021    0.605    0.605
##     Gf                0.379    0.187    2.028    0.043    0.354    0.354
##     Gc                4.316   21.411    0.202    0.840    0.974    0.974
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .WBD               0.316    0.100    3.142    0.002    0.316    0.318
##    .WOA               0.378    0.096    3.947    0.000    0.378    0.381
##    .WDF               0.811    0.144    5.622    0.000    0.811    0.817
##    .WDB               0.505    0.296    1.704    0.088    0.505    0.508
##    .WAR               0.591    0.077    7.728    0.000    0.591    0.597
##    .WV                0.245    0.050    4.877    0.000    0.245    0.248
##    .WI                0.278    0.052    5.374    0.000    0.278    0.281
##    .WC                0.486    0.067    7.307    0.000    0.486    0.491
##    .Gv                1.000                               0.634    0.634
##    .Gf                1.000                               0.874    0.874
##    .Gc                1.000                               0.051    0.051
##     gWI               1.000                               1.000    1.000
PSYSO.model <- '
GvT =~ BC + PFB + PH + CR + FR + SG1 + SG2
GfT =~ FA + FC + FE + FM
GcT =~ AR + NF + SYN
Gs =~ LI + SI + NAA + NM

gPsy =~ GvT + GfT + GcT + Gs'

PSYSO.fit <- cfa(PSYSO.model, sample.cov = UG.cor, sample.nobs = nUG, std.lv = T, orthogonal = T, check.gradient = F)
summary(PSYSO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 52 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         40
##                                                       
##   Number of observations                           144
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               267.602
##   Degrees of freedom                               131
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1092.409
##   Degrees of freedom                               153
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.855
##   Tucker-Lewis Index (TLI)                       0.830
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3256.454
##   Loglikelihood unrestricted model (H1)      -3122.653
##                                                       
##   Akaike (AIC)                                6592.908
##   Bayesian (BIC)                              6711.700
##   Sample-size adjusted Bayesian (BIC)         6585.130
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.085
##   90 Percent confidence interval - lower         0.070
##   90 Percent confidence interval - upper         0.100
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.072
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   GvT =~                                                                
##     BC                0.351    0.063    5.577    0.000    0.613    0.615
##     PFB               0.306    0.060    5.070    0.000    0.535    0.537
##     PH                0.378    0.065    5.842    0.000    0.659    0.662
##     CR                0.388    0.065    5.931    0.000    0.677    0.679
##     FR                0.344    0.063    5.506    0.000    0.601    0.603
##     SG1               0.288    0.059    4.836    0.000    0.502    0.504
##     SG2               0.258    0.058    4.439    0.000    0.450    0.452
##   GfT =~                                                                
##     FA                0.149    0.148    1.007    0.314    0.689    0.692
##     FC                0.113    0.113    1.003    0.316    0.526    0.528
##     FE                0.156    0.155    1.007    0.314    0.724    0.726
##     FM                0.158    0.157    1.007    0.314    0.734    0.736
##   GcT =~                                                                
##     AR                0.542    0.068    7.966    0.000    0.869    0.872
##     NF                0.497    0.064    7.827    0.000    0.797    0.800
##     SYN               0.384    0.060    6.396    0.000    0.616    0.618
##   Gs =~                                                                 
##     LI                0.467    0.073    6.408    0.000    0.570    0.572
##     SI                0.637    0.073    8.752    0.000    0.778    0.780
##     NAA               0.552    0.072    7.659    0.000    0.674    0.676
##     NM                0.549    0.072    7.605    0.000    0.669    0.672
##   gPsy =~                                                               
##     GvT               1.431    0.285    5.011    0.000    0.820    0.820
##     GfT               4.530    4.668    0.971    0.332    0.976    0.976
##     GcT               1.254    0.223    5.617    0.000    0.782    0.782
##     Gs                0.700    0.140    5.015    0.000    0.573    0.573
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BC                0.617    0.083    7.444    0.000    0.617    0.622
##    .PFB               0.707    0.091    7.796    0.000    0.707    0.712
##    .PH                0.558    0.078    7.148    0.000    0.558    0.562
##    .CR                0.535    0.076    7.016    0.000    0.535    0.539
##    .FR                0.632    0.084    7.507    0.000    0.632    0.636
##    .SG1               0.741    0.094    7.907    0.000    0.741    0.746
##    .SG2               0.791    0.098    8.050    0.000    0.791    0.796
##    .FA                0.518    0.073    7.086    0.000    0.518    0.521
##    .FC                0.716    0.091    7.910    0.000    0.716    0.721
##    .FE                0.469    0.069    6.768    0.000    0.469    0.472
##    .FM                0.455    0.068    6.658    0.000    0.455    0.458
##    .AR                0.238    0.059    4.052    0.000    0.238    0.240
##    .NF                0.357    0.062    5.798    0.000    0.357    0.360
##    .SYN               0.614    0.080    7.648    0.000    0.614    0.618
##    .LI                0.668    0.090    7.448    0.000    0.668    0.673
##    .SI                0.388    0.076    5.108    0.000    0.388    0.391
##    .NAA               0.539    0.081    6.640    0.000    0.539    0.542
##    .NM                0.545    0.081    6.688    0.000    0.545    0.549
##    .GvT               1.000                               0.328    0.328
##    .GfT               1.000                               0.046    0.046
##    .GcT               1.000                               0.389    0.389
##    .Gs                1.000                               0.671    0.671
##     gPsy              1.000                               1.000    1.000
WIPSYNO.model <- '
Gv =~ WBD + WOA
Gf =~ WDF + WDB
Gc =~ WAR + WV + WI + WC

