library(wooldridge)
data("hprice1")
head(force(hprice1), n = 5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
price = ˆα + ˆα1(lotsize) + ˆα2(sqrft) + ˆα3(bdrms) + e
modelo_estimado <- lm( formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
library(stargazer)
stargazer(modelo_estimado, title = 'Modelo estimado', type = 'text')
##
## Modelo estimado
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
#homocedástica a través de la prueba deWhite (incluya los términos cruzados).
#Prueba de White paso a paso
library(dplyr)
datos2 <- select(hprice1, price, lotsize, sqrft, bdrms)
library(stargazer)
Y <- hprice1$price
X1 <- hprice1$lotsize
X2 <- hprice1$sqrft
X3 <- hprice1$bdrms
residuos<- modelo_estimado$residuals
c <- cbind(residuos,datos2)
data_reg_aux <- as.data.frame(c)
reg_aux <- lm(formula = I(residuos^2) ~ X1 + X2+ X3 + I(X1^2) + I(X2^2)
+ I(X3^2) + X1*X2 + X1*X3 + X2*X3,data = data_reg_aux)
resumen<- summary(reg_aux)
R_2 <- resumen$r.squared
n<- nrow(data_reg_aux)
LM_w <- n*R_2
gl <- 3*2 + 3
VC<- qchisq(p = 0.95, df = gl )
p_values <- pchisq(q = LM_w,df = gl)
salida <- c(LM_w,VC,p_values)
names(salida) <- c("LM_w", "Valor critico", "p value")
stargazer(salida, title = "Prueba white", type = "html", digits = 6)
| LM_w | Valor critico | p value |
| 33.731660 | 16.918980 | 0.999900 |
#observamos que LMW es mayor que el valor critico por lo cual no hay evidencia suficiente para concluir que la varianza es homosedastica
library(fastGraph)
shadeDist(xshade = LM_w , ddist = "dchisq", parm1 = VC , lower.tail = FALSE, sub = paste("VC:", VC, "LW:", LM_w, "P values:", p_values) )