gWI =~ Gv + Gf + Gc

GvT =~ BC + PFB + PH + CR + FR + SG1 + SG2
GfT =~ FA + FC + FE + FM
GcT =~ AR + NF + SYN
Gs =~ LI + SI + NAA + NM

gPsy =~ GvT + GfT + GcT + Gs

gWI ~~ 0*gPsy'

WIPSY.model <- '
Gv =~ WBD + WOA
Gf =~ WDF + WDB
Gc =~ WAR + WV + WI + WC

gWI =~ Gv + Gf + Gc

GvT =~ BC + PFB + PH + CR + FR + SG1 + SG2
GfT =~ FA + FC + FE + FM
GcT =~ AR + NF + SYN
Gs =~ LI + SI + NAA + NM

gPsy =~ GvT + GfT + GcT + Gs

gWI ~~ gPsy'

WIPSYID.model <- '
Gv =~ WBD + WOA
Gf =~ WDF + WDB
Gc =~ WAR + WV + WI + WC

gWI =~ Gv + Gf + Gc

GvT =~ BC + PFB + PH + CR + FR + SG1 + SG2
GfT =~ FA + FC + FE + FM
GcT =~ AR + NF + SYN
Gs =~ LI + SI + NAA + NM

gPsy =~ GvT + GfT + GcT + Gs

gWI ~~ 1*gPsy'

WIPSYNO.fit <- cfa(WIPSYNO.model, sample.cov = UG.cor, sample.nobs = nUG, std.lv = T, orthogonal = T, check.gradient = F)
WIPSY.fit <- cfa(WIPSY.model, sample.cov = UG.cor, sample.nobs = nUG, std.lv = T, orthogonal = T, check.gradient = F); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
WIPSYID.fit <- cfa(WIPSYID.model, sample.cov = UG.cor, sample.nobs = nUG, std.lv = T, orthogonal = T, check.gradient = F)

round(cbind("No Relationship"   = fitMeasures(WIPSYNO.fit, FITM),
            "Free Relationship" = fitMeasures(WIPSY.fit, FITM),
            "Identical"         = fitMeasures(WIPSYID.fit, FITM)), 3)
##                No Relationship Free Relationship Identical
## chisq                  800.991           635.588   646.186
## df                     292.000           291.000   292.000
## npar                    59.000            60.000    59.000
## cfi                      0.700             0.797     0.792
## rmsea                    0.110             0.091     0.092
## rmsea.ci.lower           0.101             0.081     0.082
## rmsea.ci.upper           0.119             0.100     0.101
## aic                   9494.095          9330.692  9339.290
## bic                   9669.314          9508.881  9514.509
summary(WIPSY.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 55 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         60
##                                                       
##   Number of observations                           144
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               635.588
##   Degrees of freedom                               291
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2023.817
##   Degrees of freedom                               325
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.797
##   Tucker-Lewis Index (TLI)                       0.773
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4605.346
##   Loglikelihood unrestricted model (H1)      -4287.552
##                                                       
##   Akaike (AIC)                                9330.692
##   Bayesian (BIC)                              9508.881
##   Sample-size adjusted Bayesian (BIC)         9319.025
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.081
##   90 Percent confidence interval - upper         0.100
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.080
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Gv =~                                                                 
##     WBD               0.599    0.071    8.444    0.000    0.870    0.873
##     WOA               0.512    0.062    8.277    0.000    0.742    0.745
##   Gf =~                                                                 
##     WDF               0.424    0.108    3.936    0.000    0.481    0.483
##     WDB               0.546    0.137    3.976    0.000    0.619    0.621
##   Gc =~                                                                 
##     WAR               0.417    0.056    7.466    0.000    0.657    0.659
##     WV                0.575    0.058    9.863    0.000    0.907    0.910
##     WI                0.512    0.056    9.108    0.000    0.808    0.810
##     WC                0.416    0.056    7.457    0.000    0.656    0.658
##   gWI =~                                                                
##     Gv                1.051    0.176    5.960    0.000    0.724    0.724
##     Gf                0.537    0.161    3.329    0.001    0.473    0.473
##     Gc                1.219    0.188    6.482    0.000    0.773    0.773
##   GvT =~                                                                
##     BC                0.366    0.058    6.284    0.000    0.613    0.616
##     PFB               0.314    0.057    5.496    0.000    0.526    0.527
##     PH                0.397    0.059    6.707    0.000    0.665    0.667
##     CR                0.385    0.059    6.558    0.000    0.646    0.648
##     FR                0.355    0.058    6.127    0.000    0.595    0.597
##     SG1               0.315    0.057    5.527    0.000    0.529    0.531
##     SG2               0.288    0.057    5.094    0.000    0.483    0.485
##   GfT =~                                                                
##     FA                0.335    0.059    5.649    0.000    0.684    0.686
##     FC                0.266    0.054    4.940    0.000    0.543    0.545
##     FE                0.353    0.061    5.781    0.000    0.721    0.723
##     FM                0.358    0.062    5.809    0.000    0.730    0.732
##   GcT =~                                                                
##     AR                0.359    0.061    5.860    0.000    0.826    0.829
##     NF                0.357    0.061    5.857    0.000    0.821    0.824
##     SYN               0.283    0.053    5.342    0.000    0.649    0.652
##   Gs =~                                                                 
##     LI                0.496    0.075    6.652    0.000    0.579    0.581
##     SI                0.671    0.073    9.173    0.000    0.782    0.785
##     NAA               0.568    0.073    7.731    0.000    0.662    0.664
##     NM                0.574    0.073    7.836    0.000    0.670    0.672
##   gPsy =~                                                               
##     GvT               1.345    0.221    6.085    0.000    0.803    0.803
##     GfT               1.779    0.341    5.211    0.000    0.872    0.872
##     GcT               2.070    0.405    5.107    0.000    0.900    0.900
##     Gs                0.600    0.122    4.936    0.000    0.514    0.514
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gWI ~~                                                                
##     gPsy              1.140    0.047   24.203    0.000    1.140    1.140
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .WBD               0.237    0.072    3.313    0.001    0.237    0.239
##    .WOA               0.442    0.071    6.241    0.000    0.442    0.445
##    .WDF               0.762    0.125    6.094    0.000    0.762    0.767
##    .WDB               0.610    0.161    3.786    0.000    0.610    0.614
##    .WAR               0.562    0.072    7.819    0.000    0.562    0.566
##    .WV                0.170    0.040    4.226    0.000    0.170    0.172
##    .WI                0.341    0.051    6.721    0.000    0.341    0.343
##    .WC                0.563    0.072    7.822    0.000    0.563    0.567
##    .BC                0.617    0.082    7.476    0.000    0.617    0.621
##    .PFB               0.717    0.091    7.852    0.000    0.717    0.722
##    .PH                0.551    0.077    7.155    0.000    0.551    0.555
##    .CR                0.576    0.079    7.283    0.000    0.576    0.580
##    .FR                0.639    0.084    7.569    0.000    0.639    0.643
##    .SG1               0.713    0.091    7.840    0.000    0.713    0.718
##    .SG2               0.760    0.095    7.981    0.000    0.760    0.765
##    .FA                0.525    0.074    7.130    0.000    0.525    0.529
##    .FC                0.698    0.089    7.857    0.000    0.698    0.703
##    .FE                0.474    0.070    6.802    0.000    0.474    0.477
##    .FM                0.460    0.069    6.702    0.000    0.460    0.464
##    .AR                0.311    0.053    5.922    0.000    0.311    0.314
##    .NF                0.319    0.053    6.014    0.000    0.319    0.321
##    .SYN               0.571    0.075    7.662    0.000    0.571    0.575
##    .LI                0.658    0.089    7.383    0.000    0.658    0.663
##    .SI                0.381    0.077    4.968    0.000    0.381    0.384
##    .NAA               0.555    0.082    6.738    0.000    0.555    0.559
##    .NM                0.544    0.082    6.654    0.000    0.544    0.548
##    .Gv                1.000                               0.475    0.475
##    .Gf                1.000                               0.776    0.776
##    .Gc                1.000                               0.402    0.402
##     gWI               1.000                               1.000    1.000
##    .GvT               1.000                               0.356    0.356
##    .GfT               1.000                               0.240    0.240
##    .GcT               1.000                               0.189    0.189
##    .Gs                1.000                               0.735    0.735
##     gPsy              1.000                               1.000    1.000
CRITR(144); CRITR(144, NP(144))
## [1] 0.1636537
## [1] 0.2657493
resid(WIPSY.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##     WBD    WOA    WDF    WDB    WAR    WV     WI     WC     BC     PFB   
## WBD  0.000                                                               
## WOA  0.000  0.000                                                        
## WDF  0.026  0.047  0.000                                                 
## WDB -0.136 -0.109  0.000  0.000                                          
## WAR  0.038  0.005  0.084  0.030  0.000                                   
## WV  -0.005  0.060 -0.021  0.033 -0.030  0.000                            
## WI  -0.036  0.022 -0.143 -0.014 -0.014  0.002  0.000                     
## WC   0.068  0.055  0.074  0.060 -0.004 -0.019  0.116  0.000              
## BC   0.114  0.056 -0.039 -0.076 -0.027 -0.036 -0.043 -0.007  0.000       
## PFB  0.105  0.130 -0.020 -0.042 -0.076 -0.030 -0.132 -0.036  0.005  0.000
## PH   0.184  0.161  0.071 -0.079 -0.031 -0.090 -0.092 -0.021  0.039 -0.092
## CR   0.115  0.090 -0.026 -0.004 -0.092 -0.108 -0.152 -0.132  0.051  0.118
## FR   0.074  0.055 -0.015 -0.151  0.021 -0.105 -0.163 -0.148  0.022 -0.005
## SG1  0.023  0.068  0.009  0.037 -0.037  0.068 -0.044  0.043 -0.097 -0.010
## SG2  0.010  0.081 -0.051  0.070 -0.126  0.058 -0.048  0.064 -0.118 -0.066
## FA  -0.021 -0.018  0.034  0.019  0.052 -0.010 -0.097 -0.117 -0.006 -0.003
## FC  -0.012  0.008 -0.034  0.051 -0.046  0.089  0.091  0.124 -0.015  0.179
## FE  -0.034  0.122  0.036  0.109  0.004 -0.056 -0.100 -0.086  0.029  0.063
## FM   0.050  0.087  0.024  0.006 -0.011 -0.042 -0.176 -0.060  0.105  0.070
## AR  -0.048 -0.119 -0.074 -0.020  0.227  0.041  0.007 -0.013  0.031  0.004
## NF  -0.035 -0.057  0.007 -0.099  0.139  0.095  0.040 -0.021 -0.057 -0.034
## SYN -0.123 -0.091  0.037 -0.027  0.109  0.219  0.111  0.079 -0.120 -0.058
## LI  -0.025 -0.004 -0.038  0.250 -0.034  0.100  0.007 -0.143  0.002  0.004
## SI  -0.131 -0.098  0.025  0.135  0.015 -0.034  0.052 -0.194  0.011 -0.081
## NAA -0.126 -0.110  0.061  0.075  0.151 -0.044  0.016 -0.068  0.051  0.155
## NM   0.001 -0.113  0.050  0.064  0.159 -0.017  0.053 -0.101  0.019  0.034
##     PH     CR     FR     SG1    SG2    FA     FC     FE     FM     AR    
## WBD                                                                      
## WOA                                                                      
## WDF                                                                      
## WDB                                                                      
## WAR                                                                      
## WV                                                                       
## WI                                                                       
## WC                                                                       
## BC                                                                       
## PFB                                                                      
## PH   0.000                                                               
## CR  -0.052  0.000                                                        
## FR   0.022  0.113  0.000                                                 
## SG1 -0.004 -0.134 -0.067  0.000                                          
## SG2  0.027 -0.124 -0.040  0.473  0.000                                   
## FA   0.030  0.109  0.033  0.015 -0.033  0.000                            
## FC   0.046  0.073 -0.108  0.048  0.025 -0.024  0.000                     
## FE   0.063  0.092 -0.032  0.042  0.035  0.004 -0.024  0.000              
## FM   0.168  0.038 -0.006  0.098  0.012  0.027 -0.049  0.020  0.000       
## AR  -0.009  0.012 -0.068 -0.118 -0.190  0.064 -0.014  0.000  0.034  0.000
## NF  -0.027  0.034  0.014 -0.066 -0.109 -0.034 -0.022  0.002 -0.094  0.007
## SYN -0.124 -0.105 -0.041 -0.070 -0.098 -0.021  0.091 -0.100 -0.155  0.000
## LI   0.080  0.085  0.017  0.013  0.064  0.051  0.078  0.092  0.009 -0.073
## SI  -0.096  0.040 -0.044 -0.122 -0.097  0.018  0.128  0.116 -0.008 -0.061
## NAA  0.057  0.062  0.066 -0.085 -0.133  0.006  0.158  0.025  0.092  0.125
## NM   0.025  0.150  0.084 -0.037 -0.095  0.053  0.116  0.002 -0.011  0.142
##     NF     SYN    LI     SI     NAA    NM    
## WBD                                          
## WOA                                          
## WDF                                          
## WDB                                          
## WAR                                          
## WV                                           
## WI                                           
## WC                                           
## BC                                           
## PFB                                          
## PH                                           
## CR                                           
## FR                                           
## SG1                                          
## SG2                                          
## FA                                           
## FC                                           
## FE                                           
## FM                                           
## AR                                           
## NF   0.000                                   
## SYN -0.017  0.000                            
## LI  -0.022  0.045  0.000                     
## SI  -0.080  0.103  0.074  0.000              
## NAA  0.117  0.060 -0.096 -0.001  0.000       
## NM   0.063  0.097 -0.050 -0.028  0.064  0.000
length(which(resid(WIPSY.fit, "cor")$cov > 0.164)); length(which(resid(WIPSY.fit, "cor")$cov > 0.266))
## [1] 14
## [1] 2

Grigorenko et al. (2004); n = 261

lowerGRIG <- '
1                   
0.48    1               
0.47    0.4 1           
0.24    0.27    0.28    1       
0.36    0.31    0.38    0.33    1   
0.35    0.3 0.27    0.26    0.68    1'

lowerGRIGCC <- '
1           
0.48    1       
0.47    0.4 1   
0.24    0.27    0.28    1'

lowerGRIGMH <- '
1   
0.68    1'

nGRIG <- 261

GRIG.cor = getCov(lowerGRIG, names = c("SC", "CS", "MC", "TO", "FA", "FB"))

GRIGCC.cor = getCov(lowerGRIGCC, names = c("SC", "CS", "MC", "TO"))
  
GRIGMH.cor = getCov(lowerGRIGMH, names = c("FA", "FB"))

Exploratory Factor Analyses

fa.parallel(GRIG.cor, n.obs = nGRIG)

## Parallel analysis suggests that the number of factors =  2  and the number of components =  1
fa.parallel(GRIGCC.cor, n.obs = nGRIG)

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
fa.parallel(GRIGMH.cor, n.obs = nGRIG)

## Parallel analysis suggests that the number of factors =  1  and the number of components =  1
FATOT <- fa(GRIG.cor, n.obs = nGRIG, nfactors = 2)
FATOT1 <- fa(GRIG.cor, n.obs = nGRIG, nfactors = 1)
  
FACC <- fa(GRIGCC.cor, n.obs = nGRIG, nfactors = 1)

FAMH <- fa(GRIGMH.cor, n.obs = nGRIG, nfactors = 1)

print(FATOT$loadings)
## 
## Loadings:
##    MR2    MR1   
## SC  0.730       
## CS  0.671       
## MC  0.607       
## TO  0.290  0.184
## FA         1.012
## FB  0.131  0.612
## 
##                  MR2   MR1
## SS loadings    1.453 1.434
## Proportion Var 0.242 0.239
## Cumulative Var 0.242 0.481
print(FACC$loadings)
## 
## Loadings:
##    MR1  
## SC 0.712
## CS 0.654
## MC 0.649
## TO 0.390
## 
##                  MR1
## SS loadings    1.508
## Proportion Var 0.377
print(FAMH$loadings)
## 
## Loadings:
##    MR1  
## FA 0.825
## FB 0.825
## 
##                 MR1
## SS loadings    1.36
## Proportion Var 0.68
print(FATOT1$loadings)
## 
## Loadings:
##    MR1  
## SC 0.634
## CS 0.573
## MC 0.591
## TO 0.436
## FA 0.719
## FB 0.647
## 
##                  MR1
## SS loadings    2.205
## Proportion Var 0.368
EFATOGUG <- c(0.634, 0.573, 0.591, 0.436, 0.719, 0.647)
EFATOGUGPsy <- c(0.634, 0.573, 0.591, 0.436); EFATOGUGPsy2 <- c(0.719, 0.647)
EFASEPUG <- c(0.712, 0.654, 0.649, 0.390, 0.825, 0.825)
EFASEPUGPsy <- c(0.712, 0.654, 0.649, 0.390); EFASEPUGPsy2 <- c(0.825, 0.825)

cor(EFATOGUG, EFASEPUG, method = "pearson"); cor(EFATOGUG, EFASEPUG, method = "spearman"); CONGO(EFATOGUG, EFASEPUG)
## [1] 0.9659127
## [1] 0.9276337
## [1] 0.9965379
cor(EFATOGUGPsy, EFASEPUGPsy, method = "pearson"); cor(EFATOGUGPsy, EFASEPUGPsy, method = "spearman"); CONGO(EFATOGUGPsy, EFASEPUGPsy)
## [1] 0.9907923
## [1] 0.8
## [1] 0.9971511
cor(EFATOGUGPsy2, EFASEPUGPsy2, method = "pearson"); cor(EFATOGUGPsy2, EFASEPUGPsy2, method = "spearman"); CONGO(EFATOGUGPsy2, EFASEPUGPsy2)
## Warning in cor(EFATOGUGPsy2, EFASEPUGPsy2, method = "pearson"): the standard
## deviation is zero
## [1] NA
## Warning in cor(EFATOGUGPsy2, EFASEPUGPsy2, method = "spearman"): the standard
## deviation is zero
## [1] NA
## [1] 0.9986138

This is obviously not doable with so few indicators. Additionally, with just two indicators, something’s loadings are obviously just \(\sqrt{r}\).

Confirmatory Factor Analyses

CCSO.model <- '
gCC =~ SC + CS + MC + TO'

CCSO.fit <- cfa(CCSO.model, sample.cov = GRIG.cor, sample.nobs = nGRIG, std.lv = T, orthogonal = T, check.gradient = F, control = list(rel.tol = 1e-4))
summary(CCSO.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 8 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          8
##                                                       
##   Number of observations                           261
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 2.126
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.345
## 
## Model Test Baseline Model:
## 
##   Test statistic                               178.191
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999
##   Tucker-Lewis Index (TLI)                       0.998
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1391.335
##   Loglikelihood unrestricted model (H1)      -1390.272
##                                                       
##   Akaike (AIC)                                2798.670
##   Bayesian (BIC)                              2827.187
##   Sample-size adjusted Bayesian (BIC)         2801.823
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.016
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.125
##   P-value RMSEA <= 0.05                          0.551
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.018
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gCC =~                                                                
##     SC                0.720    0.068   10.602    0.000    0.720    0.721
##     CS                0.652    0.067    9.673    0.000    0.652    0.653
##     MC                0.643    0.067    9.546    0.000    0.643    0.644
##     TO                0.384    0.070    5.497    0.000    0.384    0.385
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SC                0.478    0.074    6.480    0.000    0.478    0.480
##    .CS                0.572    0.071    7.997    0.000    0.572    0.574
##    .MC                0.583    0.071    8.172    0.000    0.583    0.585
##    .TO                0.849    0.079   10.676    0.000    0.849    0.852
##     gCC               1.000                               1.000    1.000
CCMHNO.model <- '
gCC =~ SC + CS + MC + TO
gMH =~ FA + FB

gCC ~~ 0*gMH'

CCMH.model <- '
gCC =~ SC + CS + MC + TO
gMH =~ FA + FB

gCC ~~ gMH'

CCMHID.model <- '
gCC =~ SC + CS + MC + TO
gMH =~ FA + FB

gCC ~~ 1*gMH'

CCMHNO.fit <- cfa(CCMHNO.model, sample.cov = GRIG.cor, sample.nobs = nGRIG, std.lv = T, orthogonal = T, check.gradient = F); "\n"
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     Could not compute standard errors! The information matrix could
##     not be inverted. This may be a symptom that the model is not
##     identified.
## [1] "\n"
CCMH.fit <- cfa(CCMH.model, sample.cov = GRIG.cor, sample.nobs = nGRIG, std.lv = T, orthogonal = T, check.gradient = F)
CCMHID.fit <- cfa(CCMHID.model, sample.cov = GRIG.cor, sample.nobs = nGRIG, std.lv = T, orthogonal = T, check.gradient = F)

round(cbind("No Relationship"   = fitMeasures(CCMHNO.fit, FITM),
            "Free Relationship" = fitMeasures(CCMH.fit, FITM),
            "Identical"         = fitMeasures(CCMHID.fit, FITM)), 3)
##                No Relationship Free Relationship Identical
## chisq                   81.088            13.021    82.537
## df                       9.000             8.000     9.000
## npar                    12.000            13.000    12.000
## cfi                      0.822             0.988     0.818
## rmsea                    0.175             0.049     0.177
## rmsea.ci.lower           0.141             0.000     0.143
## rmsea.ci.upper           0.211             0.095     0.213
## aic                   4124.051          4057.984  4125.500
## bic                   4166.826          4104.323  4168.274
summary(CCMH.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         13
##                                                       
##   Number of observations                           261
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                13.021
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.111
## 
## Model Test Baseline Model:
## 
##   Test statistic                               419.141
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.988
##   Tucker-Lewis Index (TLI)                       0.977
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2015.992
##   Loglikelihood unrestricted model (H1)      -2009.481
##                                                       
##   Akaike (AIC)                                4057.984
##   Bayesian (BIC)                              4104.323
##   Sample-size adjusted Bayesian (BIC)         4063.107
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.049
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.095
##   P-value RMSEA <= 0.05                          0.456
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.033
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gCC =~                                                                
##     SC                0.705    0.064   11.046    0.000    0.705    0.706
##     CS                0.636    0.065    9.843    0.000    0.636    0.637
##     MC                0.652    0.064   10.114    0.000    0.652    0.653
##     TO                0.422    0.068    6.207    0.000    0.422    0.423
##   gMH =~                                                                
##     FA                0.882    0.066   13.367    0.000    0.882    0.884
##     FB                0.768    0.065   11.820    0.000    0.768    0.770
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   gCC ~~                                                                
##     gMH               0.618    0.059   10.441    0.000    0.618    0.618
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SC                0.499    0.066    7.596    0.000    0.499    0.501
##    .CS                0.592    0.067    8.802    0.000    0.592    0.594
##    .MC                0.572    0.067    8.569    0.000    0.572    0.574
##    .TO                0.818    0.077   10.615    0.000    0.818    0.821
##    .FA                0.219    0.082    2.676    0.007    0.219    0.219
##    .FB                0.406    0.070    5.807    0.000    0.406    0.408
##     gCC               1.000                               1.000    1.000
##     gMH               1.000                               1.000    1.000
CRITR(261); CRITR(261, NP(261))
## [1] 0.1214522
## [1] 0.2102434
resid(CCMH.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##    SC     CS     MC     TO     FA     FB    
## SC  0.000                                   
## CS  0.030  0.000                            
## MC  0.009 -0.016  0.000                     
## TO -0.059  0.001  0.004  0.000              
## FA -0.026 -0.038  0.023  0.099  0.000       
## FB  0.014 -0.003 -0.041  0.059  0.000  0.000
length(which(resid(CCMH.fit, "cor")$cov > 0.121)); length(which(resid(CCMH.fit, "cor")$cov > 0.210))
## [1] 0
## [1] 0

More Studies

[Do later: Perhaps Caemmerer et al. (2020); check for consistency of g loadings and unidimensionality.]

Meta-Analysis

Posted at https://rpubs.com/JLLJ/JOGF.

Prior Studies - Dimensionality and g Correspondence

Stauffer, J. M., Ree, M. J., & Carretta, T. R. (1996). Cognitive-Components Tests Are Not Much More than g: An Extension of Kyllonen’s Analyses. The Journal of General Psychology, 123(3), 193-205. https://doi.org/10.1080/00221309.1996.9921272

Keith, T. Z., Kranzler, J. H., & Flanagan, D. P. (2001). What Does the Cognitive Assessment System (CAS) Measure? Joint Confirmatory Factor Analysis of the CAS and the Woodcock-Johnson Tests of Cognitive Ability (3rd Edition). School Psychology Review, 30(1), 89-119.

Deary, I. J., Bell, P. J., Bell, A. J., Campbell, M. L., & Fazal, N. D. (2004). Sensory discrimination and intelligence: Testing Spearman’s other hypothesis. The American Journal of Psychology, 117(1), 1-18.

Johnson, W., Bouchard, T. J., Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: Consistent results from three test batteries. Intelligence, 32(1), 95-107. https://doi.org/10.1016/S0160-2896(03)00062-X

Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13-21. https://doi.org/10.1016/j.intell.2006.02.001

Johnson, W., Nijenhuis, J. te, & Bouchard, T. J. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36(1), 81-95. https://doi.org/10.1016/j.intell.2007.06.001

Floyd, R. G., Bergeron, R., Hamilton, G., & Parra, G. R. (2010). How do executive functions fit with the Cattell-Horn-Carroll model? Some evidence from a joint factor analysis of the Delis-Kaplan Executive Function System and the Woodcock-Johnson III tests of cognitive abilities. Psychology in the Schools, 721-738. https://doi.org/10.1002/pits.20500

Meyer, C. S., Hagmann-von Arx, P., Lemola, S., & Grob, A. (2010). Correspondence between the general ability to discriminate sensory stimuli and general intelligence. Journal of Individual Differences, 31(1), 46-56. https://doi.org/10.1027/1614-0001/a000006 [Along with others, check g consistency]

Kaufman, S. B., Reynolds, M. R., Liu, X., Kaufman, A. S., & McGrew, K. S. (2012). Are cognitive g and academic achievement g one and the same g? An exploration on the Woodcock-Johnson and Kaufman tests. Intelligence, 40(2), 123-138. https://doi.org/10.1016/j.intell.2012.01.009 [Do decomposition]

Floyd, R. G., Reynolds, M. R., Farmer, R. L., Kranzler, J. H., & Volpe, R. (2013). Are the General Factors From Different Child And Adolescent Intelligence Tests the Same? Results From a Five-Sample, Six-Test Analysis. School Psychology Review, 42(4), 383-401.

Salthouse, T. A. (2014). Evaluating the Correspondence of Different Cognitive Batteries. Assessment, 21(2), 131-142. https://doi.org/10.1177/1073191113486690

Valerius, S., & Sparfeldt, J. R. (2014). Consistent g- as well as consistent verbal-, numerical- and figural-factors in nested factor models? Confirmatory factor analyses using three test batteries. Intelligence, 44, 120-133. https://doi.org/10.1016/j.intell.2014.04.003

Angeles Quiroga, M., Escorial, S., Roman, F. J., Morillo, D., Jarabo, A., Privado, J., Hernandez, M., Gallego, B., & Colom, R. (2015). Can we reliably measure the general factor of intelligence (g) through commercial video games? Yes, we can! Intelligence, 53, 1-7. https://doi.org/10.1016/j.intell.2015.08.004 [Do decomposition]

Reynolds, M. R., Hajovsky, D. B., Pace, J. R., & Niileksela, C. R. (2016). What Does the Shipley-2 Measure for Children and Adolescents? Integrated and Conjoint Confirmatory Factor Analysis With the WISC-IV. Assessment, 23(1), 23-41. https://doi.org/10.1177/1073191115572695

Swagerman, S. C., Geus, E. J. C. de, Kan, K. J., Bergen, E. van, Nieuwboer, H. A., Koenis, M. M. G., Pol, H. E. H., Gur, R. E., Gur, R. C., & Boomsma, D. I. (2016). The Computerized Neurocognitive Battery: Validation, aging effects, and heritability across cognitive domains. Neuropsychology, 30(1), 53-64. https://doi.org/10.1037/neu0000248 [*note MI for Dutch/TCP-PNC black and white]*

Zaboski, B. A., Kranzler, J. H., & Gage, N. A. (2018). Meta-analysis of the relationship between academic achievement and broad abilities of the Cattell-horn-Carroll theory. Journal of School Psychology, 71, 42-56. https://doi.org/10.1016/j.jsp.2018.10.001

I have also analyzed Naglieri & Jensen (1987), Lim (1988), Engelhardt (2018), Buczylowska, Petermann & Daseking (2020), and Wang et al. (2021) and found practically identical results:

Conclusion

It seems likely that practically the same g is measured by different tests in different modalities.

To-Do

  • Formulae at top for Schmid-Leiman and interpretability indices; sources on them including goodness-of-fit indices versus dimensionality/interpretability indices.
  • All the other batteries I have
  • Notes about how fits will generally be poor with matrices, reasons for this including significant digits, missing data procedures, wrong n’s per subtest, etc.
  • Reevaluate efficacy of Tucker’s \(\phi\) for describing factorial identity, correlations to be preferred for loading comparisons? Indifference of the indicator.
  • Descriptions of datasets, analyses, subtests/measures., how all models fit and g is still stable with group factors together

References

van der Maas, H. L. J., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842-861. https://doi.org/10.1037/0033-295X.113.4.842

Kovacs, K., & Conway, A. R. A. (2016). Process Overlap Theory: A Unified Account of the General Factor of Intelligence. Psychological Inquiry, 27(3), 151-177. https://doi.org/10.1080/1047840X.2016.1153946

Detterman, D. K. (1993). The case for the prosecution: Transfer as an epiphenomenon. In Transfer on trial: Intelligence, cognition, and instruction (pp. 1-24). Ablex Publishing.

Sala, G., Aksayli, N. D., Tatlidil, K. S., Tatsumi, T., Gondo, Y., & Gobet, F. (2019). Near and Far Transfer in Cognitive Training: A Second-Order Meta-Analysis. Collabra: Psychology, 5(1), 18. https://doi.org/10.1525/collabra.203

Kievit, R. A., Lindenberger, U., Goodyer, I. M., Jones, P. B., Fonagy, P., Bullmore, E. T., & Dolan, R. J. (2017). Mutualistic Coupling Between Vocabulary and Reasoning Supports Cognitive Development During Late Adolescence and Early Adulthood. Psychological Science, 28(10), 1419-1431. https://doi.org/10.1177/0956797617710785

Kievit, R. A., Hofman, A. D., & Nation, K. (2019). Mutualistic Coupling Between Vocabulary and Reasoning in Young Children: A Replication and Extension of the Study by Kievit et al. (2017). Psychological Science, 30(8), 1245-1252. https://doi.org/10.1177/0956797619841265

Shikishima, C., Hiraishi, K., Yamagata, S., Sugimoto, Y., Takemura, R., Ozaki, K., Okada, M., Toda, T., & Ando, J. (2009). Is g an entity? A Japanese twin study using syllogisms and intelligence tests. Intelligence, 37(3), 256-267. https://doi.org/10.1016/j.intell.2008.10.010

Panizzon, M. S., Vuoksimaa, E., Spoon, K. M., Jacobson, K. C., Lyons, M. J., Franz, C. E., Xian, H., Vasilopoulos, T., & Kremen, W. S. (2014). Genetic and Environmental Influences of General Cognitive Ability: Is g a valid latent construct? Intelligence, 43, 65-76. https://doi.org/10.1016/j.intell.2014.01.008

Engelhardt, L. E., Mann, F. D., Briley, D. A., Church, J. A., Harden, K. P., & Tucker-Drob, E. M. (2016). Strong Genetic Overlap Between Executive Functions and Intelligence. Journal of Experimental Psychology. General, 145(9), 1141-1159. https://doi.org/10.1037/xge0000195

Major, J. T., Johnson, W., & Bouchard, T. J. (2011). The dependability of the general factor of intelligence: Why small, single-factor models do not adequately represent g. Intelligence, 39(5), 418-433. https://doi.org/10.1016/j.intell.2011.07.002

Johnson, W., Nijenhuis, J. te, & Bouchard, T. J. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36(1), 81-95. https://doi.org/10.1016/j.intell.2007.06.001

Salthouse, T. A. (2014). Evaluating the Correspondence of Different Cognitive Batteries. Assessment, 21(2), 131-142. https://doi.org/10.1177/1073191113486690

Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. C. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32(3), 277-296. https://doi.org/10.1016/j.intell.2003.12.002

Matzke, D., Dolan, C. V., & Molenaar, D. (2010). The issue of power in the identification of “g” with lower-order factors. Intelligence, 38(3), 336-344. https://doi.org/10.1016/j.intell.2010.02.001

Major, J. T., Johnson, W., & Deary, I. J. (2012). Comparing models of intelligence in Project TALENT: The VPR model fits better than the CHC and extended Gf-Gc models. Intelligence, 40(6), 543-559. https://doi.org/10.1016/j.intell.2012.07.006

Stone, B. J. (1992). Joint confirmatory factor analyses of the DAS and WISC-R. Journal of School Psychology, 30(2), 185-195. https://doi.org/10.1016/0022-4405(92)90030-9

Benson, N. F., Beaujean, A. A., McGill, R. J., & Dombrowski, S. C. (2018). Revisiting Carroll’s survey of factor-analytic studies: Implications for the clinical assessment of intelligence. Psychological Assessment, 30(8), 1028-1038. https://doi.org/10.1037/pas0000556

Luo, D., Thompson, L. A., & Detterman, D. K. (2003). The causal factor underlying the correlation between psychometric g and scholastic performance. Intelligence, 31(1), 67-83. https://doi.org/10.1016/S0160-2896(02)00113-7

Deary, I. J., Caryl, P. G., Egan, V., & Wight, D. (1989). Visual and auditory inspection time: Their interrelationship and correlations with IQ in high ability subjects. Personality and Individual Differences, 10(5), 525-533. https://doi.org/10.1016/0191-8869(89)90034-2

Deary, I. J., Head, B., & Egan, V. (1989). Auditory inspection time, intelligence and pitch discrimination. Intelligence, 13(2), 135-147. https://doi.org/10.1016/0160-2896(89)90012-3

Undheim, J. O., & Gustafsson, J. E. (1987). The Hierarchical Organization of Cognitive Abilities: Restoring General Intelligence Through the Use of Linear Structural Relations (LISREL). Multivariate Behavioral Research, 22(2), 149–171. https://doi.org/10.1207/s15327906mbr2202_2